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Weak Values are Universal in Von Neumann Measurements

Justin Dressel and Andrew N. Jordan

Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
(Received 20 June 2012; published 4 December 2012)

We refute the widely held belief that the quantum weak value necessarily pertains to weak measure-

ments. To accomplish this, we use the transverse position of a beam as the detector for the conditioned von

Neumann measurement of a system observable. For any coupling strength, any initial states, and any

choice of conditioning, the averages of the detector position and momentum are completely described by

the real parts of three generalized weak values in the joint Hilbert space. Higher-order detector moments

also have similar weak value expansions. Using the Wigner distribution of the initial detector state, we

find compact expressions for these weak values within the reduced system Hilbert space. As an application

of the approach, we show that for any Hermite-Gauss mode of a paraxial beamlike detector these

expressions reduce to the real and imaginary parts of a single system weak value plus an additional

weak-value-like contribution that only affects the momentum shift.

DOI: 10.1103/PhysRevLett.109.230402 PACS numbers: 03.65.Ta, 03.65.Ca, 03.67.�a

Since its introduction in 1988 by Aharonov, Albert, and
Vaidman (AAV) [1] and subsequent confirmation [2,3], the
weak value of a quantum observable has been a source
of considerable controversy. AAV showed that a weak
conditioned von Neumann measurement which coupled

an observable Â to a continuous detector consistently

produced the complex weak value expression, hAiw ¼
hc fjÂjc ii=hc fjc ii in the detector’s linear response after

preselecting the system state to jc ii and postselecting the
system state to jc fi. Notably, the parts of this complex

expression need not be constrained to the eigenvalue range

of Â, a fact which has prompted considerable recent
interest both for amplifying the measurements of small
quantities in weak measurements [4,5] and for fruitfully
using weak measurements to interpret quantum phe-
nomena [6–12].

There has also been considerable recent interest in gen-
eralizing the derivation of pre- and postselected measure-
ments beyond the weak measurement regime considered
by AAV. Example efforts include the increase of the
coupling strength [10,11,13,14], the addition of detector
dynamics [15,16], the addition of decoherence and noise
[17], treatments of orthogonal postselections [18], consid-
erations of full counting statistics [19], a realization
with Fock states [20], and the determination of optimal
detector states [21]. The AAV regime weak value has
also been generalized to mixed initial states �̂i and arbi-
trary postselections represented by positive operators

P̂f [22–24],

hAiw ¼ Tr½P̂fÂ�̂i�
Tr½P̂f�̂i�

: (1)

Notably, Eq. (1) reduces to the original expression when

�̂i ¼ jc iihc ij and P̂f ¼ jc fihc fj, but also has the benefit

of subsuming the expectation value of Â as a special case

when P̂f ¼ 1̂.

In this Letter, we extend these works with five main
results. Our primary result is to show that all von Neumann
measurements are exactly described by generalized weak
values such as Eq. (1) for any coupling strength, any choice
of initial mixed system or detector states, and any choice of
generalized postselection. Hence, weak values are univer-
sal in von Neumann measurements, and thus are not solely
peculiarities of the AAV weak measurement regime. Our
second and third results are compact expressions for the
relevant generalized weak values in terms of the Wigner
distribution of the detector. Finally, our fourth and fifth
results are applications of our general results to trans-
verse Hermite-Gaussian modes of a detecting beam,
such as those naturally produced by laser cavities.
In the Supplementary Material [25] we further general-
ize our main results to higher-order detector moments
and arbitrary Hermite-Gauss detector superpositions for
completeness.
Conditioned von Neumann measurement.—Consider a

von Neumann measurement [1], which consists of an

impulsive interaction Hamiltonian of the form ĤI ¼
g�ðt� t0ÞÂ � p̂, where Â is an observable on the system
Hilbert space that we wish to measure and p̂ is the trans-
verse momentum on a detector Hilbert space. Solving

the Schrödinger equation i@@tÛ ¼ ĤIÛ with this inter-

action produces the unitary evolution operator Ûg ¼
expðgÂ � p̂=i@Þ, which generates translations in x̂ by an

amount gÂ due to the canonical commutation relations
½x̂; p̂� ¼ i@.
Now consider the following experimental procedure.

