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PHYSICAL REVIEW A 88, 042110 (2013)

Action principle for continuous quantum measurement

A. Chantasri,1 J. Dressel,1 and A. N. Jordan1,2

1Department of Physics and Astronomy and Rochester Theory Center, University of Rochester, Rochester, New York 14627, USA
2Institute of Quantum Studies, Chapman University, 1 University Drive, Orange, California 92866, USA

(Received 21 May 2013; published 14 October 2013)

We present a stochastic path integral formalism for continuous quantum measurement that enables the analysis
of rare events using action methods. By doubling the quantum state space to a canonical phase space, we can
write the joint probability density function of measurement outcomes and quantum state trajectories as a phase
space path integral. Extremizing this action produces the most likely paths with boundary conditions defined
by preselected and postselected states as solutions to a set of ordinary differential equations. As an application,
we analyze continuous qubit measurement in detail and examine the structure of a quantum jump in the Zeno
measurement regime.

DOI: 10.1103/PhysRevA.88.042110 PACS number(s): 03.65.Ta, 03.65.Yz, 03.67.−a, 73.23.−b

I. INTRODUCTION

There are qualitatively new features in fundamental quan-
tum physics that appear in generalized (or weakened) mea-
surements that are no longer simple projections [1–3]. For
example, such measurements can be conditionally reversed
[4], they can approximately measure conjugate observables
simultaneously [5,6], and they give a new perspective on
the Heisenberg uncertainty relation [7]. A sequence of weak
measurements can also be made effectively continuous [8–16],
producing monitored state evolution in the form of a quantum
stochastic process. Importantly, such continuous monitoring
opens the possibility of feedback control, where parameters in
the system Hamiltonian are dynamically changed in response
to the measurement record [3]. This idea has been applied, for
example, to rapid state purification [17–23], as well as the sta-
bilization of coherent oscillations [24,25], which was recently
demonstrated with a superconducting transmon qubit [26].

For analogous classical stochastic processes, an important
situation arises when the physics is sensitive to rare events
starting and ending at certain points in phase space. One well-
known example is that of activation over a barrier, where the
particle subjected to random forces begins at the bottom of
the metastable well and ends at the saddle point, taking the
particle out of the bound region [27]. Such rare events may
be analyzed in the classical case by introducing a canonical
phase space structure and minimizing the action subject to
certain conditions (e.g., [28–32]). A similar situation arises in
continuous quantum measurement when one is concerned with
preparing a particular quantum state and then subsequently
finding a rare final (postselected) state at a later time. However,
it has not been clear how to construct a quantum phase space
that admits such an action principle suitable for studying these
rare quantum events.

The purpose of this article is to introduce and illustrate
precisely such a phase space action principle over a doubled
quantum state space. This action principle is derived from
a stochastic path integral formulation of the continuous
measurement process that can admit additional boundary con-
ditions, such as postselections. This approach complements
and reproduces the known formulation in terms of stochastic
Schrödinger (or master) equations as a special case in the
absence of postselection. Notably, the phase space formulation

enables the derivation of statistical quantities that may be
difficult to calculate using the stochastic master equation
approach, such as the average of all trajectories that satisfy
a postselection condition.

Path integral approaches to continuous quantum measure-
ment have a long history. Mensky, for example, discussed
a restricted Feynman path integral for continuous quantum
measurement over three decades ago [8]. Barchielli et al.
constructed a similar path integral, as did Caves [33], which
were subsequently related to the Itô stochastic calculus by
Diósi [9]. Wei and Nazarov recently discussed a different
approach to continuous measurements using the Keldysh path
integral technique [5]. Breuer and Petruccione discuss a related
Hilbert space path integral formulation in their book [2].
However, our approach is qualitatively different from these
previous works, since we consider the probability distribution
function for paths of a (potentially mixed) quantum state
through a canonically doubled state space.

Importantly, by doubling the state space to a canonical
phase space, our extension permits extremizing the stochastic
action to identify the most likely paths through a quantum
phase space that satisfy both preselection and postselection
boundary conditions. These most likely paths are the solutions
of ordinary (nonstochastic) differential equations, and so can
be illustrated as a phase space portrait and readily analyzed
using classical methods. As a paradigmatic demonstration,
we consider the continuous measurement of a solid-state
qubit and find its most probable dynamics in demolition and
nondemolition regimes. We also examine the structure of its
rare quantum jump events in the Zeno measurement regime as
particular paths through the phase space.

