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PHYSICAL REVIEW A 85, 022123 (2012)

Contextual-value approach to the generalized measurement of observables

J. Dressel and A. N. Jordan
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA

(Received 14 September 2011; published 27 February 2012)

We present a detailed motivation for and definition of the contextual values of an observable, which were
introduced by Dressel et al. [Phys. Rev. Lett. 104, 240401 (2011)]. The theory of contextual values is a principled
approach to the generalized measurement of observables. It extends the well-established theory of generalized
state measurements by bridging the gap between partial state collapse and the observables that represent physically
relevant information about the system. To emphasize the general utility of the concept, we first construct the
full theory of contextual values within an operational formulation of classical probability theory, paying special
attention to observable construction, detector coupling, generalized measurement, and measurement disturbance.
We then extend the results to quantum probability theory built as a superstructure on the classical theory,
pointing out both the classical correspondences to and the full quantum generalizations of both Lüder’s rule
and the Aharonov-Bergmann-Lebowitz rule in the process. As such, our treatment doubles as a self-contained
pedagogical introduction to the essential components of the operational formulations for both classical and
quantum probability theory. We find in both cases that the contextual values of a system observable form a
generalized spectrum that is associated with the independent outcomes of a partially correlated and generally
ambiguous detector; the eigenvalues are a special case when the detector is perfectly correlated and unambiguous.
To illustrate the approach, we apply the technique to both a classical example of marble color detection and a
quantum example of polarization detection. For the quantum example we detail two devices: Fresnel reflection
from a glass coverslip, and continuous beam displacement from a calcite crystal. We also analyze the three-box
paradox to demonstrate that no negative probabilities are necessary in its analysis. Finally, we provide a derivation
of the quantum weak value as a limit point of a pre- and postselected conditioned average and provide sufficient
conditions for the derivation to hold.

DOI: 10.1103/PhysRevA.85.022123 PACS number(s): 03.65.Ta, 03.65.Ca, 03.67.−a, 02.50.Cw

I. INTRODUCTION

Since the advent of quantum mechanics, practitioners have
struggled with an inherent conceptual dualism in its formalism.
On one hand, time evolution of a quantum state is a continuous,
deterministic, and reversible process well described by a wave
equation. On the other hand, there is irreducible stochasticity
present in the measurement process that leads to discontinuous
and generally irreversible state evolution in the form of so-
called “quantum jumps” or “state collapse.”

To cope with the necessary introduction of the stochastic
element of the theory while still preserving ties with the deter-
ministic classical mechanics, traditional quantum mechanics
[1,2] emphasizes the role of Hermitian observable operators
that are analogous to classical observables. Indeed, we find that
observables underlie most of the core concepts in the quantum
theory: commutation relations of observables, complete sets
of commuting observables, spectral expansions of observables,
conjugate pairs of observables, expectation values of observ-
ables, uncertainty relations between observables, and time
evolution generated by a Hamiltonian observable. Even the
quantum state is introduced as a superposition of observable
eigenvectors. The stochasticity of the theory manifests itself
as a single prescription for how to average the omnipresent
observables under a deterministically evolving quantum state:
the implicit projective quantum jumps corresponding to
laboratory measurements are largely hidden by the formalism.

Experimental control of quantum systems has improved
since the early days of quantum mechanics, however, so the
discontinuous evolution present in the measurement process
can now be more carefully investigated. Modern optical and

condensed matter systems, for example, can condition the
evolution of a state on the outcomes of weakly coupled
measurement devices (e.g., [3–5]), resulting in nonprojective
quantum jumps that alter the state more gently, or even
resulting in continuous controlled evolution of the state. Since
observables are defined in terms of projective jumps that
strongly affect the state, it becomes unclear how to correctly
apply a formalism based on observables to such nonprojective
measurements. A refinement of the traditional formalism must
be employed to correctly describe the general case.

To address this need, the theory of quantum operations,
or generalized measurement, was introduced in the early
1970s by Davies [6] and Kraus [7], and has been developed
over the past forty years to become a comprehensive and
mathematically rigorous theory [8–16]. The formalism of
quantum operations has seen the most use in quantum optics,
quantum computation, and quantum information communities,
where it is indispensable and well supported by experiment.
However, it has not yet seen wide adoption outside of those
communities.

Unlike the traditional observable formalism, the formalism
of quantum operations emphasizes the states. Observables are
mentioned infrequently in the quantum operations literature,
usually appearing only in the context of projective mea-
surements where they are well understood. Some references
(e.g., [13,14,16]) define “generalized observables” in terms of
the generalized measurements and detector outcome labels,
but give no indication about their relationship to traditional
observables, if any. As a result, there is a conceptual gap
between the traditional quantum mechanics of observables and
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the modern treatment of quantum operations that encompasses
a much larger class of possible measurements than the
traditional observables seemingly allow.

A possible response to this conceptual gap is to declare that
traditional observables are meaningless outside the context of
projective measurements. This argument is supported by the
fact that any generalized measurement can be understood as a
part of a projective measurement being made on a larger joint
system that can be associated with a traditional observable
in the usual way (i.e., [13, p. 20]). However, there has been
parallel research into the “weak measurement” of observables
[17–33] that suggests that linking generalized measurements
to traditional observables may not be such an outlandish idea.

Weak measurements were introduced as a consequence
of the von Neumann measurement protocol [2] that uses
an interaction Hamiltonian with variable coupling strength
to correlate an observable of interest to the generator of
translations for a continuous meter observable. The resulting
shift in the meter observable is then used to infer information
about the observable of interest in a nonprojective manner.
The technique has been used to great effect in the laboratory
[34–48] to measure physical quantities like pulse delays,
beam deflections, phase shifts, polarization, and averaged
trajectories. Therefore, we conclude that there must be some
meaningful way to reconcile nonprojective measurements with
traditional observables more formally.

The primary purpose of the present work is to detail a
synthesis between generalized measurements and observables
that is powerful enough to encompass projective measure-
ments, weak measurements, and any strength of measurement
in between. The formalism of contextual values, which we
explicitly introduced in Ref. [49,50] and further developed
in [51–53], forms a bridge between the traditional notion of
an observable and the modern theory of quantum operations.
For a concise introduction to the topic in the context of the
quantum theory, we recommend reading our letter [49].

The central idea of the contextual-value formalism is that
an observable can be completely measured indirectly using
an imperfectly correlated detector by assigning an appropriate
set of values to the detector outcomes. The assigned set of
values generally differs from the set of eigenvalues for the
observable and forms a generalized spectrum that is associated
with the operations of the generalized measurement, rather
than the spectral projections for the observable. Thus, the
spectrum that one associates with an observable will depend
on the context of how the measurement is being performed;
such an inability to completely discuss observables without
specifying the full measurement context is reminiscent of
Bell-Kochen-Specker contextuality [26,54–59] and motivates
the name “contextual values.”

The secondary purpose of the present work is to demon-
strate that the contextual-value formalism for generalized
observable measurement is essentially classical in nature.
Hence, it has potential applications outside the usual scope of
the quantum theory. Indeed, we will show that any system that
can be described by Bayesian probability theory can benefit
from the contextual-value formalism.

Extending contextual values to the quantum theory from
the classical theory clarifies which features of the quantum
theory are novel. The quantum theory can be seen as an

extension of a classical probability space to a continuous
manifold of incompatible frameworks, where each framework
is a copy of the original probability space. Hence, intrinsically
quantum features arise not from the observables defined
in any particular framework, but instead from the relative
orientations of the incompatible frameworks. As we shall
see, the differences manifest in sequential measurements and
conditional measurements due to the probabilistic structure of
the incompatible frameworks, rather than the observables or
contextual values themselves.

To keep the paper self-contained with these aims in mind,
we first develop both the operational approach to measurement
and the contextual-value formalism completely within the
confines of classical probability theory, giving illustrative
examples to cement the ideas. We then port the formalism
to the quantum theory and identify the essential differences
that arise. Our analysis therefore doubles as a pedagogical
introduction to the operational approaches for both classical
and quantum probability theory that should be accessible to a
wide audience.

The paper is organized as follows: In Sec. I A, we provide a
simple intuitive example to introduce the concept of contextual
values. In Secs. II A through II C, we develop the classical ver-
sion of the operational approach to measurement. In Sec. II D,
we introduce the contextual-value formalism classically and
then give several examples similar to the initial example. In
Secs. III A through III C, we generalize the classical operations
to quantum operations and highlight the key differences with
explicit examples. In Sec. III D, we apply the contextual-value
formalism to the quantum case and show that it is unchanged.
We also specifically address how to treat weak measurements
as a special case of our more general formalism and provide
a derivation of the quantum weak value in Sec. III E. Finally,
we give our conclusions in Sec. IV.

A. EXAMPLE: COLORBLIND DETECTOR

The idea of the contextual-values formalism is deceptively
simple. Its essence can be distilled from the following classical
example of an ambiguous detector: Suppose we wish to
measure a marble that may be colored either red or green.
A person with normal vision can distinguish the colors
unambiguously and so would represent an ideal detector
for the color state of the marble. A partially colorblind
person, however, may only estimate the color correctly some
percentage of the time and so would represent an ambiguous
detector of the color state of the marble.

If the person is only mildly colorblind, then the estimations
will be strongly correlated to the actual color of the marble. The
ambiguity would then be perturbative and could be interpreted
as noise introduced into the measurement. However, if the
person is strongly colorblind, then the estimations may be
only mildly correlated to the actual color of the marble. The
ambiguity becomes nonperturbative, so the noise dominates
the signal in the measurement.

We can design an experimental protocol where an exper-
imenter holds up a marble and the colorblind person gives a
thumbs-up if he thinks the marble is green or a thumbs-down
if he thinks the marble is red. Suppose, after testing a large
number of known marbles, the experimenter determines that
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a green marble correlates with a thumbs-up 51% of the
time, while a red marble correlates with a thumbs-down 53%
of the time. The experimental outcomes of thumbs-up and
thumbs-down are thus only weakly correlated with the actual
color of the marble.

Having characterized the detector in this manner, the
experimenter provides the colorblind person with a very large
bag of an unknown distribution of colored marbles. The
colorblind person examines every marble and, for each one,
records a thumbs-up or a thumbs-down on a sheet of paper,
which he then returns to the experimenter. The experimenter
then wishes to reconstruct what the average distribution of
marble colors in the bag must be, given only the ambiguous
output of his colorblind detector.

For simplicity, the clever experimenter decides to associate
the colors with numerical values: 1 for green (g) and −1 for red
(r). In order to compare the ambiguous outputs with the colors,
he also assigns them different numerical values: a for thumbs-
up (u), and b for thumbs-down (d). He then writes down the
following probability constraint equations for obtaining the
average marble color, 〈color〉, based on what he has observed,

P (u) = (0.51)P (g) + (0.49)P (r),

P (d) = (0.47)P (g) + (0.53)P (r), (1)

〈color〉 = 1P (g) − 1P (r) = aP (u) + bP (d),

which he can rewrite as a matrix equation in the basis of the
color probabilities P (g) and P (r),(

1
−1

)
=

(
0.51 0.47
0.49 0.53

)(
a

b

)
. (2)

After solving this equation, he finds that he must assign
the amplified values a = 25 and b = −25 to the outcomes
of thumbs-up and thumbs-down, respectively, in order to
compensate for the detector ambiguity. After doing so, he can
confidently calculate the average color of the marbles in the
large unknown bag using the identity (1).

The classical color observable has eigenvalues of 1 and −1
that correspond to an ideal measurement. The amplified values
of 25 and −25 that must be assigned to the ambiguous detector
outcomes are contextual values for the same color observable.
The context of the measurement is the characterization of
the colorblind detector, which accounts for the degree of
colorblindness. The expansion (1) relates the spectrum of the
observable to its generalized spectrum of contextual values.
With this identity, both an ideal detector and a colorblind
detector can measure the same observable; however, the
assigned values must change depending on the context of the
detector being used.

II. CLASSICAL PROBABILITY THEORY

To define contextual values more formally, we shall define
generalized measurements within the classical theory of
probability using the same language as quantum operations. In
particular, rather than representing the observables of classical
probability theory in the traditional way as functions, we shall
adopt a more calculationally flexible, yet equivalent, algebraic
representation that closely resembles the operator algebra for
quantum observables.

We also briefly comment that the relevant subset of
probability theory that is summarized here may slightly
differ in emphasis from incarnations that the reader may
have encountered previously. Our treatment acknowledges that
probability theory, in its most general incarnation, is a system
of formal reasoning about Boolean logic propositions [60,61];
specifically, our treatment emphasizes logical inference rather
than the traditional frequency analysis of concrete random
variable realizations. However, the “frequentist” approach of
random variables is not displaced by the logical approach but
is rather subsumed as an important special case pertaining to
repeatable experiments with logically independent outcomes.
Due to its clarity and generality, the logical approach has been
widely adopted in diverse disciplines under the distinct name
“Bayesian probability theory.” Several physicists, including
(but certainly not limited to) Jaynes [62], Caves [63], Fuchs
[64], Spekkens [65], Harrigan [66], and Leifer [16,67], have
also extolled its virtues in recent years. We follow suit to
emphasize the generality of the contextual-value concept.

A. Sample spaces and observables

In what follows, we shall consider the stage on which
classical probability theory unfolds—namely its space of
observables—to be a commutative algebra over the reals
that we denote �R

X . This choice of notation is motivated
by the fact that the observable algebra is built from and
contains two related spaces, X and �X, that are conceptually
distinct and equally important to the theory. The three are
illustrated in Fig. 1 to orient the discussion. To avoid distracting
technical detail, we will briefly describe finite-dimensional
versions of these three spaces here, and note straightforward
generalizations to the continuous case when needed [68].

Sample spaces. The core of a probability space is a
set of mutually exclusive logic propositions X, known as
the sample space of atomic propositions. In other words,
elements of the sample space, such as g,r ∈ X, repre-
sent “yes or no” questions that cannot be answered “yes”
simultaneously and cannot be broken into simpler ques-
tions. For example, g = Does the marble look green? and r =
Does the marble look red? are valid mutually exclusive atomic
propositions. To be a proper sample space, the propositions
should form a complete set, meaning that there must always
be exactly one true proposition. Physically, such propositions

FIG. 1. Diagram of the relationship between the sample space of
atomic propositions X, the Boolean algebra of propositions �X , and
the algebra of observables �R

X . The probability state P is a measure
from �X to the interval [0,1]. The expectation functional 〈·〉 is a
linear extension of P that maps �R

X to the reals R; by construction
〈·〉 = P (·) whenever both are defined.
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typically correspond to mutually independent outcomes of
an experiment that probes some system of interest. Indeed,
any accessible physical property must be testable by some
experiment, and any experiment can be described by such a
collection of yes or no questions.

Boolean algebra. The atomic propositions in X can be
extended to more complex propositions by logical combination
in order to form the larger space �X. Specifically, we
can combine them algebraically with a logical OR denoted
by addition and a logical AND denoted by multiplication.
For example, given propositions x, y, z ∈ �X, the quantity
xy + yz would denote the proposition “(x AND y) OR (y
AND z).” Importantly, both the sum and the product commute
since the corresponding logical operations commute, and
the propositions are idempotent so x2 = x for any x ∈ �X.
Furthermore, the product of any two nonequal propositions in
X must be trivially false since they are mutually exclusive;
we denote the trivially false proposition as 0 since its product
with any proposition is also trivially false. Similarly, the sum
of all propositions in X will be trivially true since one of the
atomic propositions must be true by construction; we denote
the trivially true proposition as 1X since its product with any
proposition x ∈ X leaves that proposition invariant, 1Xx = x.
The logical operation of NOT, or complementation (xc) with
respect to X, can then be defined as the subtraction from the
identity xc = 1X − x since x + xc = 1X must be true for any
proposition x ∈ X by definition. The proposition space �X

contains X and is closed under the operations of AND, OR, and
NOT; hence, it forms a Boolean logic algebra [69].

Observables. Finally, we extend �X linearly over the real
numbers to obtain the commutative algebra of observables �R

X .
That is, any linear combination of propositions F = ax + by

with a, b ∈ R and x, y ∈ �X is an observable in �R
X ; similarly

any linear combination of observables H = a′F + b′G with
a′, b′ ∈ R and F,G ∈ �R

X is also an observable in �R
X . Count-

able sums are permitted provided the coefficients converge.
The three spaces X, �X, and �R

X are illustrated in Fig. 1.
The observables combine logical propositions with num-

bers that describe the relation of each proposition to some
meaningful reference. For example, one could define a simple
observable A = (1)g + (−1)r that assigns a value of 1 to
the proposition asking whether a marble looks green and
assigns a value of −1 to the proposition asking whether that
same marble looks red in order to distinguish the colors by
a sign. Alternatively, one can bestow a physical meaning to
the color propositions by defining a wavelength observable
instead: B = (550 nm)g + (700 nm)r . One could even define
an observable C = ($2)g + (−$3)r that indicates a monetary
bet made on the color of the marble, with $2 being awarded
for a color of green and $3 being lost for a color of red.
Such numerical labels are always assigned by convention,
but indicate physically relevant information about the type of
questions being asked by the experimenter that are answerable
by the independent propositions.

Representation. The algebra �X can be represented as the
lattice of projection operators acting on a Hilbert space exactly
as in the standard representation of quantum theory [2,12,70].
The elements {x} of X correspond to rank-1 projection
operators {|x〉〈x|} onto orthogonal subspaces spanned by
orthonormal vectors {|x〉} in the Hilbert space. Any sum

of n elements of X, x1 + · · · + xn, corresponds to a rank-n
projection operator |x1, . . . ,xn〉〈x1, . . . ,xn| onto a subspace
spanned by n orthonormal vectors {|x1〉, . . . ,|xn〉} in the
Hilbert space. Hence, we shall casually refer to propositions
of the Boolean algebra �X as projections in what follows.
However, it is important to note that the Boolean algebra �X

need not be represented in this fashion to be well defined.
Just like the propositions �X can be represented as

projections on a Hilbert space, the observables �R
X can also

be represented as the algebra of Hermitian operators acting
on the same Hilbert space. Hence, we shall casually refer to
observables in �R

X as observable operators in analogy to the
quantum theory. However, unlike quantum observables, all
classical observables commute. It is important to note that the
representation of observables as operators on a Hilbert space
in both the classical and the quantum case remains strictly
optional for calculational convenience.

Independent probability observables. We note that the
identity observable 1X can be partitioned into many distinct
sets of independent propositions in �X, such as

∑
i xi = 1X,

which is known as a closure relation. Each partitioning corre-
sponds to a particular detector arrangement that only probes
those propositions. Such a partitioning {xi} has the common
mathematical name projection-valued measure (PVM) since it
forms a measure over the index i and has a representation that
consists of orthogonal projections. However, we shall make
an effort to call the propositions {xi} independent probability
observables to be more physically descriptive. We will later
contrast them with more general probability observables.

General observables can be constructed from independent
probability observables by associating a real value f (xi) to
each index i in the sum, F = ∑

i f (xi)xi . The product of the
observable with any of its constituent probability observables
simplifies, Fxi = f (xi)xi ; hence, the associated values form
the set of eigenvalues for the observable. For a finite observable
space �R

X , the set of atomic propositions X itself is a maximally
refined set of independent probability observables that can
construct any observable in the space,

F =
∑
x∈X

f (x)x. (3)

In the continuous case the values f (x) form a measurable
function that specifies the spectrum of the observable; the sum
(3) is then commonly written as an integral over the continuous
set of propositions {|x〉〈x|}, F = ∫

X
f (x)d|x〉〈x|. We use the

Hilbert space notation d|x〉〈x| in the integral to avoid later
confusion with real-valued integrals.