First, prepare an arbitrary joint state of the system and
detector, represented by a density operator �̂SD. Second,

apply the impulsive interaction Ûg. Third, measure the
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detector position x̂ or momentum p̂. Finally, condition the
detector measurements on an arbitrary generalized post-
selection on the system, which can always be represented

by a positive probability operator P̂f [23,24].

The conditioned detector averages measured in the labo-
ratory will then have the exact form [24],

fhxi ¼
Tr½ðP̂f � x̂Þ�̂0

SD�
Tr½ðP̂f � 1̂DÞ�̂0

SD�
; (2a)

fhpi ¼
Tr½ðP̂f � p̂Þ�̂0

SD�
Tr½ðP̂f � 1̂DÞ�̂0

SD�
; (2b)

where �̂0
SD ¼ Ûg�̂SDÛ

y
g is the entangled joint postinterac-

tion state at a time t > t0.
As written, Eq. (2) shows that the joint observables

P̂f � x̂ and P̂f � p̂ are averaged with respect to the final

joint state �̂0
SD. However, we can also express these aver-

ages in terms of the initial joint state by commuting the
detector observables symmetrically past the evolution

operators Ûg to obtain our primary result,

fhxi ¼ Rehxiw þ gRehAiw; (3a)

fhpi ¼ Rehpiw: (3b)

The averages are exactly characterized by the real parts
of three generalized weak values [22–24] that are of the
form (1), but are on the joint Hilbert space of the system
and detector,

hAiw ¼ Tr½P̂0
SDðÂ � 1̂DÞ�̂SD�
Tr½P̂0

SD�̂SD�
; (4a)

hxiw ¼ Tr½P̂0
SDð1̂S � x̂Þ�̂SD�
Tr½P̂0

SD�̂SD�
; (4b)

hpiw ¼ Tr½P̂0
SDð1̂S � p̂Þ�̂SD�
Tr½P̂0

SD�̂SD�
: (4c)

The preselection for each weak value is equal to the initial
joint state �̂SD, while the postselection is equal to the

Heisenberg-evolved joint postselection operator, P̂0
SD ¼

Ûy
g ðP̂f � 1̂DÞÛg. As noted before, when P̂f ¼ 1̂S there is

no postselection and the weak values (4) will reduce to
expectation values as a special case. The higher-order
detector moments are provided in the Supplementary
Material [25], and all have similar expansions into joint
weak values.

Importantly, these relations hold for any coupling
strength g, any (possibly entangled) initial joint state

�̂SD, and any generalized postselection P̂f; that is, all

von Neumann detector (conditioned) averages are exactly
described by generalized weak values. This important
result seems to have been missed in the existing literature
due to the fact that the generalized weak values (4) cannot
be written in a form with projective pre- and postselections

as defined originally by AAV [1]. Moreover, they explicitly
include the detector information, so are not solely system
quantities.
Reduced state expressions.—If we prepare a product ini-

tial state �̂SD ¼ �̂S � �̂D, where �̂S (�̂D) is the initial state
of the system (detector), thenwe can exploit the product form
of the observables to further simplify Eq. (4). Notably, since

½Â; Ûg� ¼ 0, we can express Eq. (4a) as a weak value only

on the system Hilbert space,

hAiw ¼ TrS½P̂fÂ�̂
0
S�

TrS½P̂f�̂
0
S�

; (5)

where the preselection state �̂0
S is the reduced system state

after the interaction, �̂0
S ¼ TrD½�̂0

SD�, and TrS½�� (TrD½��) is
the partial trace over the system (detector) Hilbert space.
All detector information has been absorbed into an effective
preparation of the reduced system state �̂0

S.