II. THEORETICAL FORMULATION

A. Stochastic path integral

We consider a quantum system weakly coupled to a detector
with discretized measurement readouts denoted by a set
{rk}n−1

k=0. Each rk is assumed independent, and is obtained
from the detector between time tk and tk+1 = tk + δt . The
quantum system state at these times is denoted by {ρ̂k}nk=0,
where ρ̂0 is an initial state and each ρ̂k is a state at time tk
updated according to the prior measurement outcomes and the
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Hamiltonian evolution. We parametrize the density operator
ρ̂ as a vector q, where the components are the expansion
coefficients in some orthogonal operator basis, such as the
d ≡ N2 − 1 generalized Gell-Mann matrices, σ̂j [34] of a N

state system, ρ̂ = 1
N

(1̂ + ∑d
j=1 qj σ̂j ), where 1̂ is the identity.

For a two-state system, the matrices σ̂j for j = 1,2,3 are the
Pauli matrices and q = (x,y,z) is a vector in Bloch sphere
coordinates.

We are interested in applying initial and final boundary
conditions to the parametrized quantum states q0 = qI and
qn = qF . The joint probability density function (PDF), P ≡
P ({qk},{rk},qF |qI ), of all measurement outcomes {rk}, the
quantum states {qk} and the chosen final state qF , conditioned
on the initial state qI , is given by

P = δd (q0 − qI )δd (qn − qF )
n−1∏
k=0

P (qk+1,rk|qk). (1)

Note that d is the dimension of the vector qk . The conditional
PDFs appearing in (1) can be factored into products of two
terms

P (qk+1,rk|qk) = P (qk+1|qk,rk) P (rk|qk). (2)

The first term in (2) describes the (deterministic) state update
given the occurrence of result rk , and is written as a δ function
imposing the constraint qk+1 = qk + δtL[qk,rk] + O(δt2),
where L is a vector functional describing the first-order change
in the state qk . We express these δ functions in Fourier form
δ(q) = (1/2πi)

∫ i∞
−i∞ e−pq dp with conjugate variables pk

integrated along contours with endpoints at ±i∞. For exam-
ple, we write P (qk+1|qk,rk) = (1/2πi)d

∫ i∞
−i∞ ddpk exp{− pk ·

[qk+1 − qk − δtL[qk,rk] + O(δt2)]}. The second term in (2)
characterizes the probability of the measurement outcome
rk given a quantum state qk , which we can also write
in exponential form, P (rk|qk) ∝ exp{δtF[qk,rk] + O(δt2)},
where F[qk,rk] is the linear order expansion of ln P (rk|qk) in
δt .

By taking the continuum limit δt → 0, n → ∞ and
setting t0 = 0,tn = T , we obtain a stochastic path integral
representation of the PDF (1),

P =
∫

D p eS

=
∫

D p exp

[ ∫ T

0
dt(− p · q̇ + H[q, p,r])

]
, (3)

where the functional measure D p absorbs the constant factor
limn→∞(1/2πi)d(n+2) and other divergent constants. More
details of the derivation of Eq. (3) using discretized variables
are provided in Appendix A. The stochastic action S =
S[q, p,r] is a functional of q(t), p(t) and r(t), as is the
stochastic Hamiltonian

H[q, p,r] = p · L[q,r] + F[q,r] − p · (q − qI )δ(t)

− p · (q − qF )δ(t − T ). (4)

The functions q(t) and p(t) act as effective coordinates and
canonically conjugate momenta for the state space.

The expectation value of an arbitrary functional A[q,r]
can now be computed from the PDF (3) as a path integral

∫
DqDrA[q,r]P (q,r,qF |qI ). For the case without postse-

lection, we can set p(T ) = 0 and compute unconditioned
averages and correlation functions using diagrammatic per-
turbation expansions, which will be published at a later time.
However, an expectation value conditioned on the preselected
and postselected states can also be found from the conditioned
PDF, P (q,r|qI ,qF ), which is derived from the joint PDF (3)
using Bayes’ rule.