B. States, densities, and collapse

Probability measures. A state P is a probability measure
over the Boolean algebra �X, meaning that it is a linear map
from �X to the interval [0,1] such that P (1X) = 1. Such a
state P assigns a numerical value P (x) to each proposition
x ∈ �X that quantifies its degree of plausibility; that is, P (x)
formally indicates how likely it is that the question x would
be answered “yes” were it to be answered, with 1 indicating
a certain “yes” and 0 indicating a certain “no.” The value
P (x) is called the probability for the proposition x to be true.
Normalizing P (1X) = 1 ensures that exactly one proposition
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in the sample space must be true. For continuous spaces, the
state becomes an integral P (x0) = ∫

x0∈�X
dP (x).

Frequencies. Empirically, one can check probabilities by
repeatedly asking a proposition in �X to identically prepared
systems and collecting statistics regarding the answers. For a
particular proposition x ∈ �X, the ratio of yes answers to the
number of trials will converge to the probability P (x) as the
number of trials becomes infinite. However, the probability
has a well-defined meaning as a plausibility prediction even
without actually performing such a repeatable experiment.
Indeed, designing good quality repeatable experiments to
check the probabilities assigned by a predictive state is the
primary goal of experimental science, and is generally quite
difficult to achieve.

Expectation functionals. The linear extension of a state
P to the whole observable algebra �R

X is an expectation
functional that averages the observables and is traditionally
notated with angled brackets 〈·〉. Specifically, for an observable
F = ∑

x∈X f (x)x, then,

〈F 〉 =
∑
x∈X

f (x)P (x), (4)

is the expectation value, or average value, of F under the
functional 〈·〉 that extends the probability state P . Since 〈·〉 is
linear, it passes through the sum and the constant factors of
f (x) to apply directly to the propositions x. The restriction
of 〈·〉 to �X is P , so 〈x〉 = P (x) as written in Eq. (4). That
is, the expectation value 〈x〉 of a pure proposition x is the
probability of that proposition. The probability state P and its
linear extension 〈·〉 are illustrated in Fig. 1. For continuous
spaces the sum (4) becomes an integral of the measurable
function f (x), 〈F 〉 = 〈∫

X
f (x)d|x〉〈x|〉 = ∫

X
f (x)dP (x).

Moments. The nth statistical moment of F is 〈Fn〉 =∑
x∈X f n(x)P (x) and empirically corresponds to measuring

the observable F n times in a row per trial on identical systems
and averaging the repeated results. Hence, the moments quan-
tify the fluctuations of the observable measurements that stem
from uncertainty in the state. For continuous spaces, the higher
moments also become integrals 〈Fn〉 = ∫

X
f n(x)dP (x).

Densities. States can often be represented as densities
with respect to some reference measure μ from �X to R+,
which can be convenient for calculational purposes. Just as the
state P can be linearly extended to an expectation functional
〈·〉, any reference measure μ can be linearly extended to
a functional 〈·〉μ. For continuous spaces, such a reference
functional takes the form of an integral 〈F 〉μ = ∫

X
f (x)dμ(x).

The representation of a state as a density follows from
changing the integration measure for the state to the reference
measure 〈F 〉 = ∫

X
f (x)dP (x) = ∫

X
f (x)(dP/dμ)(x)dμ(x).

The Jacobian conversion factor dP/dμ from the integral
over dP (x) to the integral over a different measure dμ(x)
is the probability density for P with respect to μ, if it exists
[71]. We can then define a state density observable Pμ =∫
X

(dP/dμ)(x)d|x〉〈x| that relates the expectation functional
〈·〉 to the reference functional 〈·〉μ directly according to the
relation 〈PμF 〉μ = 〈F 〉.

For continuous spaces, the standard integral is most
frequently used as a reference. Hence, the probability density
with respect to the standard integral is given the simple
notation p(x) such that 〈F 〉 = ∫

X
f (x)p(x)dx. Importantly,

the probability for x is not the density p(x) = (dP/dx)(x) but
is the (generally infinitesimal) integral of the density over a
single point P (x) = ∫

x∈X
p(x)dx [72,73], commonly notated

p(x)dx.
In discrete spaces we apply the same idea by defining a

state-density observable directly in terms of measure ratios,

Pμ =
∑
x∈X

P (x)

μ(x)
x. (5)

Then by definition and linearity, 〈PμF 〉μ = ∑
x∈X[P (x)/

μ(x)]f (x)μ(x) = ∑
x∈X f (x)P (x) = 〈F 〉, as required. Evi-

dently, the measure μ must be nonzero for all propositions
x for which P is nonzero in order for such a state density to
be well defined. This definition as a ratio of functionals will
correctly reproduce the Jacobian derivative in the continuous
case using a limiting prescription.

Trace. An important reference measure which is nonzero
for any nonzero proposition is the counting measure, or trace
Tr, which evaluates to the rank of any proposition in �X; for
example, given x, y, z ∈ X then (x + y + z) ∈ �X is a rank-
3 proposition and Tr(x + y + z) = Tr(x) + Tr(y) + Tr(z) =
1 + 1 + 1 = 3. Since the trace evaluates to unity on any atomic
proposition, any state has a trace density defined by equation
(5) that is traditionally notated as ρ:

ρ =
∑
x∈X

P (x)x. (6)

The trace density is the only state density that is always defined
and exactly determined by the probabilities of the atomic
propositions P (x). Because of this, the trace representation
of a state can be naturally interpreted as an inner product,

〈ρ,F 〉 = Tr(ρF ) = 〈F 〉, (7)

between the trace-density and the observable, known as the
Hilbert-Schmidt inner product. The trace will become partic-
ularly important when we generalize to quantum mechanics,
which is why we mention it here. Indeed, the trace-density ρ

will be equivalent to the quantum mechanical density operator
when extended to the noncommutative case. For continuous
spaces the integral is traditionally preferred to the trace as a
reference because the trace can frequently diverge.

State collapse. If a question on the probability space
is answered by some experiment, then the state indicating
the plausibilities for future answers must be updated to
reflect the acquired answer. The update process is known as
Bayesian state conditioning, or state collapse. Specifically, if
a proposition y ∈ �X is verified to be true, then the experi-
menter updates the expectation functional to the conditioned
functional,

〈F 〉y = 〈yF 〉
P (y)

, (8)

that reflects the new information. For a proposition x ∈ �X, the
conditional probability 〈x〉y = P (yx)/P (y) has the traditional
notation P (x|y) and is read as “the probability of x given y.”

From (8), any state density corresponding to P will be
similarly updated to a new density via a product,

Pμ|y = Pμy

P (y)
. (9)
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Notably, conditioning the trace-density ρ on an atomic
proposition y ∈ X will collapse the density to become the
proposition itself, ρy = ρy/P (y) = y.

Note that the proposition y serves a dual role in the
conditioning procedure. First, it is used to compute the
normalization probability P (y). Second, it directly updates
the state via a product action. The product indicates that future
questions will be logically linked to the answered question with
the AND operation; that is, the knowledge about the system
has been refined by the answered question. The process of
answering a question about the system and then conditioning
the state on the new information is called a measurement;
moreover, since the proposition y is a projection acting on
the density, this kind of measurement is called a projective
measurement.

Bayes’ rule. If we pick another proposition z ∈ �X as the
observable in Eq. (8) we can derive Bayes’ rule as a necessary
consequence by interchanging y and z and then equating the
joint probabilities P (yz),

P (z|y) = P (y|z)
P (z)

P (y)
. (10)

Bayes’ rule relates conditioned expectation functionals to one
another and so is a powerful logical inference tool that drives
much of the modern emphasis on the logical approach to
probability theory.

Disturbance. Conditioning, however, is not the only way
that one can alter a state. One can also disturb a state without
learning any information about it, which creates a transition to
an updated expectation functional that we denote with a tilde
〈̃ · 〉 according to

〈F̃ 〉 = 〈D(F )〉, (11a)

D(F ) =
∑
x∈X

〈F 〉Dx
x, (11b)

〈F 〉Dx
=

∑
x ′∈X

f (x ′)Dx(x ′). (11c)

Here the disturbance D is a map from �R
X to �R

X that is
governed by a collection of states {Dx} that specify transition
probabilities Dx(x ′) from old propositions x to new proposi-
tions x ′. To be normalized, the transition states must satisfy
Dx(1X) = 1, so that 〈1X〉Dx

= 1X and therefore D(1X) = 1X.
Updating the state according to (11) is also known as Bayesian
belief propagation [67] and is more commonly written in the
fully expanded form 〈F̃ 〉 = ∑

x∈X P (x)
∑

x ′∈X Dx(x ′)f (x ′).
Time evolution. As an important special case, the time

evolution of a Markovian stochastic process is a form of
disturbance Dt , known as a propagator, that is parametrized
by a time interval t . No information is learned as the system
evolves, so the knowledge about the system as represented by
the expectation functional can only propagate according to the
laws governing the time evolution. For a Hamiltonian system,
the time evolution is of Liouville form; that is, if we define
a time-evolving observable as F (t) = Dt (F ) then we have
dF (t)/dt = {F (t),H }p, where {·,·}p is defined point wise
as the Poisson bracket. The differential equation implicitly
specifies the form of the disturbance Dt .

Correlation functions. Correlations between observables at
different times can be obtained by inserting a time-evolution
disturbance between the observable measurements,

〈F (0)G(t)〉 = 〈FDt (G)〉
=

∑
x∈X

P (x)f (x)
∑
x ′∈X

Dx,t (x
′)g(x ′). (12)

Operationally, this corresponds to measuring the observable F ,
waiting an interval of time t , then measuring the observable G.
Similarly, n-time correlations can be defined with n − 1 time-
evolution disturbances between the observable measurements
〈F1Dt1 (F2 · · ·Dtn−1 (Fn) · · · )〉. Computing the correlation of an
observable with itself at the same time will produce a higher
moment 〈Fn〉.

Invasive measurement. A system may also be disturbed
during the physical process that implements conditioning,
which will alter the state above and beyond the pure condi-
tioning expression (8). With such an invasive measurement,
one conditions a state after a disturbance induced by the
measurement process has occurred; hence, one obtains a new
state,

〈F̃ 〉y = 〈D(yF )〉
〈D(y)〉 =

∑
x∈X P (x)

∑
x ′∈X Dx(yx ′)f (x ′)∑

x∈X P (x)Dx(y)
, (13)

which is a composition of the measurement disturbance (11)
followed by the pure conditioning (8). As we shall see
later in Sec. III B, the quantum projection postulate (Lüder’s
Rule) can be understood as an invasive measurement similar
to (13), but not as pure conditioning similar to (8). This
observation has also been recently emphasized by Leifer and
Spekkens [67], who show that a careful extension of (8) to
the noncommutative quantum setting does not reproduce the
projection postulate. Hence, better understanding classical
invasive measurement should provide considerable insight
into the quantum measurement process. However, to properly
understand the implications of invasive measurements on the
measurement of observables, we must consider the measure-
ment process in more detail.

C. Detectors and probability observables

For a single ideal experiment that answers questions
of interest with perfectly correlated independent outcomes,
knowing the spectrum of an observable for that experiment is
completely sufficient. However, in many (if not most) cases the
independent propositions corresponding to the experimental
outcomes are only imperfectly correlated with the questions of
interest about the system. Since in such a case one may not have
direct access to the questions of interest, one also may not have
direct access to the observables of interest. One must instead
infer information about the observables of interest indirectly
from the correlated outcomes of the detector to which one does
have access.

Joint sample space. To handle this case formally, we first
enlarge the sample space to include both the sample space
of interest, which we call the system X and the accessible
sample space, which we call the detector Y . Questions about
the system and the detector can be asked independently, so
every question for the system can be paired with any question
from the detector; therefore, the resulting joint sample space
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must be a product space, XY = {xy|x ∈ X,y ∈ Y }, where
the products of propositions from different sample spaces
commute. The Boolean algebra �XY and observable algebra
�R

XY are constructed in the usual way from the joint sample
space, and contain the algebras �X, �Y , �R

X , and �R
Y as

subalgebras. When represented as operators on a Hilbert space,
the corresponding joint representation exists within the tensor
product of the system and detector space representations.

Product states. If the probabilities of the system proposi-
tions are uncorrelated with the probabilities of the detector
propositions under a joint state P on the joint sample space,
then the joint state can be written as a composition of
independent states that are restricted to the sample spaces
of the system and detector: P = PX ◦ PY . Just as the state
P has a linear extension to 〈·〉, its restrictions PX and PY

have linear extensions 〈·〉X and 〈·〉Y , respectively. Thus, for
any joint observable F an uncorrelated expectation has the
form 〈F 〉 = 〈〈F 〉Y 〉X = 〈〈F 〉X〉Y . Such an uncorrelated joint
state is known as a product state. The name stems from the
fact that, for a simple product FXFY of system and detector
observables, the corresponding joint expectation decouples
into a product of system and detector expectations separately,
〈FXFY 〉 = 〈FX〉X〈FY 〉Y .

Similarly, general measures on the joint sample space
can be product measures. A particularly useful example
is the trace Tr = TrX ◦ TrY on XY , which is composed
of the partial traces TrX and TrY . The trace serves
as a convenient reference measure since it is a product
measure for which any joint state has a corresponding
density. On continuous spaces the standard integral is
also a product measure, 〈F 〉 = ∫

X
[
∫
Y

f (x,y)p(x,y)dy]dx =∫
Y

[
∫
X

f (x,y)p(x,y)dx]dy, which tends to have noninfinites-
imal densities.

Correlated states. In addition to product states, the joint
space admits a much larger class of correlated states where the
detector and system questions are dependent on one another.
With such a correlated state a measurement on the detector can-
not be decoupled in general from a measurement on the system.
Information gathered from a measurement on a detector under
a correlated state will also indirectly provide information about
the system, thus motivating the term “detector.”

Reduced states. For a pure system observable FX or a pure
detector observable FY , the average under a joint state will be
equivalent to the average under a state restricted to either the
system or the detector space, known as a reduced state or a
marginalized state. We can define such a reduced state by using
the joint state density under any reference product measure
μ = μX ◦ μY , such as the trace Tr. It then follows that

〈FX〉 = 〈〈Pμ〉μY
FX

〉
μX

= 〈
PμX

FX

〉
μX

, (14a)

〈FY 〉 = 〈〈Pμ〉μX
FY

〉
μY

= 〈
PμY

FY

〉
μY

. (14b)

The quantities PμX
= 〈Pμ〉μY

and PμY
= 〈Pμ〉μX

are the
reduced state densities that define the reduced states PX and
PY with expectation functionals

〈FX〉X = 〈
PμX

FX

〉
μX

, (15a)

〈FY 〉Y = 〈
PμY

FY

〉
μY

. (15b)

By definition, 〈FX〉 = 〈FX〉X and 〈FY 〉 = 〈FY 〉Y . However,
in general 〈F 〉 �= 〈〈F 〉Y 〉X, 〈F 〉 �= 〈〈F 〉X〉Y , and 〈〈F 〉Y 〉X �=
〈〈F 〉X〉Y unless P is a product state. The resulting reduced
expectations 〈·〉X and 〈·〉Y are independent of the choice of
reference product functional μ.

Probability observables. Any correlation between the sys-
tem and detector in the joint state allows us to directly relate
propositions on the detector to observables on the system.
We can compute the relationship directly by using a closure
relation and rearranging the conditioning procedure (8) to find

P (y) =
∑
x∈X

P (x)P (y|x) =
〈∑
x∈X

P (y|x)x

〉
= 〈Ey〉X, (16)

Ey =
∑
x∈X

P (y|x)x. (17)

The resulting set of system observables {Ey} exactly corre-
spond to the detector outcomes {y}. Analogously to a set of
independent probability observables, they form a partition of
the system identity, but are indexed by detector propositions
rather than by system propositions,

∑
y∈Y Ey = 1X. Such a set

{Ey} has the common mathematical name positive operator-
valued measure (POVM) [11], since it forms a measure
over the detector sample space Y consisting of positive
operators. However, we shall make an effort to refer to them
as general probability observables to emphasize their physical
significance. As long as the detector outcomes are not mutually
exclusive with the system, the probability observables (17) will
be a faithful representation of the reduced state of the detector
in the observable space of the system.

Process tomography. The probability observables are com-
pletely specified by the conditional likelihoods P (y|x) for a
detector proposition y to be true given that a system proposition
x is true. Such conditional likelihoods are more commonly
known as response functions for the detector and can be
determined via independent detector characterization using
known reduced system states; such characterization is also
known as detector tomography or process tomography. Any
good detector will then maintain its characterization with any
unknown reduced system state. That is, a noninvasive coupling
of such a good detector to an unknown system produces
a correlated joint state according to P (xy) = PX(x)P (y|x),
where PX is the unknown reduced system state prior to the
interaction with the detector.

Generalized state collapse. In addition to allowing the com-
putation of detector probabilities, P (y) = 〈Ey〉X, probability
observables also have the dual role of updating the reduced
system state following a measurement on the detector. To see
this, we apply the general rule for state collapse (8) for a
detector proposition y on the joint state to find

〈FX〉y = 〈yFX〉
P (y)

=
∑
x∈X

fX(x)P (y|x)
PX(x)

P (y)
= 〈EyFX〉X

〈Ey〉X ,

(18)

which can be seen as a generalization of the Bayesian
conditioning rule (8) to account for the effect of an imperfectly
correlated detector, and it can also be understood as a form
of Jeffrey’s conditioning [74]. For this reason, probability
observables are commonly called effects of the generalized
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measurement. A reduced state density PμX
for the system

updates as PμX |y = PμX
Ey/〈Ey〉X. Such a generalized mea-

surement is nonprojective, so is not constrained to the disjoint
questions on the sample space of the system. As a result, it
answers questions on the system space ambiguously or noisily.

Weak measurement. The extreme case of such an ambiguous
measurement is a weak measurement, which is a measurement
that does not (appreciably) collapse the system state. Such a
measurement is inherently ambiguous to the extent that only a
minuscule amount of information is learned about the system
with each detection. Formally, the probability observables for
a weak measurement are all nearly proportional to the identity
on the system space. Typically, an experimenter has access to
some control parameter ε (such as the correlation strength)
that can alter the weakness of the measurement such that

∀ y, lim
ε→0

Ey(ε) = PY (y)1X, (19)

where PY (y) ∈ (0,1) is the nonzero probability of obtaining
the detector outcome y in the absence of any interaction
with the system. Then, for small values of ε, the measure-
ment leaves the system state nearly unperturbed, PμX |y =
PμX

Ey(ε)/〈Ey(ε)〉X ≈ PμX
. The limit as such a control pa-

rameter ε → 0 is known as the weak-measurement limit and is
a formal idealization not strictly achievable in an experiment.

Strong measurement. The opposite extreme case is a
strong measurement or projective measurement, which is a
measurement for which all outcomes are independent, as
in Eq, (3). In other words, the probability observables are
independent for a strong measurement. The projective collapse
rule (8) can therefore be seen as a special case of the general
collapse rule (18) from this point of view.

Measurement sequences. A further benefit of the probability
observable representation of a detector is that it becomes
straightforward to discuss sequences of generalized measure-
ments performed on the same system. For example, consider
two detectors that successively couple to a system and have
the outcomes y and z measured, respectively. To describe the
full joint state of the system and both detectors requires a
considerably enlarged sample space. However, if the detectors
are characterized by two sets of probability observables {Ey}
and {E′

z} we can immediately write down the probability of
both outcomes to occur as well as the resulting final collapsed
system state without using the enlarged sample space:

P (yz) = 〈E′
zEy〉X, (20a)

〈FX〉yz = 〈E′
zEyFX〉X

〈E′
zEy〉X . (20b)

Similarly, a conditioned density takes the form PμX |yz =
PμX

E′
zEy/〈E′

zEy〉X. The detectors have been abstracted away
to leave only their effect upon the system of interest.