Since the joint postinteraction state �̂0
SD is necessarily

entangled by the interaction, the reduced system state �̂0
S in

(5) will be mixed. However, for sufficiently weak coupling
one can approximately neglect the interaction in (5) and
substitute the initial system state �̂0

S ! �̂S. The detector

response (3) will then be linear in g and match the original
observation of AAV [1] as an approximate special case.
By introducing the Wigner distribution of the detector

state WDðx; pÞ ¼ 1
2�@

R
dyhx� y=2j�̂Djxþ y=2ieipy=@ and

its Fourier transform ~WDðx; yÞ ¼
R
dpWDðx; pÞe�ipy=@ ¼

hx� y=2j�̂Djxþ y=2i, we can express the exact reduced
system state �̂0

S in a useful and compact form, which is our

second main result,

�̂ 0
S ¼

Z
dx ~WDðx; g ad½Â�Þð�̂SÞ: (6)

Here ad½Â�ðB̂Þ ¼ Â B̂�B̂ Â is the adjoint left action of Â as
a commutator operation.
To directly compare the joint weak values Eqs. (4b)

and (4c) with (5), we also express them within the
system Hilbert space,

Rehxiw ¼ TrS½P̂fXð�̂SÞ�
TrS½P̂f�̂

0
S�

; (7a)

Rehpiw ¼ TrS½P̂fP ð�̂SÞ�
TrS½P̂f�̂

0
S�

; (7b)

by introducing the operations Xð�̂SÞ ¼ TrD½Ûgð�̂S �
ðx̂�̂D þ �̂Dx̂Þ=2ÞÛy

g � and P ð�̂SÞ ¼ TrD½Ûgð�̂S � ðp̂�̂D þ
�̂Dp̂Þ=2ÞÛy

g � that act upon the initial system state. The

Weyl-ordered operator products that appear allow us to
use the Fourier transformed Wigner distribution of the
detector in (6) to find compact expressions for these
operations, which is our third main result,
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Xð�̂SÞ ¼
Z

dxx ~WDðx; g ad½Â�Þð�̂SÞ; (8a)

P ð�̂SÞ ¼ i@

�
@z

Z
dx ~WDðx; zÞ

�
z!g ad½Â�

ð�̂SÞ; (8b)

¼ i@@g ad½Â��̂
0
S:

Notably, Eq. (8b) allows one to simply obtain the mo-
mentum response once the functional form of reduced
system state (6) is known. Generalizations to higher-
order detector moments are provided in the Supple-
mentary Material [25].

Hermite-Gauss modes.—To show how our general results
in Eqs. (3)–(8), can be applied, we now consider the
Hermite-Gauss modes fjhmig, which are a widely used
complete set of transverse modes naturally generated in laser
cavities that can describe an initial zero-mean and collimated
detecting beam. The Wigner distribution for a Hermite-
Gauss mode of order m 2 f0; 1; 2; . . .g has the form [26]

WHG
m ðx; pÞ ¼ ð�1Þm

�@
Lm½2Gðx; pÞ�e�Gðx;pÞ; (9a)

Gðx; pÞ ¼ x2

2�2
þ 2�2p2

@
2

; (9b)

where Lm is a Laguerre polynomial of orderm. The first few
such polynomials are shown in Table I for reference.

After Fourier transforming Eq. (9) and integrating
according to Eq. (6), we obtain a compact expression for
the exact postinteraction reduced system state for any
coupling strength and initial detector mode m, which is
our fourth main result,

�̂ 0
S;m ¼ Lm½�2�L½Â��e�L½Â�ð�̂SÞ: (10)

Notably, a measurement strength parameter � ¼ ðg=2�Þ2
naturally appears for all modes along with the Lindblad

operation L½Â� ¼ �ad2½Â�=2 that decoheres bases or-

thogonal to the eigenbasis of Â [24,27]. Furthermore, the
functional form of (10) is the same as the Wigner distribu-
tion (9) up to normalization, but with the function Gðx; pÞ
replaced by the Lindblad operation��L½Â�. Superpositions
of modes are considered in the Supplementary Material [25].

Using Eqs. (10), (8), and (3), we obtain the following
compact results for the exact detector averages for any

initial Hermite-Gauss detector mode of order m, which is
our fifth and final main result,

fhxi ¼ gRehAiw; (11a)

fhpi ¼ g
@

ð2�Þ2 2ImðhAiw þ �mÞ: (11b)

Perhaps surprisingly, they are completely parametrized by
a single generalized system weak value (5) with presel-
ection equal to the reduced postinteraction system state
�̂0
S;m given in Eq. (10), and one additional weak-value-like

correction term for the higher mode numbers m � 1,

�m ¼ TrS½P̂fÂMmð�̂SÞ�
TrS½P̂f�̂

0
S;m�

; (12a)