B. Most likely paths

For chosen initial and final quantum states, we wish to
determine the path q(t) and its corresponding measurement
record r(t) that give the maximal contribution to the integral∫
DqDrD p eS= P (qF |qI ). This path can be derived by

extremizing the actionS[q, p,r]. Taking functional derivatives
of the action and setting them to zero leads to the ordinary
differential equations (ODEs)

−q̇ + L[q,r] = 0, (5a)

ṗ + δ

δq
( p · L[q,r]) + δ

δq
F[q,r] = 0, (5b)

δ

δr
( p · L[q,r]) + δ

δr
F[q,r] = 0, (5c)

with the forced boundary conditions q(0) = qI and q(T ) =
qF . Notably, both initial and final conditions can be imposed
on q(t) in (5) due to the additional integration constants from
the canonical momenta p(t). The solution to (5) gives the most
likely path, denoted by q̄, p̄,r̄ , for whichH[q̄, p̄,r̄] is a constant
of motion. Note that the integration contours of

∫
DqDrD p eS

can always be chosen to pass through these extremal points.

III. APPLICATION TO CONTINUOUS
QUBIT MEASUREMENT

We now apply this formalism to a solid-state detection
setup: a single electron in a double quantum dot (DQD) where
the electron location is weakly measured by a capacitively
coupled quantum point contact (QPC) [12–14,16]. This setup
can be easily extended to, e.g., a transmon qubit [26]. The
qubit states |1〉 and |2〉 correspond to the two dot locations.
The density operator ρ̂ is a 2 × 2 matrix. We choose the
Bloch vector parametrization q = (x,y,z), using the Pauli
matrices where (0,0,1), (0,0,−1) correspond to the states
|1〉,|2〉, respectively. The Hamiltonian evolution of the qubit
is determined by Ĥ = (ε/2)σ̂3 + (−�/2)σ̂1, where ε is an
energy asymmetry and � is a tunneling strength.

The average current passing through the QPC, I ≡ I(t),
between time t and t + δt is assumed to be Gaussian
with a mean Ī1,2 that depends on the state of the qubit
|1〉,|2〉. We define a unitless readout r = (I − Ī0)/�Ī for
the QPC where Ī0 = (Ī1 + Ī2)/2 and �Ī = (Ī1 − Ī2)/2.
The probability of the outcome r is given by P (r | ρ̂)=
Tr[ρ̂ M̂†

δtM̂δt ], where we define the measurement operator
M̂δt = (δt/2πτ )1/4 exp[− δt

4τ
(r − σ̂3)2]. Here τ = S0/2�Ī2

is the characteristic measurement time for the QPC that
can be related to the sensitivity �Ī and the QPC shot
noise spectral density S0. Expanding ln P (r | ρ̂) ≈ −(r2 −
2rz + 1)δt/(2τ ) + (1/2) ln(δt/2πτ ) + O(δt2) determines the
functional F[q,r] = −(r2 − 2 r z + 1)/(2 τ ). The divergent
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constant proportional to ln(δt) is absorbed by the measure
D p.

The vector functional L[q,r], describing the first-order
change in a quantum state, which in this case is the qubit
state, is derived from the state transformation equation,

ρ̂(t + δt) = Ûδt ρ̂(t)Û †
δt

Tr[Ûδt ρ̂(t)Û †
δt ]

, (6)

where Ûδt ≡ e− i
h̄
Ĥ δtM̂δt is a product of unitary evolution due

to the qubit Hamiltonian Ĥ and the measurement operator. By
expanding (6) to first order in δt and taking the continuum
limit, we obtain a master equation,

∂t ρ̂ = − i

h̄
[Ĥ ,ρ̂] + r

2τ
{σ̂3,ρ̂} − r

τ
〈σ̂3〉ρ̂, (7)

where [,], {,}, and 〈σ̂3〉 = Tr[σ̂3ρ̂] are the commutator, the
anticommutator and an expectation value of σ̂3, respectively.
Expressing the right-hand side of (7) in Bloch vector coordi-
nates gives the vector functional L[q,r].

Setting h̄ = 1, the action S and the stochastic Hamiltonian
H of the PDF then take the form (see Appendix B for more
details of the derivation),

S =
∫ T

0
dt(−px ẋ − py ẏ − pz ż + H), (8a)

H = px(−ε y − x z r/τ ) + py(+ε x + �z − y z r/τ )

+pz( − �y + (1 − z2) r/τ ) − (r2 − 2 r z + 1)/2τ,

(8b)

where we have omitted the boundary condition terms. Extrem-
izing this action as in Eq. (5) produces the following 3 + 3
ODEs and one constraint,

ẋ = −εy − x z r/τ, (9a)

ẏ = +εx + �z − y z r/τ, (9b)

ż = −�y + (1 − z2) r/τ, (9c)

ṗx = −εpy + px z r/τ, (9d)

ṗy = +εpx + �pz + py z r/τ, (9e)

ṗz = −�py + (px x + py y + 2 pz z − 1) r/τ, (9f)

r = z + pz (1 − z2) − px x z − py y z, (9g)

with the (possibly mixed state) boundary conditions q0 =
(xI ,yI ,zI ) and qF = (xF ,yF ,zF ).