Generalized invasive measurement. The preceding discus-
sion holds provided that the detector can be noninvasively
coupled to a reduced system state PX to produce a joint state
P (xy) = PX(x)P (y|x). However, more generally the process
of coupling a reduced detector state PY to the reduced system
state PX will disturb both states, as discussed for (11). The

disturbance produces a joint state from the original product
state of the system and detector according to

〈x̃y〉 = 〈〈D(xy)〉Y 〉X, (21)

D(xy) =
∑
x ′∈X

∑
y ′∈Y

Dx ′,y ′ (xy)x ′y ′, (22)

where Dx ′,y ′ are states specifying the joint transition probabil-
ities for the disturbance. The noninvasive coupling P (xy) =
PX(x)P (y|x) is a special case of this where the reduced system
state is unchanged by the coupling.

As a result, we must slightly modify the derivation of
the probability observables (16) to properly include the
disturbance,

〈ỹ〉 = 〈〈D(y)〉Y 〉X = 〈Ẽy〉X, (23a)

Ẽy = 〈D(y)〉Y =
∑
x∈X

∑
y ′∈Y

PY (y ′)Dx,y ′ (y)x. (23b)

The modified probability observable Ẽy includes both
the initial detector state PY and the disturbance from
the measurement. Detector tomography will therefore
find the effective characterization probabilities P̃ (y|x) =∑

y ′∈Y Dx,y ′ (y)PY (y ′).
The generalized collapse rule similarly must be modified to

include the disturbance,

〈F̃X〉y = 〈〈D(yFX)〉Y 〉X

〈〈D(y)〉Y 〉X

= 〈Ey(FX)〉X
〈Ẽy〉X

, (24)

Ey(FX) = 〈D(yFX)〉Y
=

∑
x ′∈X

x ′ ∑
y ′∈Y

PY (y ′)
∑
x∈X

Dx ′,y ′ (yx)f (x). (25)

Surprisingly, we can no longer write the conditioning in terms
of just the probability observables Ẽy ; instead we must use an
operation Ey that takes into account both the coupling of the
detector and the disturbance of the measurement in an active
way. The measurement operation is related to the effective
probability observable according to, Ey(1X) = Ẽy .

The change from observables to operations when the
disturbance is included becomes particularly important for a
sequence of invasive measurements. Consider an initial system
state PX that is first coupled to a detector state PY via a
disturbance D1, then conditioned on the detector proposition
y, then coupled to a second detector state PZ via a disturbance
D2, and finally conditioned on the detector proposition z. The
joint probability for obtaining the ordered sequence (y,z) can
be written as

〈〈D1(y〈D2(z)〉Z)〉Y 〉X = 〈Ey(Ẽ′
z)〉X. (26)

The effective probability observable Ey(E ′
z(1X)) = Ey(Ẽ′

z) for
the ordered measurement sequence (y,z) is no longer a
simple product of the probability observables Ẽy and Ẽ′

z

as in Eq. (20a), but is instead an ordered composition of
operations.

The ordering of operations also leads to a new form of
postselected conditioning. Specifically, if we condition only
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on the second measurement of z in an invasive sequence (y,z),
we obtain

z〈ỹ〉 = 〈Ey(Ẽ′
z)〉X∑

y ′∈Y 〈Ey ′ (Ẽ′
z)〉X

= 〈Ey(Ẽ′
z)〉X

〈E(Ẽ′
z)〉X

, (27)

E(Ẽ′
z) =

∑
y ′∈Y

Ey ′ (Ẽ′
z) = 〈D(Ẽ′

z)〉Y . (28)

The different position of the subscript serves to distinguish
the postselected probability z〈ỹ〉 from the preselected prob-
ability 〈ỹ〉z = 〈E ′

z(Ẽy)〉X/〈Ẽ′
z〉X corresponding to the reverse

measurement ordering of (z,y). The operation E appearing
in the denominator is called a nonselective measurement
since it includes the disturbance induced by the measurement
coupling, but does not condition on any particular detector
outcome. When the disturbance to the reduced system state
vanishes, the conditioning becomes order independent and
both types of conditional probability reduce to P (y|z) =
〈EyE

′
z〉X/〈E′

z〉X.
The two forms of conditioning for invasive measurements

in turn lead to a modified form of Bayes’ rule that relates
the preselected conditioning of a sequence to the postselected
conditioning of the same sequence,

z〈ỹ〉 = 〈̃z〉y 〈Ey〉X
〈E(Ẽ′

z)〉X
. (29)

When the disturbance to the reduced system state vanishes, the
nonselective measurement E reduces to the identity operation,
z〈ỹ〉 reduces to P (y|z), 〈̃z〉y reduces to P (z|y), and we
correctly recover the noninvasive Bayes’ rule (10).

D. Contextual values

Observable correspondence. With the preliminaries about
generalized state conditioning out of the way, we are now
in a position to discuss the measurement of observables in
more detail. First we observe an important corollary of the
observable representation of the detector probabilities P (y) =
〈Ey〉X from (16): detector observables can be mapped into
equivalent system observables,

〈FY 〉 =
∑
y∈Y

fY (y)P (y) = 〈FX〉X, (30)

FX =
∑
y∈Y

fY (y)Ey. (31)

Note that the eigenvalues fX(x) = ∑
y∈Y fY (y)P (y|x) of the

equivalent system observable FX are not the same as the eigen-
values fY (y) of the original detector observable FY , but are
instead their average under the detector response. If the system
propositions were accessible then the system observable FX

would allow nontrivial inference about the detector observable
FY , provided that the probability observables were nonzero for
all y in the support of FY .

Contextual values. A more useful corollary of the expansion
(31) is that any system observable that can be expressed as a
combination of probability observables may be equivalently
expressed as a detector observable,

FX =
∑
y∈Y

fY (y)Ey ⇒ FY =
∑
y∈Y

fY (y)y, (32)

which is the classical form of our main result. Using this
equivalence, we can indirectly measure such system observ-
ables using only the detector. We dub the eigenvalues of the
detector observable fY (y) the contextual values (CVs) of the
system observable FX under the context of the specific detector
characterized by a specific set of probability observables {Ey}.
The CVs form a generalized spectrum for the observable since
they are associated with general probability observables for
a generalized measurement and not independent probability
observables for a projective measurement; the eigenvalues are
a special case when the probability observables are the spectral
projections of the observable being measured.

With this point of view, we can understand an observable
as an equivalence class of possible measurement strategies
for the same average information. That is, using appropriate
pairings of probability observables and CVs, one can measure
the same observable average in many different ways, 〈FX〉 =∑

x∈X fX(x)P (x) = ∑
y∈Y fY (y)〈Ey〉X. Each such expansion

corresponds to a different experimental setup.
Moments. Similarly, the nth statistical moment of an

observable can be measured in many different, yet equivalent,
ways. For instance, the nth moment of an observable FX can
be found from the expansion (32) as

〈(FX)n〉 =
〈(∑

y∈Y

fY (y)Ey

)n〉
X

=
∑

y1,...,yn∈Y

fY (y1) · · · fY (yn)
〈
Ey1 · · · Eyn

〉
X
. (33)

By examining the general collapse rule for measurement
sequences (20a) we observe that the quantity 〈Ey1 · · · Eyn

〉X
must be the joint probability for a sequence (y1, · · · ,yn) of
n noninvasive measurements that couple the same detector to
the system n times in succession. Furthermore, the average in
Eq. (33) is explicitly different from the nth statistical moment
of the raw detector results, 〈(FY )n〉 = ∑

y∈Y [fY (y)]nP (y).
We conclude that, for imperfectly correlated noninvasive

detectors, one must perform measurement sequences to obtain
the correct statistical moments of an observable using a partic-
ular set of CVs. Only for unambiguous measurements with
independent probability observables do such measurement
sequences reduce to simple powers of the eigenvalues being
averaged with single measurement probabilities. If a single
measurement by the detector is done per trial, then only
the statistical moments of the detector observable FY can be
inferred from that set of CVs, as opposed to the true statistical
moments of the inferred system observable FX.

We can, however, change the CVs to define new observables
that correspond to powers of the original observable, such as
GX = (FX)n = ∑

y∈Y gY (y)Ey . These new observables can
then be measured indirectly using the same experimental setup
without the need for measurement sequences. The CVs gY (y)
for the nth power of FX will not be a simple power of the CVs
fY (y) for FX unless the measurement is unambiguous.

Invasive measurements. If the measurement is invasive,
then the disturbance forces us to associate the CVs with
the measurement operations {Ey} and not solely with their
associated probability operators {Ẽy} in order to properly
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handle measurement sequences as in Eq. (25). Specifically,
we must define the observable operation,

FX =
∑
y∈Y

fY (y)Ey, (34)

which produces the identity FX(1X) = ∑
y∈Y fY (y)Ẽy = FX

similar to (32).
Correlated sequences of invasive observable measurements

can be obtained by composing the observable operations,

〈(FX)n(1X)〉X =
∑

y1,...,yn

fY (y1) · · · fY (yn)

× 〈
Ey1

(
Ey2

( · · · (Ẽyn

) · · · ))〉
X
. (35)

Such an n-measurement sequence reduces to the nth moment
(33) when the disturbance vanishes.

If the time-evolution disturbance Dt is inserted between
different invasive observable measurements, then we obtain
an invasive correlation function instead,

〈 ˜FX(0)GX(t)〉 = 〈FX(Dt (GX(1X)))〉X. (36)

When the observable measurements become noninvasive,
then this correctly reduces to the noninvasive corre-
lation function (12). Similarly, n-time invasive correla-
tions can be defined with n − 1 time-evolution distur-
bances between the invasive observable measurements
〈F1(Dt1 (F2(· · ·Dtn−1 (Fn(1X)) · · · )))〉.

Conditioned averages. In addition to statistical moments of
the observable, we can also use the CVs to construct principled
conditioned averages of the observable. Recall that, in the
general case of an invasive measurement sequence, we can
condition the observable measurement in two distinct ways. If
we condition on an outcome z before the measurement of FX

we obtain the preselected conditioned average 〈F̃X〉z defined
in Eq. (24). On the other hand, if the invasive conditioning
measurement of z happens after the invasive observable mea-
surement then we must use the postselected conditional prob-
abilities (27) to construct a postselected conditioned average,

z〈F̃X〉 =
∑
y∈Y

fY (y)z〈ỹ〉 =
∑

y∈Y fY (y)〈Ey(Ẽ′
z)〉X∑

y∈Y 〈Ey(Ẽ′
z)〉X

= 〈FX(Ẽ′
z)〉X

〈E(Ẽ′
z)〉

. (37)

The observable operation FX and the nonselective
measurement E encode the relevant details from the first
measurement. When the disturbance to the reduced system
state vanishes, both the preselected and the postselected
conditioned averages simplify to the pure conditioned average
〈FX〉z defined in Eq. (18) that depends only on the system
observable FX. While the pure conditioned average 〈FX〉z
is independent of the order of conditioning and is always
constrained to the eigenvalue range of the observable,
the postselected invasive conditioned average z〈F̃X〉 can,
perhaps surprisingly, stray outside the eigenvalue range with
ambiguous measurements. The combination of the amplified
CVs and the disturbance can lead to a postselected average
that lies anywhere in the full CV range, rather than just the
eigenvalue range. We will see an example of this in Sec. II D 2.

Inversion. So far we have treated the CVs in the expansion
(32) as known quantities. However, for a realistic detector situ-
ation, the CVs will need to be experimentally determined from
the characterization of the detector and the observable that one
wishes to measure. The reduced system state PX will generally
not be known a priori, since the point of a detector is to learn
information about the system in the absence of such prior
knowledge. We can still solve for the CVs without knowledge
of the system state, however, since the probability observables
are only specified by the conditional likelihoods P (y|x) that
can be obtained independently from detector tomography.

To solve for the CVs when the system state is presumed
unknown, we rewrite (32) in the form

FX =
∑
x∈X

x
∑
y∈Y

P (y|x)fY (y)

=
∑
x∈X

x〈FY 〉x = S(FY ), (38)

where S = ∑
x x〈·〉x is the map that converts observables

in the detector space to observables in the system space
S : �R

Y → �R
X . Our goal is to invert this map and solve for the

required spectrum of FY given a desired system observable FX.
However, the inverse of such a map is not generally unique;
for it to be uniquely invertible it must be one-to-one between
system and detector spaces of equal size. If the detector space
is smaller than the system, then no exact inverse solutions are
possible; it may be possible, however, to find course-grained
solutions that lose some information. Perhaps more alarmingly,
if the detector space is larger than the system, then it is possible
to have an infinite set of exact solutions.

When disturbance is taken into account as in Eq. (23), the
equality (38) becomes

FX = 〈D(FY )〉Y = S(FY ), (39)

so the composition of the disturbance D and the detector
expectation 〈·〉Y produces the map S that must be inverted.
Equation (38) is a special case when the reduced system state
is unchanged by the coupling disturbance.

Pseudoinversion. The entire set of possible solutions to
(39) may be completely specified using the Moore-Penrose
pseudoinverse of the map S, which we denote as S+. The
pseudoinverse is the inverse of the restriction of S to the
space �R

Y \ {F ∈ �R
Y |S(F ) = 0}; that is, the null space of

S is removed from the detector space before constructing the
inverse. We will show a practical method for computing the
pseudoinverse using the singular-value decomposition in the
examples to follow.

Using the pseudoinverse, all possible solutions of (39) can
be written compactly as

FY = S+(FX) + (I − S+S)(G), (40)

whereI is the identity map and G ∈ �R
Y is an arbitrary detector

observable. The solutions specified by the pseudoinverse in this
manner contain exact inverses and course-grainings as special
cases.

Detector variance. Since (I − S+S) is a projection opera-
tion to the null space of S, the second term of (40) lives in the
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null space of S and is orthogonal to the first term. Therefore,
the norm squared of FY has the form

||FY ||2 =
∑

y

[fY (y)]2

= ||S+(FX)||2 + ||(I − S+S)(G)||2, (41)

making the G = 0 solution have the smallest norm.
The norm ||FY || of the CV solution is relevant because

the second moment of the detector observable FY is simply
bounded by the norm squared 〈(FY )2〉 = ∑

y P (y)[fY (y)]2 �
||FY ||2. The second moment is similarly an upper bound for
the variance of the detector observable Var(FY ) = 〈(FY )2〉 −
(〈FY 〉)2 � 〈(FY )2〉. Therefore, the norm squared is a reason-
able upper bound for the detector variance that one can make
without prior knowledge of the state.

Mean-squared error. The variance of FY governs the
mean-squared error of any estimation of its average with a
finite sample, such as an empirically measured sample in a
laboratory. Specifically, one measures a sequence of detector
outcomes of length n, (y1,y2, . . . ,yn) and uses this finite
sequence to estimate the average of FY via the unbiased
estimator

FY = 1

n

n∑
i

fY (yi) (42)

that converges to the true mean value 〈FY 〉Y = 〈FX〉 as n →
∞. The mean-squared error of this estimator MSE(FY ) from
the true mean is the variance over the number of trials in
the sequence Var(FY )/n. Hence, the maximum mean squared
error for a finite sequence of length n must be bounded by the
norm squared of the CVs divided by length of the sequence,

MSE(FY ) = Var(FY )

n
� ||FY ||2

n
. (43)

That is, the norm bounds the number of trials necessary to
obtain an experimental estimation of observable averages to a
desired precision using the imperfect detector.

Pseudoinverse prescription. Choosing the arbitrary ob-
servable to be G = 0 therefore not only picks the solution
FY = S+(FX) that is uniquely related to FX by discarding
the irrelevant null space of S but also picks the solution with
the smallest norm, which places a reasonable upper bound on
the statistical error. Without prior knowledge of the system
state, the pseudoinverse solution does a reasonable job at
obtaining an optimal fit to the relation (39). Moreover, when
(39) is not satisfied by the direct pseudoinverse then an exact
solution is impossible, but the pseudoinverse still gives the
“best fit” course-graining of an exact solution in the least-
squares sense. As such, we consider the direct pseudoinverse
of FX to be the preferred solution in the absence of other
motivating factors stemming from prior knowledge of the state
being measured.

1. Example: Ambiguous marble detector

As an illustrative example similar to the one given in the
introduction, suppose that one wishes to know whether the
color of a marble is green or red, but one is unable to examine
the marble directly. Instead, one only has a machine that

can display a blue light or a yellow light after it examines
the marble color. In such a case, the marble colors are
the propositions of interest, but the machine lights are the
only accessible propositions. The lights may be correlated
imperfectly with the marble color; for instance, if a blue
light is displayed one may learn something about the possible
marble color, but it may still be partially ambiguous whether
the marble is actually green or actually red.

The relevant Boolean algebra for the system is �X =
{0,g,r,1X}, where g is the proposition for the color green, r is
the proposition for the color red, and 1X = g + r is the logical
OR of the two possible color propositions. We consider the task
of measuring a simple color observable FX = (+1)g + (−1)r
that distinguishes the colors with a sign using an imperfectly
correlated detector.

The relevant Boolean algebra for the detector is �Y =
{0,b,y,1Y }, where b is the proposition for the blue light, y

is the proposition for the yellow light, and 1Y = b + y. In
order to measure the marble observable FX using only the
detector, the experimenter must determine the proper form of
the corresponding detector observable FY .

First, the experimenter characterizes the detector by send-
ing in known samples and observing the outputs of the
detector. After many characterization trials, the experimenter
determines to some acceptable precision the four conditional
probabilities,

P (b|g) = 0.6, P (y|g) = 0.4, (44a)

P (b|r) = 0.2, P (y|r) = 0.8, (44b)

for the detector outcomes b and y given specific marble
preparations g and r . These characterization probabilities
completely determine the detector response in the form of
its probability observables (17),

Eb = P (b|g)g + P (b|r)r, (45a)

Ey = P (y|g)g + P (y|r)r. (45b)

By construction, Eb + Ey = g + r = 1X.
Second, the experimenter expands the system observable

FX using the detector probability observables Eq. (45) and
unknown contextual values (CVs) fY (b) and fY (y) (32),

FX = (+1)g + (−1)r = fY (b)Eb + fY (y)Ey. (46)

After expressing this relation as the equivalent matrix equation,(+1
−1

)
=

(
P (b|g) P (y|g)
P (b|r) P (y|r)

)(
fY (b)
fY (y)

)
, (47)

it can be directly inverted to find the CVs (40),

fY (b) = 3, fY (y) = −2. (48)

Therefore,

FX = (+1)g + (−1)r = (3)Eb + (−2)Ey, (49)

so FX can be inferred from a measurement of the equivalent
detector observable FY = (3)b + (−2)y.

Notably, the CVs (48) are amplified from the eigenvalues
of ±1 due to the ambiguity of the detector. The amplification
compensates for the ambiguity so that the correct average
can be obtained after measuring an ensemble of many
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unknown marbles described by the initial marble state PX.
The amplification also leads to a larger upper bound for the
variance (41) of the detector,

||FY ||2 = 13. (50)

Hence, we can expect the imperfect detector to display a
root-mean-square (rms) error (43) in the reported average
color that is no larger than

√
13/n ≈ 3.6/

√
n after n repeated

measurements. For contrast, a perfect detector would display
an rms error no larger than

√
2/n ≈ 1.4/

√
n after n repeated

measurements.