Mmð�̂SÞ ¼ �2L0
m½�2�L½Â��e�L½Â�ð�̂SÞ: (12b)

The first few polynomials�2L0
mðxÞ inMm that contain the

derivatives of Laguerre polynomials are shown in Table I
for reference.
The appearance of a correction to ImhAiw in Eq. (11b)

further strengthens the observation in Refs. [12,24] that
ImhAiw pertains solely to the rate of change of the post-

selection probability and not to the measurement of Â
itself. Indeed, for m ¼ 0 Eqs. (10) and (11) correctly
reproduce the exact Gaussian detector case that we derived
in more detail using a different method in Ref. [24].
We stress that these are general results for any system

observable Â. Figures 1–3, show the special case of an

optical application, where Â ¼ �̂3 is a polarization observ-
able being measured by a Hermite-Gaussian beam.
Figure 1 shows a possible implementation of this example
that is analogous to the experiment performed in Ref. [2],
as well as how the generalized weak value (5) continuously
changes into a classical conditioned average as the initial

TABLE I. Laguerre polynomials LmðxÞ and their derivatives
for the first few m. These polynomials appear naturally for
Hermite-Gauss modes in their Wigner distribution (9), as well
as the resulting system operations (10) and (12).

m LmðxÞ �2L0
mðxÞ

0 1 0

1 1� x 2

2 1� 2xþ x2=2 4� 2x
3 1� 3xþ 3x2=2� x3=6 6� 6xþ x2

FIG. 1 (color online). (left) A possible implementation of a
conditioned polarization measurement similar to Ref. [2], where
the length of a birefringent crystal determines the coupling
strength g. (right) The weak value Reh�3iw corresponding to
the Hermite-Gauss detector profiles in Fig. 2 with m ¼ 0 (solid,
red), m ¼ 1 (dashed, blue), and m ¼ 2 (dot-dashed, green),
obtained by averaging according to Eq. (11). The weak limit
g ! 0 is identical for all detectors, as is the strong limit g ! 1
of a classical conditioned average, but the specifics of the transi-
tion depend on how the detector decoheres the state. The dotted
horizontal line is the eigenvalue bound of 1.
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state decoheres. Figure 2 shows postinteraction spatial
intensity profiles for the detector, while Fig. 3 shows the
corresponding reduced polarization states.

Conclusions.—Throughout the controversial history of
the quantum weak value (1), it has been tacitly assumed
that it was a peculiarity specific to the AAV weak mea-
surement regime. We have shown in this Letter that such an
assumption has been unwarranted. Indeed, we have shown
that all (conditioned) averages for any von Neumann de-
tector (3) will be completely characterized by three gener-
alized weak values (4) on the joint Hilbert space of the
system and detector, which makes such weak values a
universal feature of von Neumann measurements.

We have also shown how to obtain practical and com-
pact operational expressions for these weak values on the
system space alone in terms of the reduced postinteraction
system state (6) and two additional operations (8). In the
process, we have highlighted the pragmatic importance of
the Fourier transformedWigner distribution of the detector
for describing how the detector decoheres the system due
to the interaction.

Finally, we have shown that for arbitrary Hermite-Gauss
modes of a beamlike detector, we obtain simple and intui-
tive operational expressions for the reduced system state
(10) and the (conditioned) detector averages (11) that
involve the Lindblad decoherence operation. The detector
averages contain only the real and imaginary parts of a
single system weak value (5), along with a correction (12)
to the imaginary part that appears only for the momentum
average with higher-order modes.

Not all observable measurements use such a von
Neumann detector, and not all von Neumann detectors
operate impulsively on the time scales of the system or
the detector. However, a sufficiently wide class of observ-
able measurements use such an impulsive von Neumann
procedure that the original weak value paper [1] dubbed it

the ‘‘standard measuring procedure,’’ so its universal
description with generalized weak values is important.
We also stress that the generalized weak value appears
under reasonable conditions even in the general treatment
of observable measurements that we developed in detail in
Ref. [23], a fact which warrants further scrutiny in light of
the universality shown here.
We acknowledge support from the National Science

Foundation under Grant No. DMR-0844899, and the
US Army Research Office under grant Grant
No. W911NF-09-0-01417.
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