Quantum nondemolition (QND) measurement. We can
solve the differential equations (9) analytically for the QND
case when � = 0 [35–37]. Equations (9) indicate that ṙ

vanishes in this case, so we conclude that its solution r = r̄

is constant. With this insight, the most likely path can then be
solved immediately to give

x̄(t) = xI cos εt − yI sin εt

cosh r̄ t/τ + zI sinh r̄ t/τ
, (10a)

ȳ(t) = yI cos εt + xI sin εt

cosh r̄ t/τ + zI sinh r̄ t/τ
, (10b)

z̄(t) = zI cosh r̄ t/τ + sinh r̄ t/τ

cosh r̄ t/τ + zI sinh r̄ t/τ
, (10c)

where r̄ can be found directly from the initial and final
boundary conditions on the state, r̄ = τ

T
tanh−1( zI −zF

zI zF −1 ). We

FIG. 1. (Color online) The numerical medians (black dots)
of x,y,z,r and the most likely path from Eq. (9) (colored
lines) x̄,ȳ,z̄,r̄ are shown for two scenarios: (a) � = 0,ε =
0.5 τ−1,qI = (1,0,0),qF ≈ (0.7,0.2,0.7); (b) � = − 0.5 τ−1,ε =
0,qI = (1,0,0),qF ≈ (0.9,0,0.5). The postselected ensemble size is
104 with λ = 0.02, δt = 0.01 τ , and T = 0.6 τ (see text). The small
dotted lines show the fortieth and sixtieth percentile paths.

note that, in this QND case, the qubit coordinates can be
solved directly from the boundary conditions, thus solutions
of px,py,pz are not of particular interest and only presented
in Appendix C.

Numerical simulation. To check the most likely path, we
numerically simulate qubit state trajectories using a Monte
Carlo method. Starting with an initial state qI = (xI ,yI ,zI ), a
random outcome r0 is drawn from a distribution P (r0|qI ),
and a new state q1 is computed from the state update
equation (6). Repeating this computation from t0 = 0 to tn = T

with time step δt produces a single stochastic trajectory for q.
We postselect the ensemble of trajectories that conforms to the
final boundary condition using the requirement |qn − qF | � λ,
where λ is a postselection tolerance. The most likely path is
estimated from the statistical median of q at each time step.
We use the median since it is more numerically robust than
the mode. Figure 1 shows that these simulated medians agree
quite well with solutions of the ODEs in (9).

IV. ANATOMY OF A QUANTUM JUMP

To further illustrate the action formalism, we consider the
physics of the quantum Zeno effect: an evolving qubit that is
repeatedly measured on a time scale faster than the inverse
Rabi oscillation frequency will be frozen in a particular state,
only occasionally making a quantum jump to the orthogonal
state on a longer time scale (e.g., [38]). Here we analyze this
situation in the continuous measurement case, restricting our
attention to pure states for simplicity. We set ε = 0, τ 	 �−1,
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FIG. 2. (Color online) The doubled state space phase portrait
for different constant stochastic energies: E < −�2τ/2 (red dot-
ted), E = −�2τ/2 (black solid), E = 0 (blue dashed) and E > 0
(gray dotted), for � = 0.2 τ−1. The dynamics is invariant under
θ → θ + π .

which corresponds to the limit where the qubit measurement
rate is much faster than the Hamiltonian dynamics.