2. Example: Invasive ambiguous detector

The detector apparatus in the last example could be gener-
ally invasive. In such a case, the characterization probabilities
(44) composing the probability observables (45) would be a
combination of the initial state of the detector lights PY and
a disturbance D from the measurement coupling according
to (23),

P̃ (b|g) = PY (b)[Dg,b(gb) + Dg,b(rb)]

+PY (y)[Dg,y(gb) + Dg,y(rb)], (51a)

P̃ (y|g) = PY (b)[Dg,b(gy) + Dg,b(ry)]

+PY (y)[Dg,y(gy) + Dg,y(ry)], (51b)

P̃ (b|r) = PY (b)[Dr,b(gb) + Dr,b(rb)]

+PY (y)[Dr,y(gb) + Dr,y(rb)], (51c)

P̃ (y|r) = PY (b)[Dr,b(gy) + Dr,b(ry)]

+PY (y)[Dr,y(gy) + Dr,y(ry)], (51d)

where we have used the marginalization identity
Dc,d (b) = Dc,d (gb) + Dc,d (rb) for c ∈ {g,r} and d ∈ {b,y}.
For a noninvasive detector, the transition probabilities
that involve marbles changing color must be zero
Dg,b(rb) = Dg,b(ry) = Dg,y(ry) = Dg,y(rb) = Dr,b(gb) =
Dr,b(gy) = Dr,y(gb) = Dr,y(gy) = 0. However, they need
not be zero for a general invasive detector.

As an example, suppose that the initial detector state is un-
biased, PY (b) = PY (y) = 1/2, and that the detector has a 10%
chance of flipping the color of a given marble. The following
possible values for the sixteen transition probabilities would
then lead to the same effective characterization probabilities
(44) as before,

Dg,b(gb) = 0.5, Dg,y(gb) = 0.5, (52a)

Dg,b(gy) = 0.3, Dg,y(gy) = 0.3, (52b)

Dr,b(rb) = 0.1, Dr,y(rb) = 0.1, (52c)

Dr,b(ry) = 0.7, Dr,y(ry) = 0.7, (52d)

Dg,b(rb) = 0.1, Dg,y(rb) = 0.1, (52e)

Dg,b(ry) = 0.1, Dg,y(ry) = 0.1, (52f)

Dr,b(gb) = 0.1, Dr,y(gb) = 0.1, (52g)

Dr,b(gy) = 0.1, Dr,y(gy) = 0.1. (52h)

Since the effective characterization probabilities are the
same, the probability observables are the same as (45), leading
to the same CVs as (48) to measure the observable FX =
(+1)g + (−1)r .

The disturbance of the reduced marble state will become
apparent only when making a second measurement after the
first one. Suppose we make a second measurement of the
marble colors g and r directly. The probability of obtaining
a detector outcome d ∈ {b,y} and then observing a specific
marble color c ∈ {g,r} will then be PX(g)[PY (b)Dg,b(cd) +
PY (y)Dg,y(cd)] + PX(r)[PY (b)Dr,b(cd) + PY (y)Dr,y(cd)]. If
we define an operation as in Eq. (25) to be

Ed (c) = 〈D(cd)〉Y = g[PY (b)Dg,b(cd) + PY (y)Dg,y(cd)]

+ r[PY (b)Dr,b(cd) + PY (y)Dr,y(cd)], (53)

then we can express the probability for the sequence compactly
as 〈Ed (c)〉X.

Averaging the outcomes for the detector lights using
the CVs (48) and then conditioning on a particular marble
color c in the second measurement produces a postselected
conditioned average of the marble colors (37) as reported by
the invasive ambiguous detector,

c〈F̃X〉 = fY (b)〈Eb(c)〉X + fY (y)〈Ey(c)〉X
〈Eb(c)〉X + 〈Ey(c)〉X . (54)

If we also preselect the marbles to be a particular color, we
can compute the pre- and postselected conditioned averages
of the marble colors as reported by the invasive ambiguous
detector from (48), (52), and (54),

g〈F̃X〉g = 1.125, (55a)

r〈F̃X〉g = 0.5, (55b)

g〈F̃X〉r = 0.5, (55c)

r〈F̃X〉r = −1.375. (55d)

Due to a combination of the invasiveness and the ambiguity of
the measurement, the postselected conditioned averages can
stray outside the eigenvalue range [−1,1] for the observable
FX. However, they remain within the CV range [−2,3]. When
the measurement is noninvasive, then the pre- and postselected
conditioned averages in Eq. (55) that remain well-defined
reduce to the pure conditioned averages 〈FX〉g = 1 and
〈FX〉r = −1.

3. Example: Redundant ambiguous detector

Consider a similar marble detection setup to the previ-
ous examples, but where the detector apparatus has three
independent outcome lights: blue, yellow, and purple. Hence,
the detector Boolean algebra is �Y = {0, b, y, p, b + y, b +
p, y + p, 1Y }, where p is the new proposition for the purple
light, and 1Y = b + y + p. After characterizing the detector
the experimenter finds the conditional probabilities

P (b|g) = 0.5, P (y|g) = 0.3, P (p|g) = 0.2, (56a)

P (b|r) = 0.1, P (y|r) = 0.7, P (p|r) = 0.2 (56b)

that define the probability observables,

Eb = P (b|g)g + P (b|r)r, (57a)

Ey = P (y|g)g + P (y|r)r, (57b)

Ep = P (p|g)g + P (p|r)r. (57c)

022123-12



CONTEXTUAL-VALUE APPROACH TO THE GENERALIZED . . . PHYSICAL REVIEW A 85, 022123 (2012)

By construction, Eb + Ey + Ep = 1X. Furthermore, Ep =
(0.2)1X, so the purple outcome cannot distinguish whether
the marble is green or red and can be imagined as a generic
detector malfunction outcome.

The experimenter now has a choice for how to assign
CVs to a detector observable FY in order to infer the
marble observable FX = (+1)g + (−1)r . A simple choice
is to ignore the redundant (and nondistinguishing) purple
outcome by zeroing out its CV fY (p) = 0, and then invert
the remaining relationship analogously to (47) to find fY (b) =
3.125 and fY (y) = −1.875. The variance bound for this simple
choice is ||FY ||2 = 13.2813, leading to a root-mean-square
error no larger than

√
13.2813/n ≈ 3.6/

√
n after n repeated

measurements.
However, a better choice is to find the preferred values for

all three outcomes using the pseudoinverse (40) of the map
between FY and FX. To do this, we write a matrix equation
similar to (47) that uses all three outcomes:

(+1
−1

)
= S

(
fY (b)
fY (y)

)
, (58a)

S =
(

P (b|g) P (y|g) P (p|g)
P (b|r) P (y|r) P (p|r)

)
. (58b)

The pseudoinverse S+ can be constructed by using the
singular-value decomposition, S = U�VT , where U is an
orthogonal matrix composed of the normalized eigenvectors of
SST , V is an orthogonal matrix composed of the normalized
eigenvectors of ST S, and � is a diagonal matrix composed
of the singular values of S (which are the square roots of the
eigenvalues of SST and ST S). After computing the singular-
value decomposition, the pseudoinverse can be constructed as
S+ = V�+UT , where �+ is the diagonal matrix constructed
by inverting all nonzero elements of �T . Performing this
inversion, we find the following preferred CV:

S+ = 5

36

⎛⎝ 15 −7
−3 11

3 1

⎞⎠, (59a)

⎛⎝fY (b)
fY (y)
fY (p)

⎞⎠ = S+
(+1

−1

)
= 5

18

⎛⎝ 11
−7

1

⎞⎠=
⎛⎝ 3.05̄

−1.94̄
0.27̄

⎞⎠. (59b)

This preferred solution has the smallest variance bound of
||FY ||2 = 13.1944.

We find (perhaps counterintuitively) that, even though the
purple outcome itself cannot distinguish the marble color, the
fact that one obtains a purple outcome at all still provides
some useful information to the experimenter due to the
asymmetry of the blue and yellow outcomes. Indeed, if for
the red marble we instead found the symmetric detector
response P (b|r) = 0.3, P (y|r) = 0.5, and P (p|r) = 0.2, the
pseudoinverse would produce the preferred CV fY (b) =
5, fY (y) = −5, and fY (p) = 0, indicating that the purple
outcome was truly noninformative.

A less principled approach to solving (58) would be for
the experimenter to assign a completely arbitrary value to one

outcome, like fY (b) = B. The CV relation still produces a
matrix equation,(+1 − BP (b|g)

−1 − BP (b|r)

)
=

(
P (y|g) P (p|g)
P (y|r) P (p|r)

)(
fY (y)
fY (p)

)
, (60)

that can be solved to find

fY (y) = B − 5, fY (p) = 12.5 − 4B. (61)

The bound for the variance of this solution is ||FY ||2 = 18B2 −
110B + 181.25 � 13.1944; the value of B that minimizes the
bound is B = 3.05̄, which recovers the pseudoinverse solution.

Although picking an arbitrary solution gives mathemati-
cally equivalent results, the experimenter will only increase
the norm of the solution without any physical motivation. As
such, the higher moments of the detector observable FY can
be correspondingly larger, and more trials may be necessary
for the estimated average of the system observable FX to reach
the desired precision.

4. Example: Continuous detector

Consider the extreme example of a marble color detector
that has a continuum of outcomes, such as the position of
impact of a marble on a continuous screen. In such a case, the
detector sample space Y is indexed by a real parameter y ∈ R,
and the relevant Boolean algebra �Y can be chosen to be the
set of all Borel subsets of the real line [75,76].

After characterizing the detector, the experimenter finds
that the detector displaces its initial probability distribution
dPY (y) = pY (y)dy by an amount z from the zero-point
according to which marble-color is sent into the detector,

dP (y|g) = dPY (y − z), dP (y|r) = dPY (y + z). (62)

These probabilities define the probability observables,

dE(y) = gdP (y|g) + rdP (y|r), (63)

such that
∫
R dE(y) = 1X.

To infer information about the marble observable FX using
this detector, the experimenter must assign a continuum of CV
fY (y) such that

FX = (+1)g + (−1)r = ∫
R fY (y)dE(y) (64)

or, in matrix form,(+1
−1

)
= S[fY ] =

(∫
R fY (y)dPY (y − z)∫
R fY (y)dPY (y + z)

)
. (65)

Since fY is a function, S is a vector-valued functional, which
is why we adopt the square-bracket notation.

In this case, the detector outcomes are overwhelmingly
redundant. However, we can pick the least norm solution using
the pseudoinverse of the map S as before. To do so, we first
calculate SST :

ST = (pY (y − z) pY (y + z) ), (66a)

SST =
(

a b(z)
b(z) a

)
, (66b)
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where

a =
∫
R

pY (y)dPY (y) =
∫
R

p2
Y (y)dy, (67a)

b(z) =
∫
R

pY (y + z)pY (y − z)dy, (67b)

and we find its eigenvalues of a + b(z) with corresponding
normalized eigenvector (1,1)/

√
2 and a − b(z) with corre-

sponding normalized eigenvector (−1,1)/
√

2. We can then
construct the orthogonal matrixU composed of the normalized
eigenvectors of SST and the diagonal matrix � composed of
the square roots of the eigenvalues of SST ,

U = 1√
2

(
1 −1
1 1

)
, (68)

� =
(√

a + b(z) 0

0
√

a − b(z)

)
. (69)

Next we calculate the relevant eigenfunctions of ST S that
correspond to the same nonzero eigenvalues a ± b(z) of SST ;
the remaining eigenfunctions belong to the null space of S and

do not contribute. Specifically, we have

ST S[h](y) = pY (y − z)
∫
R

h(y)dPY (y − z)

+pY (y + z)
∫
R

h(y)dPY (y + z), (70)

where h is an arbitrary function. Then the equations

ST S[v+](y) = [a + b(z)]v+(y), (71a)

ST S[v−](y) = [a − b(z)]v−(y), (71b)

define the normalized eigenfunctions

v+(y) = pY (y − z) + pY (y + z)√
2[a + b(z)]

, (72a)

v−(y) = −pY (y − z) − pY (y + z)√
2[a − b(z)]

, (72b)

which allows us to construct the relevant part of the orthogonal
map VT ,

VT [h] =
(∫

v+(y)h(y)dy

∫
v−(y)h(y)dy

)
, (73)

completing the nonzero part of the singular-value decomposi-
tion of S = U�VT .

Finally, we construct the pseudoinverse,

S+ = V�+UT =
(

v+(y)√
2[a + b(z)]

− v−(y)√
2[a − b(z)]

v+(y)√
2[a + b(z)]

+ v−(y)√
2[a − b(z)]

)
, (74)

and solve for the CV,

fY (y) = S+
(+1

−1

)
= pY (y − z) − pY (y + z)

a − b(z)
, (75)

where a and b(z) are as defined in Eq. (67).
The pseudoinverse solution (75) contains only the phys-

ically relevant detector state density pY and provides direct
physical intuition about the detection process. Namely, every-
thing in the shifted distribution corresponding to the green
marble pY (y − z) is associated with the eigenvalue +1, while
everything in the shifted distribution corresponding to the red
marble pY (y + z) is associated with the eigenvalue −1. The
overall amplification factor a − b(z) indicates the discrepancy
between the overlap of the shifted distributions and the
distribution autocorrelation. The more the shifted distributions
overlap, the more ambiguous the measurement will be, so the
amplification factor makes the CVs larger to compensate. If
the shifted distributions do not overlap, then b(z) → 0 and
the only amplification comes from the autocorrelation a that
indicates the ambiguity of the intrinsic profile of the detector
state. Moreover, the support of the CVs is equal to the support
of both shifted detector distributions, which is physically
satisfying.

The bound for the detector variance using the pseudoinverse
solution is ||fY ||2 = 2/[a − b(z)], which depends solely on the
amplification factor in the denominator. If the measurement
is strong, such that a − b(z) = 1, then the variance bound

reduces to the ideal variance bound of 2, as expected, leading
to a maximum rms error of

√
2/n. Any additional ambiguity

of the measurement stemming from distribution overlap or
distributed autocorrelation amplifies the maximum rms error
by a factor of

√
1/[a − b(z)].

Contrast these preferred values with the generic linear
solution fY (y) = y/z, which also satisfies (64) when pY

is symmetric about its mean [17,23,49]. While the generic
solution could be argued to be simpler in form, it pro-
vides no information about the detector and provides no
physical insight into the meaning or origin of the values
themselves. It has nonzero support in areas where the de-
tector has zero support and even gets progressively larger
in regions that will not contribute to the average. Moreover,
the bound for the detector variance diverges, indicating
that the rms error can in principle be unbounded. Hence,
despite the mathematical equivalence, the linear solution
is physically inferior as a solution when compared to the
pseudoinverse (75).

III. QUANTUM PROBABILITY THEORY

To transition from the classical theory of probability to
the quantum theory we shall take a somewhat unconventional
approach that leverages what we have already derived in the
classical theory. Specifically, we shall construct the quantum
theory as a superstructure over the existing classical theory,
rather than developing it as an independent logical system
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[2,70] or as a restriction of a larger classical theory [64,65].
This approach serves to illustrate the myriad similarities
between the quantum and classical theories, while also high-
lighting their key differences. We shall see that the contextual-
value formalism is essentially unchanged, despite the mod-
ifications that must be made to the operational theory of
measurement.

A. Sample spaces and observables

Quantum sample space. The quantum theory of probability
forms a superstructure on the classical theory of probability
in the following sense: given a classical sample space X, the
corresponding quantum sample space can be obtained as the
orbit of X under the action of the special unitary group of
rotations. That is, the entire classical sample space X can
be rotated to a different classical sample space X′ = U(X)
with some special unitary rotation U . We call each classical
sample space generated in this fashion a framework to be
consistent with other recent work [77]. The collection of all
such continuously connected classical sample spaces is the
quantum sample space, which we will notate as Q(X) to
emphasize that it can be generated from X.

Representation. If the sample space X is represented as
a set of orthogonal rank-1 projections {|x〉〈x|} on a Hilbert
space, the rotated sample space X′ = U(X) will be represented
by a different set of orthogonal projections {U(|x〉〈x|)} on
the same Hilbert space. Any such rotation U can be given
a spinor representation (see, e.g., [78–80]) as a two-sided
product with a rotor U belonging to the special unitary group,
such that U †U = UU † = 1X, and (U †)† = U . The involution
(†) is the adjoint with respect to the inner product of the Hilbert
space. While the projections {|x〉〈x|} correspond to subspaces
spanned by vectors {|x〉} in the Hilbert space, the rotated
projections {U †|x〉〈x|U} correspond to subspaces spanned
by rotated vectors {U †|x〉}. In what follows we shall tend to
use the shorter algebraic notation x and adopt the equivalent
Hilbert space notation |x〉〈x| only when it readily simplifies
expressions.

Since the Hilbert space representation of a unitary rotor
U generally contains complex numbers in order to satisfy the
special unitary group relations, the Hilbert space also becomes
complex. However, it is important to note that the complex
structure arises solely from the representation of the unitary
rotations that specify the relative framework orientations and
will not appear directly in any calculable quantity to follow
[81]. The representation of the quantum sample space Q(X)
therefore consists of all possible rank-1 projections on the
complex Hilbert space in which the classical sample space X

is represented.
Quantum observables. Each classical framework X has

an associated Boolean algebra �X and space of observables
�R

X exactly as previously discussed. The space of quantum
observables is the collection of all classical observables that
are independently constructed in all the classical frameworks
in Q(X). We will denote this space as �R

Q(X). Quantum observ-
ables are therefore constructed entirely with real numbers that
have empirical meaning for a laboratory setting; hence, their
representations on a complex Hilbert space will be Hermitian
operators.

For observables in the same framework A,B ∈ �R
X , we

find that U(A)U(B) = U †AUU †BU = U †ABU = U(AB),
meaning that the rotations preserve their algebraic structure.
As a corollary, all observables in �R

Q(X) can be obtained by
rotating observables constructed in a single framework �R

X ;
hence, our previous discussion of observables carries over to
the quantum theory essentially unaltered.

Furthermore, the independence of the propositions in a
framework X remains unaltered by unitary rotation, so every
other framework X′ has the same number of independent
propositions. Thus, the number of independent propositions
is an invariant known as the quantum dimension; for a
representation it fixes the dimension of the Hilbert space.
Similarly, the identity and zero observables are invariants, so
are the same in every framework and unique in the quantum
observable algebra.

Since each different framework forms a separate well-
behaved classical sample space, the entire preceding dis-
cussion about classical probability theory applies unaltered
when restricted to a particular framework in the quantum
theory. All observables constructed in a particular framework
will commute with each other. We expect distinctly quantum
features to appear only when comparing elements from
different frameworks.

Noncommutativity. The unitary rotations U are generally
noncommutative and so introduce noncommutativity into the
quantum theory that is not present in the classical theory.
Specifically, given A,B ∈ �R

X , A′ = U(A), and B ′ = V(B),
then A′B ′ = U †AUV †BV �= B ′A′, since U and V do not
necessarily commute with each other or with A and B.
Such noncommutativity is a manifestation of the fact that the
Boolean algebras corresponding to different frameworks are
incompatible with each other; propositions from one frame-
work cannot form a Boolean logical AND with propositions
from a different framework. We shall see in the next section,
however, that the notion of disturbance followed by a logical
AND can be generalized to the noncommutative setting in the
form of the projection postulate.

Disturbance. All nonconditioning disturbances D in the
quantum theory also take the form of unitary rotations U .
Indeed, we shall see that the parallels between the quantum
theory and the classical theory with disturbance are quite
strong when one interprets all unitary rotations as a form of
classical disturbance.

Time evolution. As an example, the continuous time-
evolution of a closed quantum system is specified by a distur-
bance in the form of a unitary rotation Ut with corresponding
rotor Ut , known as a propagator. For nonrelativistic quantum
mechanics, the time-dependence of the rotor is specified by the
Schrödinger equation: ∂tUt = (H/ih̄)Ut and a Hamiltonian
observable H that generates the time translation. We are not
concerned with the (well-established) details of continuous
time-evolution in this paper, so we will treat any unitary
rotations as given in what follows.

1. Example: Polarization

As an example quantum system we shall pick the simplest
possible nontrivial system: a qubit. Specifically, we will
consider the polarization degree of freedom of a laser beam.
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Suppose we are interested in measuring the linear polarization
of the beam with respect to the surface of an optical table.
We denote the polarization direction parallel to the table as
“horizontal” (h) and the direction perpendicular to the table as
“vertical” (v). Although we casually refer to the polarizations
h and v as if they were properties of the light beam, the
propositions h and v operationally refer to two independent
outcomes of a polarization distinguishing device, such as
a polarizing beam splitter, that can be implemented in the
laboratory. The two orthogonal polarizations form a classical
sample space X = {h,v} and a classical Boolean algebra
�X = {0,h,v,1X}, where 1X = h + v, similar to the classical
sample space for the marble colors considered in Sec. II D 1.
By extending the Boolean algebra over the reals to �R

X as
before we can define classical observables FX = ah + bv in
this sample space, such as the Stokes observable SX = h − v

that distinguishes the polarizations with a sign.
We can represent the commutative observable algebra �R

X

as diagonal 2 × 2 matrices,

h =
(

1 0
0 0

)
, v =

(
0 0
0 1

)
, FX =

(
a 0
0 b

)
, (76)

which can also be understood as commuting Hermitian
operators over a two-dimensional Hilbert space. The atomic
propositions h = |h〉〈h| and v = |v〉〈v| are projectors that
correspond to disjoint subspaces spanned by the orthonormal
Jones’ polarization basis for the Hilbert space,

|h〉 =
(

1
0

)
, |v〉 =

(
0
1

)
. (77)

To obtain the full quantum sample space Q(X) from X,
we introduce the group of possible polarization rotations.
Algebraically, an arbitrary rotation U(FX) = U †FXU can be
readily understood in terms of its rotor U , which is an
element of the group SU(2) and can be parametrized, for
example, in terms of the Cartan decomposition Uα,β,γ =
exp(iασz/2) exp(iβσy/2) exp(iγ σz/2), which for a qubit hap-
pens to correspond to an Euler angle decomposition of a
three-dimensional rotation. Here iσz and −iσy are two of the
three generators of the Lie algebra for SU(2) in terms of the
standard Pauli matrices:

σy =
(

0 −i

i 0

)
, σz =

(
1 0
0 −1

)
. (78)

Since the group generators have a complex representation, the
unitary rotation Uα,β,γ will also have a complex representation
in the Hilbert space,

ei α
2 σz =

(
ei α

2 0
0 e−i α

2

)
, (79a)

ei
β

2 σy =
(

cos β

2 sin β

2

− sin β

2 cos β

2

)
, (79b)

Uα,β,γ =
(

ei(α+γ )/2 cos β

2 ei(α−γ )/2 sin β

2

−e−(α−γ )/2 sin β

2 e−i(α+γ )/2 cos β

2

)
. (79c)

The algebraic involution U
†
α,β,γ is the complex transpose in the

matrix representation.
Physically, the factor exp(iβσy/2) corresponds to a rotation

of the apparatus around the axis of the light beam by an

angle β/2, while the factors exp(iασz/2) and exp(iγ σz/2)
correspond to the action of phase plates that shift the relative
phases of h and v by α/2 and γ /2, respectively. Hence, the
ubiquitous quantum phase also appears as a consequence of
the unitary rotations.

Using the unitary rotations, we can generate other in-
compatible frameworks Uα,β,γ (X) = {Uα,β,γ (h),Uα,β,γ (v)} in
Q(X),

Uα,β,γ (h) = U
†
α,β,γ hUα,β,γ =

(
cos2 β

2
1
2e−iγ sin β

1
2eiγ sin β sin2 β

2

)
,

(80a)

Uα,β,γ (v) = U
†
α,β,γ vUα,β,γ =

(
sin2 β

2 − 1
2e−iγ sin β

− 1
2eiγ sin β cos2 β

2

)
,

(80b)

which depend solely on the two parameters β and γ . The
atomic propositions of such a rotated framework are projectors
corresponding to each disjoint subspace spanned by a rotated
orthonormal Jones’ polarization basis,

U
†
α,β,γ |h〉 =

(
e−i(α+γ )/2 cos β

2

e−i(α−γ )/2 sin β

2

)
, (81a)

U
†
α,β,γ |v〉 =

(
−ei(α−γ )/2 sin β

2

ei(α+γ )/2 cos β

2

)
. (81b)

Physically, one could in principle construct an apparatus
corresponding to such a rotated framework using three labora-
tory elements: (1) attach a tunable phase plate to the incident
port of a polarizing beam splitter with the fast axis aligned to
the table, (2) rotate both the beam splitter and attached phase
plate with respect to the table, and (3) attach a second tunable
phase plate to the incident port of the first phase plate with
the fast axis aligned to the table. Of course this is only
one possible parametrization for the unitary rotations; other
parametrizations will correspond to other experimental
implementations.

It follows that any observable in the full quantum observable
space �R

Q(X) can be obtained by rotating a classical observable
FX = ah + bv to the appropriate framework,

FX′ = Uα,β,γ (FX) = aUα,β,γ (h) + bUα,β,γ (v),

=
(

a+b
2 + a−b

2 cos β a−b
2 e−iγ sin β

a−b
2 eiγ sin β a+b

2 − a−b
2 cos β

)
. (82)

We see that a general qubit observable depends on four
parameters: the eigenvalues a and b, as well as the framework
orientation angles β and γ . The complex representation of
an observable stems solely from the unitary rotation of the
atomic propositions h and v to a different relative framework.
The observables no longer generally commute since the unitary
rotations need not commute.

B. States, densities, and collapse

Quantum states. A quantum state P is a classical state
defined in a particular framework X that is then extended
to apply to the entire quantum Boolean algebra �Q(X). The
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extension of a classical state P that has been defined in
a framework X to a proposition x ′ = U(x) ∈ X′ = U(X) in
a different framework can be accomplished by heuristically
breaking down the state into a composition of the classical
state in framework X and transition probabilities Dx(x ′) that
connect the framework X to the different framework X′,

P (x ′) =
∑
x∈X

P (x)Dx(x ′). (83)

The transition probabilities characterize a disturbance (II B)
that connects the classical state P to propositions in incom-
patible frameworks.

To define the transition probabilities, we assume that atomic
propositions in the framework X are undisturbed, so Dx(x) =
1. The only classical state with this property is the pure state
which has a trace-density (6) ρ = x. Hence, we assume that
we can consistently write the transition probability Dx(x ′) in
terms of the extension of the trace to the full Boolean algebra
�Q(X),

Dx(x ′) = Tr(xx ′). (84)

Notably, this definition makes the transition between frame-
works symmetric.

Born rule. We pick the trace extension to be the unique
measure that satisfies the cyclic property Tr(AB) = Tr(BA)
for all A,B ∈ �Q(X) and agrees with the classical trace (7)
within any specific framework [82]. On a Hilbert space, (84)
has the familiar form

Dx(x ′) = Tr(|x〉〈x||x ′〉〈x ′|) = |〈x|x ′〉|2, (85)

which we immediately recognize as the Born rule [83]. Hence,
the complex square of the Hilbert space inner product can
be seen as a disguised form of the natural extension of the
trace to define transition probabilities between propositions
in incompatible frameworks. If we recall that x ′ = U(x) =
U †xU we can also write the transition probability (85) in
terms of the unitary rotor that connects the two propositions,
Dx(x ′) = Tr(|x〉〈x|U †|x〉〈x|U ) = |〈x|U |x〉|2.

Density operator. We can rewrite (83) in a more familiar
form by using the Born rule (84) and the full trace density (6)
of the original state ρ = ∑

x∈X P (x)x, which is traditionally
known as the density operator,

P (x ′) =
∑
x∈X

P (x)Tr(xx ′) = Tr(ρx ′). (86)

This form of the probability functional conforms to Gleason’s
theorem [84]. We note, however, that it is the extension of the
trace that extends the state to the noncommutative quantum
setting since the trace-density ρ is identical to a classical trace
density in some particular framework X.

Moments. Since the probabilities P (x ′) are well defined
for a proposition in any framework x ′ ∈ X′, we can linearly
extend P to an expectation functional 〈·〉 on the entire quantum
observable algebra �R

Q(X),

〈FX′ 〉 =
∑
x ′∈X′

fX′(x ′)P (x ′) = Tr(ρFX′). (87)

Similarly, observable moments will be well defined by the
expectation functional

〈(FX′)n〉 =
∑
x ′∈X′

f n
X′ (x ′)P (x ′) = Tr[ρ(FX′)n]. (88)

Hence, the unitary rotations and resulting extension of the
trace completely construct the quantum probability space
from a single classical probability space and its associated
observables.

Double-sided AND. To be consistent with the assumptions
made in Eq. (84), we must also ensure that conditioning
a quantum state on an atomic proposition will collapse the
state to a pure state with a trace density equal to that atomic
proposition. In other words, we must generalize the logical
AND of the classical case to the noncommutative incompatible
frameworks in the quantum case. The consistent way to do
this is through a double-sided product: given atomic proposi-
tions x ∈ X and x ′ ∈ X′ then x ′xx ′ = |x ′〉〈x ′|x〉〈x|x ′〉〈x ′| =
Tr(xx ′)x ′ = Dx(x ′)x ′.

The double-sided product with x ′ produces a transition
probability Dx(x ′) from x to x ′ as a proportionality factor in
addition to collapsing the original proposition x to x ′. In this
sense, the double-sided product includes a form of disturbance
in addition to the logical and of pure conditioning. If X = X′,
so the frameworks coincide, then x and x ′ will commute;
the disturbance will vanish, reducing the transition probability
Dx(x ′) to either 0 or 1; and, the classical AND will be recovered
as a special case.

Lüders’ rule. Using the double-sided product as a distur-
bance followed by a logical AND, we find the quantum form of
the invasive conditioning rule (13),

〈F̃X〉y = 〈yFXy〉
P (y)

= Tr(ρyFX), (89a)

ρy = yρy

Tr(ρy)
, (89b)

for any Boolean proposition y in a framework algebra �X

measured prior to the observable FX . As with the classical case,
we use the tilde to indicate the intrinsic quantum invasiveness
of the measurement process. If ρ and y commute, or if FX

and y commute, then the noninvasive classical conditioning
rule (8) is properly recovered. This generalization of (13) is
known as the projection postulate, or Lüders’ rule [85]. If y

is an atomic proposition in X, then ρy = y as in the classical
case (8) and we consistently recover the assumption (84).

For contrast, Leifer and Spekkens [67] provide a careful
quantum generalization of the noninvasive conditioning rule
(8) using a formalism based around conditional density
operators. They confirm that Lüder’s rule (89) cannot be
obtained with pure conditioning, so it must imply additional
disturbance from the measurement process itself, as indicated
here.

Aharonov-Bergmann-Lebowitz rule. Just as with classical
invasive conditioning, the order of conditioning will generally
matter. Specifically, substituting a system proposition z ∈ �X

into (89) yields 〈 z̃ 〉y = P (yzy)/P (y); however, P (yzy) �=
P (zyz), so the “joint probability” in the numerator is order
dependent unless y and z commute, just as in Eq. (26). That
is, 〈̃z〉y explicitly describes the case when the conditioning
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proposition y is measured first as a preselection, followed by
the proposition z.

To obtain the converse case when the conditioning propo-
sition z is measured second as a postselection, we must
derive the quantum form of (27). As in the classical case,
we reinterpret the denominator of (89) as a marginalization
P (y) = ∑

z P (yzy) of the ordered joint probability that renor-
malizes the conditioning procedure; the identity

∑
z z = 1X

permits the equality. With this interpretation, the postselected
form of conditioning becomes straightforward,

z〈ỹ〉 = P (yzy)∑
y ′∈Y P (y ′zy ′)

. (90)

As in the classical case, the different position of the subscript
serves to distinguish the two conditioned expectations 〈̃ · 〉z
and z 〈̃ · 〉 corresponding to different measurement orderings.

For a pure state ρ = x = |x〉〈x|, this postselected con-
ditioning is known as the Aharonov-Bergmann-Lebowitz
(ABL) rule [86], and has the form z〈ỹ〉x = |〈z|y〉|2|〈y|x〉|2/∑

y ′∈Y |〈z|y ′〉|2|〈y ′|x〉|2. Unlike Lüders’ rule (89), the gen-
eralized ABL rule (90) does not perform a simple update
to the trace-density ρ; moreover, it depends on the entire
disturbance of the first measurement via the normalization sum
in the denominator. If y and z commute, then the disturbance
vanishes and we again correctly recover the classical case (8)
that is order independent.

Bayes’ Rule. The two forms of quantum invasive condi-
tioning also lead to a modified form of Bayes’ rule that relates
the preselected conditioning of a sequence to the postselected
conditioning of the same sequence, similarly to the classical
case (29),

z〈ỹ〉 = 〈̃z〉y
P (y)∑

y ′∈Y P (y ′zy ′)
. (91)

If y and z commute, then the disturbance vanishes and we
correctly recover Bayes’ rule (10).

The unusual form of (90) has led to postselected quantum
conditioning being largely overlooked. The lack of symmetry
in the density update under such postselected conditioning has
even prompted works in multistate-density time-symmetric
reformulations of quantum mechanics [17,19–21,24,25,87],
which are outside the scope of this work. However, we see here
that the form of the conditioning is the same as the classically
invasive postselected conditioning (27). Later we shall use a
fully generalized form of the ABL rule (90) together with
CVs to consider the subtle case of postselected averages of
observables in some detail, so we delay their consideration for
now.

1. Example: Polarization state

A quantum state for a single system is a classical state in
some particular framework. For a two-dimensional framework
such as {h,v}, all probabilities for such a classical state
can be completely specified by a mixing angle θ such
that P (h) = cos2(θ/2) and P (v) = sin2(θ/2). Hence, after
rotating the trace-density ρ = P (h)h + P (v)v to an arbitrary

framework according to (82), any quantum state trace density
of polarization must have the form

ρθ,β,γ = cos2(θ/2)Uα,β,γ (h) + sin2(θ/2)Uα,β,γ (v)

= 1

2

(
1 + cos β cos θ e−iγ sin β cos θ

eiγ sin β cos θ 1 − cos β cos θ

)
. (92)

The α parameter of the rotation disappears in favor of the θ

parameter characterizing the classical state, leaving only three
net parameters, in contrast to the four parameters of an arbitrary
observable (82).

The expectation functional 〈·〉θ,β,γ is then defined from the
trace-density ρθ,β,γ and the unique extension of the trace Tr to
the whole observable algebra �R

Q(X) according to 〈FX′ 〉θ,β,γ =
Tr(ρθ,β,γ FX′). The trace extension is the sum of the diagonal
matrix elements in the matrix representation. Hence, for the
expectation of an arbitrary observable (82) under an arbitrary
state (92), we find

〈Uα′,β ′,γ ′(FX)〉θ,β,γ = a + b

2
+ a − b

2
(cos θ )�, (93a)

� = cos β cos β ′ + sin β sin β ′ cos(γ − γ ′), (93b)

where � ∈ [−1,1] is an interference factor that depends only
on relative orientation between the state framework and the
observable framework. If the frameworks coincide, then � = 1
and the classical result is recovered.

C. Detectors and probability observables

Joint observable space. As with the classical case, we can
couple a system to a detector by enlarging the sample space
to the product space XY of a particular pair of frameworks.
We can then perform local unitary rotations on each space
independently to form a joint quantum sample space from the
classical joint observables Q(X)Q(Y ). However, the quantum
observable space also admits global unitary rotations on the
classical joint observables to form a larger joint quantum
sample space Q(XY ). Just as with a single sample space, any
two propositions in Q(XY ) can be continuously connected
with some global unitary rotation.

The full quantum observable space �R
Q(XY ) is constructed

from Q(XY ) in the usual way. Product observables will
maintain their product form under local unitary rotations,
UX(VY (AXBY )) = UX(AX)VY (BY ). However, global unitary
rotations can create unfactorable correlated joint observables
in �R

Q(XY ) even from product observables U(AXBY ).
Joint states. Similarly, joint states on a classical product

framework extend to joint quantum states on the quantum
product observable space. Under local unitary rotations,
product states remain product states and classically correlated
states between two specific frameworks remain classically
correlated. However, global unitary rotations performed on
any state can also form entangled states that have no analog in
the classical theory [88]. Entangled states have some degree of
local-rotation-independent correlation between frameworks,
so display a stronger degree of correlation than can even be
defined with a classically correlated state that is restricted to a
single pair of frameworks. As an extreme example, maximally

022123-18



CONTEXTUAL-VALUE APPROACH TO THE GENERALIZED . . . PHYSICAL REVIEW A 85, 022123 (2012)

entangled states are completely local-rotation independent and
perfectly correlated with respect to any pair of frameworks.

Quantum operations. The specifics of entanglement do not
concern us here, since any type of correlation is sufficient
to represent detector probabilities within the reduced system
space. For the purposes of measurement, we only assume that
the correlated state with density ρ = U†(ρXρY ) = UρXρY U †

is connected to some initial product state with density ρXρY

via a unitary rotation U†. Since all quantum states can be
continuously connected with some global unitary rotation that
acts as a disturbance (21), this is always possible. Physically,
the unitary rotation couples the known detector state ρY to an
unknown system state ρX. Furthermore, we assume that the
initial state of the detector has some (not necessarily unique)
pure-state expansion that is meaningful with respect to the
preparation procedure ρY = ∑

y ′∈Y ′ P ′(y ′)y ′.
It then follows that the numerator for the conditioning rules

(89) and (90) becomes

〈yFXy〉 = Tr(ρyFXy) = TrX(TrY (UρXρY U †yFXy))

= 〈Ey(FX)〉X = TrX(E†
y (ρX)FX), (94)

with the operations Ey and E†
y defined as

Ey(FX) = 〈U †yFXyU 〉Y =
∑
y ′∈Y ′

P ′(y ′)TrY (y ′U †yFXyU )

=
∑
y ′∈Y ′

M
†
y,y ′FXMy,y ′ , (95a)

E†
y (ρX) = TrY (yUρXρY U †y)

=
∑
y ′∈Y ′

P ′(y ′)TrY (yUρXy ′U †y)

=
∑
y ′∈Y ′

My,y ′ρXM
†
y,y ′ , (95b)

My,y ′ = eiφy,y′
√

P ′(y ′)〈y|U |y ′〉, (95c)

M
†
y,y ′ = e−iφy,y′

√
P ′(y ′)〈y ′|U †|y〉. (95d)

Here, the Hilbert space representations of the Kraus
operators {My,y ′ } have the form of partial matrix elements
and are only well defined up to the arbitrary phase factors
eiφy,y′ . We also stress that {My,y ′ } depend not only on the
measured detector outcome y, but also on a particular detector
preparation y ′.

As a result, we find the quantum versions of the probability
observables (28),

P (y) = 〈Ey(1X)〉X = 〈Ey〉X, (96)

Ey = Ey(1X) = 〈U †yU 〉Y =
∑
y ′∈Y ′

M
†
y,y ′My,y ′ , (97)

and the general invasive measurement (24),

〈F̃X〉y = 〈Ey(FX)〉X
〈Ey(1X)〉X =

∑
y ′∈Y ′ TrX(ρXM

†
y,y ′FXMy,y ′ )

TrX(ρXEy)
. (98)

Similarly to the invasive classical case (25), the measure-
ment of y on the detector must be described by a quantum
operation Ey in Eq. (94), which is a completely positive map
[2,6–14,16,70,89] that performs a generalized measurement

on the system state corresponding to the detector outcome y.
The operation Ey acting on the identity in Eq. (97) produces
a positive operator known as a quantum effect, Ey . By
construction, the set of operations {Ey} preserves the identity,∑

y Ey(1X) = 1X; hence, the effects form a partition of the
identity,

∑
y Ey = 1X, making them probability observables

over a particular detector framework exactly as in Eq (23).
Sequences of measurements emphasize the temporal or-

dering of operations, just as in the invasive classical case (26).
Given two sets of quantum operations that define the sequential
interaction of two detectors with the system and their subse-
quent conditioning, {Ey} and {E ′

z}, the joint probability of the
ordered sequence of detector outcomes (y,z) is

P (y)P (z|y) = P (yzy) = P (yz1Xzy)

= 〈Ey(E ′
z(1X))〉X = 〈Ey(E′

z)〉X, (99)

where E′
z = E ′

z(1X). The proper sequential probability

observable Ey(E′
z) = ∑

y ′ M
†
y,y ′E′

zMy,y ′ is not a simple
product of the individual probability observables Ey and E′

z.
These sequence probabilities then give us the full general-

ization of the ABL rule (90),

z〈 ỹ 〉 = 〈Ey(E′
z)〉X

〈E(E′
z)〉X

= 〈Ey(E′
z)〉X∑

y ′′∈Y 〈Ey ′′ (E′
z)〉X

=
∑

y ′∈Y ′ TrX(ρXM
†
y,y ′E′

zMy,y ′ )∑
y ′′∈Y

∑
y ′∈Y ′ TrX(ρXM

†
y ′′,y ′E′

zMy ′′,y ′ )
, (100)

and the most general version of the invasive quantum Bayes’
rule (91),

z〈 ỹ 〉 = 〈Ẽ′
z〉y

〈Ey〉X
〈E(E′

z)〉X
. (101)

As with (27) and (90), the postselected conditioning (100)
depends on the entire disturbance of the first measurement
via the nonselective measurement E = ∑

y ′′∈Y Ey ′′ in the
denominator.

The noncommutativity of the detection operations Ey

emphasizes the fact that measurement is an active process:
an experimenter alters the quantum state by coupling it to
a detector and then conditioning on acquired information
from the detector. Without some filtering process that com-
pletes the disturbance implied by (94), there is no measure-
ment. The nonselective measurement E also includes the active
disturbance of the measurement process, but does not condition
on a particular outcome. Furthermore, measuring a quantum
state in a different order generally disturbs it differently.
The state may also, in certain conditions, be probabilistically
“uncollapsed” back to where it started by using the correct
conditioning sequence [3–5]. In this sense, sequential quantum
conditioning is analogous to a stochastic control process that
guides the progressive disturbance of a state along some
trajectory in the state space [16].

Measurement operators. Since the quantum operation Ey

performs a measurement, we will refer to its Kraus operators
{My,y ′ } (95) as measurement operators. However, a quantum
operation generally has many equivalent double-sided product
expansions like (95a) in terms of measurement operators. Each
such set of measurement operators {My,y ′ } corresponds to a
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specific choice of framework for the preparation of the detector
state ρY = ∑

y ′∈Y ′ P (y ′)y ′.
Given a specific set of measurement operators, the sub-

stitution My,y ′ → Uy,y ′My,y ′ with unitary Uy,y ′ will produce
the same effect Ey according to (97) but will correspond
to a different operation E ′

y . Hence, we conclude that many
measurement operations can produce the same probability
observables on the system space [90]. Therefore, probability
observables are not sufficient to completely specify a quantum
measurement: one needs to specify the full operations as in the
classically invasive case (25).

Quantum process tomography. Just as classical probability
observables can be characterized via process tomography, op-
erations can be characterized by quantum process tomography.
One performs quantum process tomography by sending known
states into a detector, measuring the detector, then measuring
the resulting states to see how the state was changed by the
detector. Since quantum operations contain information about
disturbance as well as conditioning, quantum process tomog-
raphy generally requires more characterization measurements
than pure classical process tomography.

Pure operations. An initially pure detector state with
density y ′ produces a pure operation Ey(FX) = M

†
yFXMy with

a single associated measurement operator My = eiφy 〈y|U |y ′〉
that is unique up to the arbitrary phase factor eiφy . Most
laboratory preparation procedures for the detector are designed
to produce a pure initial state, so pure operations will be the
typical case. A pure operation has the additional property
of partially collapsing a pure state to another pure state. It
is also most directly related to the probability observable
Ey = M

†
yMy , since the single-measurement operator has a

polar decomposition My = UyE
1/2
y in terms of the positive

root of the probability observable E
1/2
y .

Weak measurement. If we wish for such a conditioning
process to leave the state approximately unchanged, we must
make a weak measurement, just as in the classical case (19).
However, a quantum weak measurement requires a strict con-
dition regarding the measurement operations and not just the
probability observables due to the additional disturbance in the
measurement. Formally, the measurement operations typically
depend on a measurement strength parameter ε such that

∀ y ∈ Y, lim
ε→0

Ey(ε; FX) = PY (y)I(FX), (102)

where I is the identity operation and PY (y) is the probability
for obtaining the detector outcome y in the absence of
interaction. As with the classical case, the limit as ε → 0 is
an idealization known as the weak-measurement limit and is
not strictly achievable in the laboratory.

The definition (102) implies that subsequent measurements
will be unaffected, ∀ y ∈ Y, limε→0〈F̃X〉y = 〈FX〉, and that
the probability observables are proportional to the identity
in the weak limit, ∀ y ∈ Y, limε→0 Ey(ε) = PY (y)1X, just
as in the classical case (19). It also follows that any set
of measurement operators {My,y ′ (ε)} that characterize Ey(ε)
must also be proportional to the identity in the weak limit
∀ y ∈ Y, y ′ ∈ Y ′, limε→0 My,y ′ (ε) ∝ 1X.

Weak measurements are more interesting in the quantum
case than in the classical case due to the existence of incompat-

ible frameworks. Since a weak measurement of an observable
does not appreciably affect the quantum state, subsequent
measurements on incompatible observables can be made that
will probe approximately the same state. This technique allows
(noisy) information about two incompatible frameworks to be
gleaned from nearly the same quantum state in a single exper-
iment, which is strictly impossible using strong measurements
that collapse the state to a pure state in a particular framework
after each measurement. The penalty for using weak measure-
ments is that many more measurements are needed than in the
strong-measurement case to overcome the ambiguity of the
measurement, as discussed in the classical case.

1. Example: Coverslip polarization detector

To cement these ideas, we consider the task of indirectly
measuring polarization in a particular framework. For speci-
ficity, we will consider the passage of a laser beam with
unknown polarization through a glass microscope coverslip,
as shown in Fig. 2. Fresnel reflection off the coverslip leads
to a disparity between transmission and reflection of the
polarizations, so comparing transmitted to reflected light
allows a generalized measurement of polarization, as we
demonstrated experimentally in Ref. [51].

The system sample space we wish to measure is the
polarization with respect to the table (h = |h〉〈h|) and (v =
|v〉〈v|), which could in principle be measured ideally with
a polarizing beam splitter. The detector sample space is the
spatial degree of freedom of the transmitted (t = |t〉〈t |) and
reflected (r = |r〉〈r|) ports of a coverslip rotated to some
fixed angle with respect to the incident beam around an axis
perpendicular to the table. The initial state of the detector is
the pure state indicating that the beam enters a single incident
port (b = |b〉〈b|) of the coverslip with certainty. The rotation
U†(ρXb) = UρXbU † that couples the system to the detector
describes the interaction of the beam with the coverslip and has
a unitary rotor U corresponding to the polarization-dependent
scattering matrix of the coverslip. Assuming that the scattering
preserves beams of pure polarization, so h remains h and v

FIG. 2. Coverslip polarization measurement. A laser beam passes
through a preselection x polarizer, a glass microscope coverslip,
and a postselection z polarizer. The transmission probabilities for
each segment of the apparatus are shown. By assigning appropriate
contextual values fY (t) and fY (r) (12) to the output ports of
the coverslip, the polarization observable FX = fX(h)h + fX(v)v can
be measured using the equivalent expansion in terms of the appropri-
ate measurement context FX = fY (t)Et (1X) + fY (r)Er (1X). Averag-
ing the same contextual values with pre- and postselected condi-
tional probabilities z〈 t̃ 〉x = 〈xEt (z)x〉X/[〈xEt (z)x〉X + 〈xEr (z)x〉X]
and z〈 r̃ 〉x = 〈xEr (z)x〉X/[〈xEt (z)x〉X + 〈xEr (z)x〉X] produces the
conditioned average (127) z〈F̃X〉x = fY (t)z〈 t̃ 〉x + fY (r)z〈 r̃ 〉x .
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remains v, the rotor decouples into a direct sum of rotors that
are specific to each polarization,

U = Uh ⊕ Uv, (103)

meaning that U has a block-diagonal structure when repre-
sented as a matrix.

Selecting each output port of the coverslip produces the two
measurement operators according to (95),

Mt = 〈t |U |b〉 =
(〈t |Uh|b〉 0

0 〈t |Uv|b〉
)

, (104a)

Mr = 〈r|U |b〉 =
(〈r|Uh|b〉 0

0 〈r|Uv|b〉
)

, (104b)

which characterize the pure measurement operations that
modify observables according to (95a)

Et (FX) = M
†
t FXMt, (105a)

Er (FX) = M†
r FXMr, (105b)

and their adjoints that modify the state density according to
(95b)

E†
t (ρX) = MtρXM

†
t , (106a)

E†
r (ρX) = MrρXM†

r . (106b)

The pure measurement operations in turn produce proba-
bility observables according to (97)

Et = Et (1X) = M
†
t Mt =

(
|〈t |Uh|b〉|2 0

0 |〈t |Uv|b〉|2
)

, (107a)

Er = Er (1X) = M†
r Mr =

(
|〈r|Uh|b〉|2 0

0 |〈r|Uv|b〉|2
)

, (107b)

in the same framework as h and v. These probability
observables are therefore equivalent to classical probability
observables (23) specified by the effective characteriza-
tion probabilities P̃ (t |h) = |〈t |Uh|b〉|2, P̃ (r|h) = |〈r|Uh|b〉|2,
P̃ (t |v) = |〈t |Uv|b〉|2, and P̃ (r|v) = |〈r|Uv|b〉|2.

The measurement operators (104) have a polar decomposi-
tion in terms of the roots of the probability observables and an
extra unitary phase contribution,

Mt =
(

eiφh,t

√
P̃ (t |h) 0

0 eiφv,t

√
P̃ (t |v)

)
, (108a)

Mr =
(

eiφh,r

√
P̃ (r|h) 0

0 eiφv,r

√
P̃ (r|v)

)
. (108b)

Any nonzero relative phase, such as φh,t − φv,t , will affect
the framework orientation for subsequent measurements;
however, it will not contribute to the acquisition of information
from the measurement since it does not contribute to the
probability observables. Such relative phase is therefore part
of the disturbance of the measurement process.

Specifically, the initial state of polarization PX will be
conditioned by a selection of a particular port on the detector
according to

〈F̃X〉t = 〈Et (FX)〉X
〈Et (1X)〉X = TrX(MtρXM

†
t FX)

TrX(ρXEt )
, (109a)

〈F̃X〉r = 〈Er (FX)〉X
〈Er (1X)〉X = TrX(MrρXM

†
r FX)

TrX(ρXEr )
. (109b)

Although the probabilities in each denominator only depend
on the probability observables, the altered states in each
numerator depend on the measurement operations and will
include effects from the relative phase in the measurement
operators (108).

D. Contextual values

Operation correspondence. The introduction of contextual
values in the quantum case proceeds identically to the classical
case of invasive measurements (34). Since we must generally
represent detector probabilities by operations {Ey} within the
reduced system space according to (97) and (99), we must
also generally represent detector observables by weighted
operations within the reduced system space,

〈FY 〉 =
∑
y∈Y

fY (y)P (y) =
∑
y∈Y

fY (y)〈Ey(1X)〉X = 〈FX(1X)〉X,

(110)

FX =
∑
y∈Y

fY (y)Ey. (111)

If we are concerned with only a single measurement or
are working within a single framework as in the classical
formalism then, for all practical purposes, the operation FX

reduces to its associated system observable FX = FX(1X) as
in the classical definition (31).

Contextual values. We observe a corollary exactly as in the
classical case (32): If we can expand a system observable in
terms of the probability observables generated by a particular
measurement operation, then that observable can also be
expressed as an equivalent detector observable,

FX =
∑
y∈Y

fY (y)Ey ⇒ FY =
∑

y

fY (y)y, (112)

which is the quantum form of our main result originally
introduced in Ref. [49]. As in the classical case, we dub
the required detector labels fY (y) the contextual values
(CVs) of the quantum observable FX with respect to the
context of a specific detection scheme as represented in the
system space by the measurement operations {Ey}. Since
many measurement operations produce the same probability
observables {Ey(1X) = Ey}, many detection schemes can use
the same CVs to reproduce an observable average.

Moments. As with classically invasive measurements (35),
higher statistical moments of the observable require more care
to measure. For instance, we require the following equality in
order to accurately reproduce the nth moment of an observable
indirectly using the same CVs:

〈(FX)n〉X =
∑

y1,...,yn∈Y

fY (y1) · · · fY (yn)
〈
Ey1 · · · Eyn

〉
X

. (113)
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However, as indicated in Eq. (99), performing a sequence
of n measurements produces the measurable probability
〈Ey1 (· · · (Eyn

) · · · )〉X �= 〈Ey1 · · · Eyn
〉X. Indeed, 〈Ey1 · · ·Eyn

〉X
will not generally be a well-formed probability. To obtain the
equality (113) with a particular choice of CVs, we need the
additional constraint that all the measurement operators must
commute with each other. As a result, they must be part of the
same framework as the system observable and hence commute
with that observable as well. We will call any detector with
commuting measurement operators with respect to a particular
observable a fully compatible detector for that observable.
Evidently, this is a strict requirement for a detector.

Alternatively, as with the classical case, we can change the
CVs to define new observables that correspond to powers of the
original observable, such as GX = (FX)n = ∑

y∈Y gY (y)Ey .
These new observables can then be measured indirectly using
the same experimental setup without the need for measurement
sequences. The CVs gY (y) for the nth power of FX will not be a
simple power of the CVs fY (y) for FX unless the measurement
is unambiguous.

Correlation functions. If a time-evolution unitary rotation
Ut is inserted between different observable measurements, then
we obtain a quantum correlation function instead,

〈 ˜FX(0)GX(t)〉 = 〈FX(Ut (GX(1X)))〉X , (114)

which should be compared to the classical case (36).
Similarly, n-time correlations can be defined with n −
1 time-evolutions between the observable measurements
〈F1(Ut1 (F2(· · ·Utn−1 (Fn(1X)) · · · )))〉.

Inversion. Since the CVs depend only on the probability
observables, which commute with the measured observable
for a fully compatible detector, the procedure for determining
the CVs will be identical to the classical case. That is, the
contextual values of a quantum observable exactly correspond
to the detector labels for a classically ambiguous detector. We
shall refer the reader back to the classical inversion (40) for
discussion on how to solve the relation (112). As a reminder,
we advocate the pseudoinverse as a principled approach for
picking the CVs in the event of redundancy or course-graining.

Conditioned averages. We can construct a general postse-
lected conditioned average from the CVs and the fully gener-
alized ABL rule (100) analogously to the classical case (37),

z〈F̃X〉 =
∑

y

fY (y)z〈ỹ〉 = 〈FX(E′
z)〉X

〈E(E′
z)〉X

=
∑

y∈Y

∑
y ′∈Y ′ fY (y)Tr(ρXM

†
y,y ′E′

zMy,y ′ )∑
y∈Y

∑
y ′∈Y ′ Tr(ρXM

†
y,y ′E′

zMy,y ′ )
. (115)

We introduced this type of conditioned average in Ref. [49] for
the typical case of pure operations {Ey} with single associated
measurement operators {My}.

If the postselection is defined in the same framework as the
measurement operation, then the nonselective measurement E
in the denominator will reduce to unity, leaving a classical
conditioned average

〈FX〉z =
∑

y∈Y fY (y)〈EyE
′
z〉X

〈E′
z〉X

= 〈FXE′
z〉X

〈E′
z〉X

, (116)

of the same form as (18). Similarly, the preselected condition-
ing (98) will also reduce to (116) for such a case. This special
case cannot exceed the eigenvalue range of the observable:
the observable FX will always reduce to its eigenvalues since
either the state or the postselection commute with it.

More generally, however, the combination of amplified
CVs and the context-dependent probabilities in the general
postselected average (115) can send it outside the eigenvalue
range of the observable. As we discussed in Refs. [51,91],
having such a conditioned average stray outside the eigenvalue
range of the observable is equivalent to a violation of a Leggett-
Garg inequality that tests the assumptions of macrorealism
under noninvasive detection. As a result, an eigenvalue range
violation gives a direct indication of either nonclassicality
present in a measurement sequence, or intrinsic measurement
disturbance beyond that of noninvasive classical conditioning
as we saw in the example in Sec. II D 2. We refer the reader
to [51,91] for more detail on this matter.

Strong-conditioned average. There are two other impor-
tant special cases of the conditioned average (115) worth
mentioning: strong measurement and weak measurement.
The strong-measurement case is distinguished by being con-
strained exclusively to the eigenvalue range of the observable.
Specifically, (115) reduces to the form

z〈F̃X〉 =
∑

x∈X fX(x)P (x)Dx(z)∑
x∈X P (x)Dx(z)

=
∑

x∈X fX(x)〈x|ρ|x〉|〈x|z〉|2∑
x∈X〈x|ρ|x〉|〈x|z〉|2 , (117)

which contains only the eigenvalues fX(x) of the observable
and factored probability products. However, it cannot be ex-
pressed solely in terms of the observable FX and a conditioned
state as in the classical case (37) due to the disturbances
Dx(z). Only when the state or postselection commutes with
the observable does (117) reduce to a special case of (116) and
become free from disturbance.

Weak values. The weak-measurement case is distinguished
by being the only case of the quantum postselected conditioned
average (115) that can become context independent for any
state and postselection (under certain conditions). The context-
independent weak limit of the conditioned average (115) is the
weak value [17,19–21,24,25,49],

z〈F̃X〉w = 〈E′
zFX + FXE′

z〉X
2〈E′

z〉X
, (118)

and is expressed entirely in terms of the system expectation
functional 〈·〉X, the postselection probability observable E′

z,
and the observable FX. Written in this form it is clear that it is
a symmetrized version of the context-independent commuting
case (116); however, unlike (116) the weak value, (118) is not
constrained to the eigenvalue range and can even diverge. For
a pure initial state with trace-density x and pure postselection
z, the weak value (118) takes the traditional form

z〈F̃X〉wx → Re
〈z|FX|x〉

〈z|x〉 . (119)

We will consider under what conditions one can obtain such a
weak value in Sec. III E.
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1. Example: Coverslip detector revisited

Continuing the example from Sec. III C 1 and Fig. 2,
observables defined in the same framework as the probability
observables may be expressed in terms of the probability
observables according to (112) using contextual values (CVs),
exactly as in the classical example (47),

FX = fX(h)h + fX(v)v = fY (t)Et + fY (r)Er, (120a)(
fX(h)
fX(v)

)
=

(
P̃ (t |h) P̃ (r|h)
P̃ (t |v) P̃ (r|v)

)(
fY (t)
fY (r)

)
. (120b)

Inverting this relation according to (40) produces the unique
CV,

fY (t) = P̃ (r|v)fX(h) − P̃ (r|h)fX(v)

P̃ (t |h)P̃ (r|v) − P̃ (r|h)P̃ (t |v)
, (121a)

fY (r) = − P̃ (t |v)fX(h) − P̃ (t |h)fX(v)

P̃ (t |h)P̃ (r|v) − P̃ (r|h)P̃ (t |v)
. (121b)

The denominator is unity when the output ports of the coverslip
are perfectly correlated with the polarization. Otherwise, the
denominator is less than one and serves to amplify the CV to
compensate for the ambiguity of the detection. The numerator
contains cross-compensation factors that correct bias in the
detector; that is, the eigenvalue fX(h) for h in the contextual
value fY (t) for t is weighted by the conditional probability
P̃ (r|v) corresponding to the complementary quantities of v

and r , and so forth.
The CVs define the detector observable that is actually

being measured in the laboratory,

FY = fY (t)t + fY (r)r. (122)

This detector observable corresponds to a detection operation
on the system space according to (111)

FX = fY (t)Et + fY (r)Er , (123)

which fully describes the interaction with the detector, subse-
quent conditioning, and experimental convention for defining
the observable. When no subsequent conditioning is performed
on the system, this operation constructs the system observable
FX = FX(1X) = fY (t)Et + fY (r)Er , as desired.

Since the pure measurement operations all belong to the
same framework and commute with FX, the operation FX is
also fully compatible with the observable FX, meaning it can
measure any moment of that observable using the same CV
according to (113),

〈Fn
X(1X)〉X = 〈(FX)n〉X =

∑
i1...in

fY (i1) · · · fY (in)〈Ei1 · · · Ein〉X.

(124)

The quantity Fn
X(1X) indicates a sequence of n consecutive

measurements made by the same coverslip on the beam to
construct the observable (FX)n for the nth moment of FX.
That is, the output from each port of the coverslip is fed back
into the coverslip to be measured again. There are 2n possible
outcome sequences (i1, . . . ,in) for n traversals through the
coverslip, each with probability 〈Ei1 · · ·Ein〉X of occurring.
These probabilities are weighted with appropriate products of
corresponding CVs and summed to correctly construct the nth
moment of FX.

Alternatively, one can change the CV to directly measure
the observable GX = (FX)n = gY (t)Et + gY (r)Er from one
traversal of the coverslip. The required CVs for GX,

gY (t) = P̃ (r|v) [fX(h)]n − P̃ (r|h) [fX(v)]n

P̃ (t |h)P̃ (r|v) − P̃ (r|h)P̃ (t |v)
, (125a)

gY (r) = − P̃ (t |v) [fX(h)]n − P̃ (t |h) [fX(v)]n

P̃ (t |h)P̃ (r|v) − P̃ (r|h)P̃ (t |v)
, (125b)

are not simple powers of the CV (121) for FX unless the
measurement is unambiguous.

In addition to moments of FX, we can obtain postselected
conditioned averages of FX by conditioning on a second mea-
surement outcome characterized by a probability observable
E′

z after the measurement by the coverslip according to (115),

z〈F̃X〉 = 〈FX(E′
z)〉X

〈E(E′
z)〉X

, (126)

where E = Et + Er is the nonselective measurement by the
coverslip. The second measurement could be a polarizer,
another coverslip, or any other method for measuring polar-
ization a second time.

If the initial state is pure with a density ρ = x = |x〉〈x|
and the final postselection is also pure z = |z〉〈z|, then (126)
simplifies to a pre- and postselected conditioned average,

z〈F̃X〉x = fY (t)|〈z|Mt |x〉|2 + fY (r)|〈z|Mr |x〉|2
|〈z|Mt |x〉|2 + |〈z|Mr |x〉|2 . (127)

If we relate both pure states to the reference state h via
unitary rotations as defined in Eq. (79), x = Uα,β,γ (h) and
z = Uα′,β ′,γ ′ (h), then the probabilities take the form

|〈z|Mt |x〉|2 = P̃ h(t) cos2(β/2) cos2(β ′/2) (128a)

+ P̃ v(t) sin2(β/2) sin2(β ′/2)

+
√

P̃ h(t)P̃ v(t)

2
sin β sin β ′

× cos(γ − γ ′ − φh,t + φv,t ),

|〈z|Mr |x〉|2 = P̃ h(r) cos2(β/2) cos2(β ′/2) (128b)

+ P̃ v(r) sin2(β/2) sin2(β ′/2)

+
√

P̃ h(r)P̃ v(r)

2
sin β sin β ′

× cos(γ − γ ′ − φh,r + φv,r ).

We see that each probability possesses an interference term
that stems from the relative orientations of the incompatible
frameworks for the preparation, measurement, and postse-
lection. In addition, the relative phases in the measurement
operators (108) will affect the orientations of the frameworks
and further disturb the measurement, as mentioned. For the
classical case, the frameworks coincide, so β,β ′ ∈ {0,π};
the interference term vanishes and the probabilities reduce
to the conditional probabilities that characterize the probability
observables.

The combination of the expanded range of the CVs (121)
and the interference term in the probabilities (128) can make
the postselected conditioned averages (126) counterintuitively
exceed the eigenvalue range of the observable FX. Such a

022123-23



J. DRESSEL AND A. N. JORDAN PHYSICAL REVIEW A 85, 022123 (2012)

violation of the eigenvalue range cannot occur from classical
conditioning without disturbance as in Sec. II D 2.

2. Example: Calcite polarization detector

We can also measure polarization using a von Neumann
measurement [2] that uses a detector with a continuous sample
space detector, such as position. For example, passing a beam
of polarized light through a calcite crystal will continuously
separate the polarizations h and v along a particular position
axis. Measuring the position profile of the resulting split beam
along that axis allows information to be gained about the
polarization.

For such a setup, measuring the position with a lin-
ear scale corresponds to measuring a detector observ-
able Q = ∫

Y
yd|y〉〈y| for a continuous sample space

of distinguishable positions. The observable Q has a
conjugate DQ that satisfies [Q,DQ] = i1Y . The conju-
gate can thus generate translations in Q with a uni-
tary rotor, exp(iqDQ)Q exp(−iqDQ) = Q + [iqDQ,Q] +
[iqDQ,[iqDQ,Q]] + · · · = Q + q1Y . Hence, we can model
the calcite crystal as a rotation governed by a unitary rotor of
the form

U = exp(−i(εhh − εvv)DQ), (129)

which will translate h polarization by some amount εh while
simultaneously translating v polarization by some amount
εv in the opposing direction. The parameters εh and εv will
depend on the geometry of the crystal with respect to the
incident beam.

Suppose the light beam has an initially pure beam profile
state described by a density ρ = |ψ〉〈ψ |. The probability for
obtaining a particular pure position y = |y〉〈y| in the profile
would then be dPY (y) = pY (y)dy = Tr(ρy)dy = |〈y|ψ〉|2dy.
Each complex factor 〈y|ψ〉 is the “wave function” of the trans-
verse beam profile, whose complex square is the probability
density with respect to the integral pY (y) = |〈y|ψ〉|2.

If we then pass the beam through the crystal described by
the rotor (129) and measure its position in a pure position
state y = |y〉〈y|, we will have enacted a pure operation on
the polarization of the beam that is characterized by a single
measurement operator,

dEy(FX) = M(y)†FXM(y)dy, (130a)

M(y) = 〈y|U |ψ〉 = h〈y − εh|ψ〉 + v〈y + εv|ψ〉, (130b)

with components equal to the initial wave function of the
detector profile shifted in position by an appropriate ε. The
pure measurement operations define a continuous set of
probability observables,

dE(y) = dEy(1X) = M(y)†M(y)dy

= hdPY (y − εh) + vdPY (y + εv), (131)

with components equal to the initial transverse beam profile
shifted in position by an appropriate ε. Unless the shifts
become degenerate with εv = −εh then these probability
observables can be used to indirectly measure any observable
in the framework of h and v.

Since the observable εhh − εvv appears as a generator
for the rotation U , it could be tempting to assert that the
detector must specifically measure this observable. However,
only the framework in which the generating observable is
defined determines which observables can be measured. The
choice of CVs, which can be made in postprocessing, will
calibrate the detector to measure specific observables in that
framework.

We considered a classical version of similar probability
observables in Sec. II D 4. Generalizing that derivation only
slightly, we can find the preferred contextual values (CVs)
fY (y) for an arbitrary polarization observable FX = fX(h)h +
fX(v)v,

fY (y) = fX(h)
v+(y)+v−(y)

2
+fX(v)

v+(y)−v−(y)

2
, (132a)

v+(y) = pY (y − εh) + pY (y + εv)

a + b(εh,εv)
, (132b)

v−(y) = pY (y − εh) − pY (y + εv)

a − b(εh,εv)
, (132c)

a =
∫

Y

p2
Y (y)dy, (132d)

b(εh,εv) =
∫

Y

pY (y − εh)pY (y + εv)dy. (132e)

In particular, one can measure the orthogonal observables
h − v and 1X using the expansions

h − v =
∫

Y

v−(y)dE(y), (133)

1X = h + v =
∫

Y

v+(q)dE(y). (134)

For the specific case of an initial Gaussian beam centered
at zero, we have

p(y) = exp

(
− y2

2σ 2

)/
σ
√

2π, (135a)

ε = (εh + εv)/2, (135b)

δ = (εh − εv)/2, (135c)

a = 1

2σ
√

π
, (135d)

b(ε) = a exp(−(ε/σ )2), (135e)

v−(y) =
√

2
exp

(− (y−δ)2

2σ 2

)
sinh

(
ε(y−δ)

σ 2

)
sinh

(
ε2

2σ 2

) , (135f)

v+(y) =
√

2
exp

(− (y−δ)2

2σ 2

)
cosh

(
ε(y−δ)

σ 2

)
cosh

(
ε2

2σ 2

) . (135g)

What matters for the measurement is the average translation
ε away from the midpoint (y − δ). The amplification of the
CVs is controlled by the parameter ε/σ , which serves as an
indicator for the ambiguity of the measurement. When the
shift ε is large compared to the width of the Gaussian σ , then
ε/σ � 1; the shifted Gaussians for h and v are distinguishable;
the CVs approach the eigenvalues of the measurement; and,
the measurement is unambiguous. When the shift is small
compared to the width of the Gaussian, then ε/σ � 1, the
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FIG. 3. Preferred CVs fY (y) given in Eq. (132c) for a calcite position measurement that targets the polarization observable FX = h − v,
shown for strong separation (ε = 1), wimpy separation (ε = 0.1), and weak separation (ε = 0.02) of the polarizations. (top row) Initial Gaussian
beam profile. (middle row) Initial Laplace beam profile. (bottom row) Initial top-hat beam profile. Note that the top-hat CVs are the eigenvalues
of ±1 under strong separation, but become amplified as the distributions start to overlap; moreover, the top-hat CVs cancel out in the perfectly
ambiguous overlapping region. The amplification and cancellation behavior of the CVs is more complicated for less-definite detector profiles.

Gaussians for h and v largely overlap, the CVs diverge, and
the measurement is ambiguous. Figure 3 shows the CVs (135f)
for the Gaussian initial beam profile, as well as for a Laplace
and top-hat profile for comparison.

This sort of detection protocol was used in the original
paper on weak values [17] in the form of a Stern-Gerlach
apparatus that measures spin analogously to polarization
using a continuous momentum displacement generated by a
magnetic field. The initial Gaussian beam profile shifted an
amount ε away from the midpoint of the initial beam profile
in a direction corresponding to the value of the spin. Since the
beam profile was symmetric about its mean, the generic CVs
fY (y) = y/ε were implicitly assigned as a linear calibration of
the detector, which targets a specific observable analogous to
h − v. Motivating this implicit choice was the fact that, when
ε is sufficiently small, the two overlapping Gaussians produce,
to a good approximation, a single resulting Gaussian with a
shifted mean consistent with such a linear scaling, as shown in
Fig. 4. That such a choice was being made was later pointed out
explicitly in Ref. [23] before we identified the role of the CVs in
Ref. [49] and derived the preferred form (135f). The proposed
spin-measurement protocol was adapted to a polarization
measurement using a calcite crystal, as we have developed
in this section, and then verified experimentally [18,34].

To produce the weak value from the polarization mea-
surement, we postselect on a second measurement to form
a conditioned average. If the initial polarization state is pure

with a density ρ = x = |x〉〈x| and the final postselection is
also pure z = |z〉〈z|, then we have the form

z〈F̃X〉x =
∫
Y

fY (y)|〈z|M(y)|x〉|2dy∫
Y

|〈z|M(y)|x〉|2dy
. (136)

If we choose the symmetric Gaussian case (135) with δ =
0 and take the form of M(y) without additional unitary
disturbance,

M(y) = h exp

(
− (y − ε)2

4σ 2

)/√
σ
√

2π

+ v exp

(
− (y + ε)2

4σ 2

)/√
σ
√

2π, (137)

and relate both pure states to the reference state h via
unitary rotations as defined in Eq. (79), x = Uα,β,γ (h) and z =
Uα′,β ′,γ ′(h), then the postselected probability density zp̃x(y)
takes the form

|〈z|M(y)|x〉|2 = exp
(− y2+ε2

2σ 2

)
2σ

√
2π

[
(1 + cos β cos β ′) cosh

yε

σ 2

+ (cos β + cos β ′) sinh
yε

σ 2

+ sin β sin β ′ cos(γ − γ ′)
]
. (138)
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FIG. 4. Pre- and postselected detector probability densities zp̃x(y) for the calcite position measurement (131), shown for strong separation
(ε = 1), wimpy separation (ε = 0.1), and weak separation (ε = 0.02) of the polarizations. The preselection is x = |x〉〈x| with associated vector
|x〉 = cos(4π/6)|h〉 + sin(4π/6)|v〉. The postselection is z = |z〉〈z| with associated vector |z〉 = (|h〉 + |v〉)/√2. (top row) Initial Gaussian
beam profile. (middle row) Initial Laplace beam profile. (bottom row) Initial top-hat beam profile. Note that the Gaussian profile tilts to
approximate a single-shifted Gaussian under weak separation, as leveraged in the weak-measurement protocol introduced in Ref. [17].

Choosing the CVs (135f) to target the observable h − v, the
conditioned average (136) then takes the form

z〈 ˜h − v〉x = cos β + cos β ′

1 + cos β cos β ′ + �(ε,σ )
, (139a)

�(ε,σ ) = sin β sin β ′ cos(γ − γ ′) exp

(
− ε2

2σ 2

)
. (139b)

The interference term �(ε,σ ) in the denominator is the
only part of the conditioned average that depends on the
details of the measurement context through the exponential
dependence on ε/σ , which was also noted in Refs. [27,91].
This conditioned average can exceed the eigenvalue range of
the observable due to the combination of the amplified CV
and the disturbance linking the incompatible frameworks in
the conditional probabilities. Figure 5 shows the Gaussian
measurement of the conditioned average (139), as well as
top-hat and triangular measurements for comparison.

The conditioned average (139) has two limiting cases that
eliminate the explicit context-dependence: (1) In the strong-
measurement limit, ε/σ → ∞, the interference term vanishes,
leaving a conditioned average of projective measurements
that always stays in the eigenvalue range of the observable.

(2) In the weak-measurement limit, ε/σ → 0, the conditioned
average reduces to the weak value,

z〈 ˜h − v〉wx
= Re

〈z|(h − v)|x〉
〈z|x〉

= cos β + cos β ′

1 + cos β cos β ′ + sin β sin β ′ cos(γ − γ ′)
. (140)

The weak value is distinguished by being the only case that can
be written entirely in terms of the observable, the postselection,
and the preselected state without reference to the intermediate
measurement. In this sense, it is the only context-independent
form of the conditioned average. However, we shall see in
Sec. III E that the weak value is not guaranteed as a limit point
of the conditioned average in the weak-measurement limit.

3. Example: Three-box paradox

We can also use contextual values and the general condi-
tioned average to analyze an often repeated paradox related
to the logic of weak values: the three-box paradox [92–95].
Suppose one has three boxes, only one of which may be
occupied by some quantum particle. The boxes form a
classical sample space, X = {a,b,c}, with Boolean algebra
�X = {0,a,b,c,a + b,b + c,c + a,1X}, with 1X = a + b +
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FIG. 5. Pre- and postselected conditioned average densities fY (y)zp̃x(y) for a calcite position measurement targeting the observable
FX = h − v with CVs as in Fig. 3, shown for strong separation (ε = 1), wimpy separation (ε = 0.1), and weak separation (ε = 0.02) of the
polarizations. The conditioned averages z〈F̃X〉x = ∫

Y
fY (y)zp̃x(y)dy are the areas under the curves and are shown inset. As in Fig. 4, the

preselection is x = |x〉〈x|, where |x〉 = cos(4π/6)|h〉 + sin(4π/6)|v〉. The postselection is z = |z〉〈z|, where |z〉 = (|h〉 + |v〉)/√2. (top row)
Initial Gaussian beam profile. (middle row) Initial Laplace beam profile. (bottom row) Initial top-hat beam profile. For sufficiently strong
separation, all three detector profiles will produce the strong-conditioned average z〈F̃X〉x = −1/2. For weak separation, all three profiles
approximate the weak value z〈F̃X〉w

x = −2 − √
3 ≈ −3.73. However, the different detector profiles converge to the weak value at different

rates with decreasing ε.

c. Suppose that the boxes are preselected in the pure state
with density x = |x〉〈x| and associated Hilbert space vector
|x〉 = (|a〉 + |b〉 + |c〉)/√3 and then later postselected with
the pure projector z = |z〉〈z| and associated vector |z〉 =
(|a〉 + |b〉 − |c〉)/√3. The postselected state has a transition
probability from the preselected state of Dx(z) = |〈z|x〉|2 =
1/9.

According to the weak-value definition (119), the weak
values of the box-occupation observables for this pre- and
postselected situation are

z 〈̃a〉wx = 1, (141a)

z〈̃b〉wx = 1, (141b)

z〈̃c〉wx = −1. (141c)

These values have occasionally been interpreted as the coun-
terfactual conditional probabilities of box occupation given
the double boundary conditions; that is, the box occupation
was not checked in between the pre- and postselection, but if
it had been checked without disturbing the system, then these
probabilities would have been observed. Part of the paradox
is that the weak value for c is negative, despite the fact that
the eigenvalues for the occupation projector c are 1 and 0 and
cannot produce such a negative conditioned average unless

negative conditional probabilities average the eigenvalues.
Moreover, if the weak values do represent counterfactual
probabilities, then the weak values for a and b both indicate
a counterfactual certainty of occupation, and hence require a
negative counterfactual probability for c to correctly maintain
the probability normalization condition.

Operationally, the weak value is an idealized limit point of a
pre- and postselected conditioned average. Since measuring it
is not strictly achievable in the laboratory, we prefer to analyze
this situation by considering a specific measurement context
containing experimentally observable quantities. In particular,
we shall consider a detector for the three-box occupation
that has the three outcomes: 1, 2, and 3. The measurement
operations are fully characterized by the single-measurement
operators,

M1 = a
√

(1 + ε)/3 + b
√

(1 − ε)/3 + c
√

1/3, (142a)

M2 = a
√

(1 − ε)/3 + b
√

1/3 + c
√

(1 + ε)/3, (142b)

M3 = a
√

1/3 + b
√

(1 + ε)/3 + c
√

(1 − ε)/3, (142c)

corresponding to the probability observables E1 = M2
1 ,

E2 = M2
2 , and E3 = M2

3 . For the particular pre- and
postselection under consideration, these measurement
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operators produce the generalized ABL conditional
probabilities,

z〈̃1〉x = Tr(zM1xM1)∑3
i=1 Tr(zMixMi)

= 3 − 2
√

1 + ε − 2
√

1 − ε + 2
√

1 − ε2

9 − 2
√

1 + ε − 2
√

1 − ε − 2
√

1 − ε2

= 1

3
− ε2

3
+ O(ε3), (143a)

z〈̃2〉x = Tr(zM2xM2)∑3
i=1 Tr(zMixMi)

= 3 − 2
√

1 + ε + 2
√

1 − ε − 2
√

1 − ε2

9 − 2
√

1 + ε − 2
√

1 − ε − 2
√

1 − ε2

= 1

3
− 2ε

3
+ ε2

6
+ O(ε3), (143b)

z〈̃3〉x = Tr(zM3xM3)∑3
i=1 Tr(zMixMi)

= 3 + 2
√

1 + ε − 2
√

1 − ε − 2
√

1 − ε2

9 − 2
√

1 + ε − 2
√

1 − ε − 2
√

1 − ε2

= 1

3
+ 2ε

3
+ ε2

6
+ O(ε3). (143c)

These detection probabilities are all positive and well formed,
since they are operationally accessible quantities.

If we target a particular observable OX = oX(a)a +
oX(b)b + oX(c)c for the three boxes, we can solve for the
appropriate CV by inverting the matrix equation⎛⎝oX(a)

oX(b)
oX(c)

⎞⎠ = 1

3

⎛⎜⎝1 + ε 1 − ε 1

1 − ε 1 1 + ε

1 1 + ε 1 − ε

⎞⎟⎠
⎛⎝oY (1)

oY (2)
oY (3)

⎞⎠, (144)

producing⎛⎝oY (1)
oY (2)
oY (3)

⎞⎠ = oX(a) + oX(b) + oX(c)

3
+ 1

ε

⎛⎝oX(a) − oX(b)
oX(c) − oX(a)
oX(b) − oX(c)

⎞⎠.

(145)

In particular, we can use these CVs to expand the box-
occupation observables in terms of the probability observ-
ables,

a =
(

1

3
+ 1

ε

)
E1 +

(
1

3
− 1

ε

)
E2 + 1

3
E3

= 1

3
1X + 1

ε
(E1 − E2), (146a)

b =
(

1

3
− 1

ε

)
E1 + 1

3
E2 +

(
1

3
+ 1

ε

)
E3

= 1

3
1X + 1

ε
(E3 − E1), (146b)

c = 1

3
E1 +

(
1

3
+ 1

ε

)
E2 +

(
1

3
− 1

ε

)
E3

= 1

3
1X + 1

ε
(E2 − E3). (146c)

Hence, all three box-occupation observables can be measured
simultaneously from the same set of probabilities for the

three detector outcomes. Notably, the CV assigned to each
outcome can be negative for sufficiently small ε, even though
all eigenvalues are positive or zero. Hence the values being
averaged can be negative and thus can lead to negative averages
in principle.

Computing the appropriate conditioned averages we find to
O(ε3),

z 〈̃a〉x = 1 − ε

2
− ε2

4
+ O(ε3), (147a)

z 〈̃b〉x = 1 + ε

2
− ε2

4
+ O(ε3), (147b)

z 〈̃c〉x = −1 + ε2

2
+ O(ε3), (147c)

which shows that the weak values (141) are the ε → 0 limit
of the conditioned averages with this specific measurement
context.

The paradox of the negative weak value (141) can therefore
be largely resolved in the following sense: the combination of
the amplified negative CVs and the disturbance in the detector
probabilities linking pre- and postselection frameworks leads
to the negative result for z 〈̃c〉x given sufficiently small ε. No
negative probabilities are required to obtain the negative limit
point since negative CVs are being averaged in the weak limit
and not eigenvalues. All operationally accessible probabilities
are positive and well behaved: the negative CVs are assigned
by the experimenter and highlighted by the disturbance in the
well-behaved probabilities.

We leave the reader to ponder how to interpret the
operationally accessible negative conditioned average (147c).
However, we note that, with at least this measurement context,
the conditioned averages do obey the equality

z 〈̃a〉x + z 〈̃b〉x + z 〈̃c 〉x = 1, (148)

for all values of ε. The three sets of CVs sum to unity for each
detector outcome, leaving only the normalized sum of detector
probabilities z 〈̃1〉x + z 〈̃2〉x + z 〈̃3〉x = 1. For more discussion
of this paradox, see, for example, [92–95].

E. Deriving the weak value

Weak-value controversy. As we have seen for the case of
the calcite detector (140) and the three-box paradox (141),
the weak value (118) seems to arise naturally as the weak
limit of postselected conditioned averages. Indeed, much of
the existing literature on weak values (e.g., [17,19–21,24–26])
operates under the assumption that it is the only weak
limit of a conditioned average, or that it is a well-defined
property of a pre- and postselected ensemble prior to the
ensemble being measured. However, a conditioned average
does not necessarily converge to the weak value in the weak-
measurement limit, as has been noted independently by several
groups [22,23,27,32,35,49,96], making its interpretation as a
well-defined property worthy of more careful consideration. To
obtain correct laboratory predictions for a conditioned average,
the formula (115) must be used, which generally requires the
specification of the detection strategy and the protocol for
assigning CVs to target a specific observable.
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Despite the interpretational controversy, the weak value
(118) is distinguished by being a context-independent
weak limit of the conditioned average that is easy to compute
theoretically and appears quite commonly in typical laboratory
situations. The formal expression of the weak value can also
appear in other measurement scenarios, such as in “modular
values” [97], or even perturbative corrections to energy spectra
[98], which makes it an independently interesting quantity to
study.

We will now demonstrate how the weak value (118) can be
uniquely defined from the general conditioned average (115)
by imposing a set of sufficient conditions that the measurement
should satisfy.

Preliminaries. First we note from (95c) that each mea-
surement operator has a polar decomposition, My,y ′ =
Uy,y ′ |M|y,y ′ , in terms of a unitary operator Uy,y ′ and a positive
operator |M|y,y ′ . It then follows that

M
†
y,y ′E

′
zMy,y ′ = |M|y,y ′U

†
y,y ′E

′
zUy,y ′ |M|y,y ′

= {|M|2y,y ′ ,Uy,y ′ (E′
z)
} /

2

− [|M|y,y ′ ,[|M|y,y ′ ,Uy,y ′ (E′
z)]]/2, (149)

where {A,B} = AB + BA is the anticommutator, [A,B] =
AB − BA is the commutator, and Uy,y ′ (E′

z) = U
†
y,y ′E′

zUy,y ′ is
a unitary rotation of the postselection.

Sufficient conditions. Next we make the following suffi-
cient assumptions regarding the dependence of the relevant
quantities on the measurement strength parameter ε:

(1) The measurement operators My,y ′ are analytic functions
of ε, and thus have well-defined Taylor expansions around
ε = 0 such that they are proportional to the identity in the
weak limit, ∀ y,y ′, limε→0 My,y ′ ∝ 1X.

(2) The unitary parts of the measurement operators Uy,y ′ =
exp (iGy,y ′ (ε)) are generated by Hermitian operators of order
εk , Gy,y ′ (ε) = εkG

(k)
y,y ′ + O(εk+1), for some integer k � 1.

Furthermore, each Uy,y ′ must commute with either the
system state or the postselection, ∀ y,y ′,[Uy,y ′ ,ρX] = 0, or
∀ y,y ′,[Uy,y ′ ,E′

z] = 0.
(3) The equality FX = ∑

y fY (ε; y)Ey(ε) must be satisfied,
where the CVs fY (ε; y) are selected according to the pseu-
doinverse prescription.

(4) The minimum nonzero order in ε for all |M|y,y ′ (ε)
is εn such that (3) can also be satisfied for some CVs by
the truncation to order εn. That is, for all y, y ′, |M|y,y ′ =
cy,y ′1X + |M|(n)

y,y ′εn + O(εn+1), where
∑

y ′ c
2
y,y ′ = PY (y) is

the detector probability in the absence of interaction, and some
of the |M|(n)

y,y ′ may vanish.
(5) The probability observables Ey(ε) =∑
y ′ M

†
y,y ′ (ε)My,y ′ (ε) commute with the observable FX.

Theorem. Given the above sufficient conditions, we have
the following theorem: In the weak limit ε → 0, the context
dependence of the conditioned average (115) vanishes and the
weak value (118) is uniquely defined.

Proof. To prove the theorem, we expand (115) to the
minimum necessary order of εn and then take the weak limit as
ε → 0. First, we expand (149) to order εn using assumptions

(1) and (4),

M
†
y,y ′E

′
zMy,y ′

= c2
y,y ′Uy,y ′ (E′

z) + cy,y ′
{|M|(n)

y,y ′ ,Uy,y ′ (E′
z)
}
εn + O(εn+1).

(150)

Generally, the remaining unitary rotation of the postselection
will disturb the weak limit. However, if [Uy,y ′ ,E′

z] = 0
as in assumption (2), then Uy,y ′ (E′

z) = E′
z and the unitary

disturbance disappears. If instead [Uy,y ′ ,ρX] = 0, then we can
apply the state to (150) and find

〈M†
y,y ′E

′
zMy,y ′ 〉X

= c2
y,y ′ 〈Uy,y ′ (E′

z)〉X + cy,y ′
〈{|M|(n)

y,y ′ ,Uy,y ′ (E′
z)
}〉

X
εn

+O(εn+1). (151)

Since 〈Uy,y ′ (E′
z)〉X = TrX(U†(ρX)E′

z) = 〈E′
z〉X, the first term

simplifies. The unitary rotation in the second term expands
to Uy,y ′ (E′

z) = E′
z + O(εk), and the O(εk) correction can be

absorbed into the overall O(εn+1) correction.
Therefore, after summing over y ′ we find, up to corrections

of order εn+1,∑
y ′

〈M†
y,y ′E

′
zMy,y ′ 〉X = 〈{Ey(ε),E′

z}〉X/2, (152)

where the probability observable has the expansion to order εn

of

Ey(ε) =
∑
y ′

|M|2y,y ′ (ε)

=
∑
y ′

[
c2
y,y ′1X + 2cy,y ′ |M|(n)

y,y ′ε
n + O(εn+1)

]
. (153)

Inserting (152) into (115), we find

z〈F̃X〉 = 〈{FX,E′
z}/2〉X + ∑

y fY (ε; y)O(εn+1)

〈{1X,E′
z}/2〉X + O(εn+1)

, (154)

where we have simplified
∑

y fY (ε; y)Ey(ε) = FX in the
numerator, and

∑
y Ey(ε) = 1X in the denominator. Hence,

unless the CVs in the numerator have poles larger than 1/εn,
the correction terms of order εn+1 will vanish, producing (118)
in the weak limit ε → 0, as claimed. The last step in obtaining
(118), therefore, is to show that the pseudoinverse solution for
fY that was indicated by assumption (3) cannot have poles
larger than 1/εn. The following lemmas will show this, which
will prove the main theorem.

Lemma preliminaries. We note that FX commutes with
{Ey(ε)} by assumption (5). As such, we will replace the CV
definition FX = ∑

y fY (ε; y)Ey(ε) with an equivalent matrix
equation,

�fX = S �fY , (155a)

S =
(〈Ey(ε)〉x · · ·

...
. . .

)
. (155b)

The pseudoinverse is constructed from the singular value
decomposition S = U�VT as S+ = V�+UT , where U and
V are orthogonal matrices such that UTU = VVT = 1, � is
the singular value matrix composed of the square roots of
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the eigenvalues of SST , and �+ is composed of the inverse
nonzero elements in �T .

Next, we note that the truncation of the matrix S to order
εn has the form,

S ′ = P + εnSn, (156)

where P = (PY (y)�1, · · · ) is a matrix whose rows are identical
and whose columns contain the interaction-free detector
probabilities PY (y), and Sn = ( �E(n)

1 , · · · ) is a matrix whose
rows all sum to zero. Furthermore, since the solution to the
equation �fX = S ′ �f ′

Y is assumed to exist by assumption (4),
then the dimension of the detector, N , must be greater than or
equal to the dimension of the system, M . We then have the
following two lemmas.

Lemma 1. The singular values of the truncated matrix S ′
have maximum leading order εn.

Proof. The singular values ofS ′ are σk = √
λk , where λk are

M eigenvalues ofH = ST S, with its other N − M eigenvalues
being zero. Since PT Sn = 0, this matrix has the simple
form H = PTP + ε2nST

n Sn, where (PTP)ij = MPY (i)PY (j )
is M|| �p||2 times the projection operator onto the probability
vector �p = (PY (y), · · · ), and (ST

n Sn)ij = �E(n)
i · �E(n)

j . We will
use H to determine the singular values of S ′.

Differentiating the eigenvalue relation H(ε2n)�uk(ε2n) =
λk(ε2n)�uk(ε2n) and the eigenvector normalization condition
�uk(ε2n) · �uk(ε2n) = 1 with respect to ε2n produces the follow-
ing deformation equation that describes how the eigenvalues
of H continuously change with increasing ε2n,

λ̇k(ε2n) = ||Sn�uk(ε2n)||2. (157)

Integrating this equation produces the following perturbative
expansion of the eigenvalues for small ε,

λk(ε2n) = λk(0) + ε2n||Sn�uk(0)||2 + O(ε4n). (158)

Hence, to prove the lemma it is sufficient to show that λk(0)
and Sn�uk(0) cannot both vanish unless λk(ε2n) = 0 for all ε.

Since H(0) = PTP is a projection operator, λ1(0) =
M|| �p||2 is its only nonzero eigenvalue with associated eigen-
vector �u1(0) = �p/|| �p||. Hence, σ1(ε2n) ≈ √

M|| �p|| > 0 to
leading order. For k �= 1, λk(0) = 0 and �uk(0) can be chosen
arbitrarily to span the degenerate (N − 1)-dimensional sub-
space orthogonal to �u1(0). Suppose Sn�uk(0) = 0 for some k. It
follows that H(ε2n)�uk(0) = PTP �uk(0) + ε2nST

n Sn�uk(0) = 0
since �uk(0) is orthogonal to �u1(0) ∝ �p. Therefore, �uk(0) is
an eigenvector of H(ε2n) with eigenvalue 0 for any ε. Since
H is symmetric, its eigenvectors form an orthogonal set for
any ε, so we must have the identification �uk(ε2n) = �uk(0).
As a result, the associated eigenvalue vanishes for any ε,
λk(ε2n) = λk(0) = 0, which proves the lemma.

Lemma 2. The pseudoinverse solution �fY to (155a) cannot
have poles larger than 1/εn.

Proof. In order to satisfy (155a), we have the equivalent
condition for each component of UT �fX = �VT �fY ,

(UT �fX)k = �kk(VT �fY )k. (159)

Therefore, all singular values �kk corresponding to nonzero
components of UT �fX must also be nonzero; we shall call
these the relevant singular values. Singular values which

are not relevant will not contribute to the solution �fY =
V�+UT �fX. We can see this since ( �fY )j = (V�+UT �fX)j =∑

k Vjk�
+
kk(UT �fX)k , so any zero element of UT �fX will

eliminate the inverse irrelevant singular value �+
kk from the

solution for ( �fY )j .
Since the orthogonal matrices U and V do not contain

any poles, and since �fX is ε independent, then the only
poles in the solution �fY = S+ �fX = V�+UT �fY must come
from the inverses of the relevant singular values in �+. If
a singular value �kk has leading order εm, then its inverse
�+

kk = 1/�kk has leading order 1/εm; therefore, to have a
pole of order higher than 1/εn then there must be at least
one relevant singular value with a leading order greater than
εn. However, if that were the case then the truncation S ′ of
S to order εn could not satisfy (159) since, to that order, it
would have a relevant singular value of zero according to the
previous lemma, contradicting assumption (4) about needing
to satisfy the CV definition with the minimum nonzero order
in ε. Therefore, the pseudoinverse solution �fY = S+ �fX can
have no pole with order higher than 1/εn and the theorem is
proven.

Exceptions. As the theorem indicates, the weak value will
arise as the weak limit of a conditioned average in many
common laboratory situations, which explains its seeming
stability in the literature. However, if the sufficiency conditions
of the theorem are not met, then a different weak limit
may be found. For example, if there is ε-dependent unitary
disturbance in the measurement, then the postselection can
be effectively rotated to a different framework for each
measurement outcome, which creates additional terms in the
weak limit. (See, for example, Ref. [35].) Similarly, if the
CVs are ε-dependent and diverge more rapidly than 1/εn, then
additional terms will become relevant in the weak limit. This
latter case can happen either from a pathological choice of
CV by the experimenter in the case of redundancy, or from a
set of probability observables that cannot satisfy the constraint
equation FX = ∑

y fY (ε; y)Ey(ε) with their lowest nonzero
order in ε. Such probability observables that do not satisfy the
constraint equation to lowest order are poorly correlated with
the observable in the weak limit. We refer the reader to [53]
for more discussion on the uniqueness issue of weak values.
The theorem presented here is a slight generalization of the
one presented therein.

IV. CONCLUSION

In this work, we have detailed the contextual-value ap-
proach to the generalized measurement of observables that we
originally introduced in the letter [49] and further developed in
Refs. [51–53]. This approach completes the well-established
operational theory of state measurements by directly relating
the state transformations to traditional observables. Each
such operation typically corresponds to a distinguishable
outcome of a correlated detection apparatus. An experimenter
can construct an observable from such an apparatus by
assigning values to its outcomes. The assigned values can
be generally amplified from the eigenvalues of the constructed
observable due to ambiguity in the measurement, and thus
form a generalized spectrum that depends on the specific
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measurement context. Hence, we call these values contextual
values for the constructed observable that allow its indirect
measurement using such a correlated detector.

Constructing an observable using contextual values requires
only classical probability theory, according to (32). Hence,
the technique may be used wherever Bayesian probability
theory applies. We have outlined an algebraic approach to
operational measurements from within Bayesian probability
theory to encourage applications along these lines.

We have also shown how to construct a quantum probability
space as the orbit of a classical probability space under
the special unitary group. This point of view illustrates that
quantum observables can be constructed from contextual
values in precisely the same way (112) as their classical
counterparts. The approach also highlights the similarity
between Lüder’s rule (89) for updating a quantum state and
invasive classical conditioning (13), which leads to a similarity
between quantum operations (95) and classically invasive
measurement operations (25). Numerous physical examples
have been given.

By putting all observable measurements on the same
footing, the contextual-value formalism subsumes not only
projective measurements but also weak measurements as
special cases. To emphasize this point, we have analyzed
the quantum weak measurement protocol introduced by
Aharonov et al. [17] in detail as an example using a calcite

crystal and a polarized laser beam. We have also derived
the quantum weak value (118) as a limit point of a general
pre- and postselected conditioned average (115) as the
measurement strength goes to zero and have given sufficient
conditions for the convergence to hold. Like the classically
invasive conditioned average (37), the quantum conditioned
average, with the quantum weak value as a special case, can
exceed the eigenvalue bounds of the observable.

The use of contextual values considerably clarifies and
formalizes the process of measuring observables, particularly
within a laboratory setting. The elements of the formalism
directly describe operationally accessible quantities that can
be tomographically calibrated. As such, the technique should
be of considerable interest to experimentalists working on
measurement and control of both quantum and classical
systems. Furthermore, the formalism prompts interesting
theoretical questions about the foundations of quantum
mechanics by highlighting its myriad similarities to classical
probability theory.
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