Considering pure states on the Bloch sphere, we
reparametrize the state as x = 0,y = sin θ,z = cos θ , so θ = 0
corresponds to state |1〉 and θ = π corresponds to state |2〉.
Since the quantum state is now characterized by one variable,
θ , the master equation is quite simple, θ̇ = � + sin θ r/τ , and
the action only depends on θ,pθ , and r ,

S =
∫ T

0
dt

(−pθ θ̇ + H
)
, (11a)

H = pθ (� − r sin θ/τ ) − (r2 − 2 r cos θ + 1)/2τ. (11b)

Extremizing the action leads to two ODEs and a constraint,

θ̇ = � − sin θ r/τ, (12a)

ṗθ = pθ r cos θ/τ + r sin θ/τ, (12b)

r = cos θ − pθ sin θ. (12c)

After eliminating the r variable, we have a Hamiltonian that
is quadratic in the conjugate variable, H = ap2

θ + bpθ + c,
where a = sin2 θ/2τ , b = � − sin θ cos θ/τ , c = −sin2θ/2τ .
SinceH is a constant of motion for the most probable path (12),
we can parametrize pθ (θ,E) as a function of θ and E ≡ H.

A phase space portrait (pθ ,θ ) of the dynamics is shown in
Fig. 2. There, the global dynamical structure can be seen for
different constants of motion E, which we refer to as stochastic
energy. We find that there is a critical value of the stochastic
energy Ec = −�2τ/2 separating two types of paths: ones that
can cross from 0 to π (E > Ec), and ones that turn to the
poles of origin (E < Ec) (see inset of Fig. 2). Note that the
total time associated with a path from an initial θi to a final
θf is T = ∫ θf

θi
θ̇ (θ,E)−1dθ and the associated action is S =

− ∫ θf

θi
pθ (θ,E)dθ + ET . More details of the state dynamics

on the phase space for different values of the stochastic energy
are provided in Appendix D and Supplemental Material [39].

Among all the constant energy curves in the phase portrait,
the one associated with H = E = 0 has the maximum proba-
bility since it minimizes the action S with respect to H. This
zero energy (instanton) solution pin

θ is shown in Fig. 2 (blue

dashed) and can be simplified in the limit �τ 	 1,

pin
θ ≈

{
0, 0 < θ < �τ

2(θ − �τ )/θ2, �τ < θ < π.
(13)

Since the action is the integral of the instanton line (13), we
see that the state can transition from θ = 0 to θ = �τ with
nearly unit probability, but then encounters a statistical barrier
that requires a large fluctuation to overcome. This can be
interpreted as the state evolving unitarily to θ (t) = �t , but then
collapsing back onto the θ = 0 point after one measurement
time τ . Occasionally, the state can flip over to the opposite
pole with a small rate. The area under the curve (13) (the
blue dashed curve in Fig. 2) gives the action of this path,
Sin ≈ 2 ln(�τ ) according to (11), which is logarithmically
divergent for small �. In this limit, the time of this path is
given by T ≈ 4τ ln(1/�τ ). This is a characteristic time taken
by a quantum jump. The instanton technique for finding the
switching rate resembles standard tunneling rate calculations
[40], so the switching rate has the form γ = ωatte

Sin , where ωatt

is the attempt frequency. In this case, ωatt is the measurement
rate, τ−1, so the switching rate is simply γ = �2τ .

V. CONCLUSION

We have developed a phase space stochastic path integral
formalism for continuous quantum measurement that enables
the analysis of rare events using action techniques. As an
example, we derived a set of ODEs that describe the most
likely path the quantum state can take through state space
between initial and final boundary conditions via an action
principle. These equations describe a middle way between the
well-known master equation for open quantum systems and
stochastic master equations. Our ODEs double the complexity
of the standard master equation, but are much simpler to
numerically integrate than the simulation of a large ensemble
of stochastic trajectories, followed by postselection on a
small fraction of realizations. These ODE solutions give deep
insight into the conditional dynamics of the measured quantum
system, and also provide the most likely detector output
corresponding to the imposed boundary conditions.

Master equations are perhaps the most used tool in current
research on quantum systems. Our reformulation of the physics
of continuously measured quantum systems in terms of the
stochastic path integral (3)-(4) gives another way to compute
averages and correlations functions of the detector output and
the quantum state, as well as permitting the calculation of
conditional quantities. The assumptions of this method are
quite general, and it may consequently be applied to a wide
variety of physical systems.
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APPENDIX A: DERIVATION OF THE STOCHASTIC
PATH INTEGRAL

Here we present the technical details of the stochastic path
integral derivation. The joint PDF, P = P ({qk},{rk},qF |qI ),
is a product of many different terms as shown in Eq. (1) and
Eq. (2). We first write the PDF for the deterministic state update
from a quantum state qk to qk+1 for k = 0, . . . ,n − 1,

P (qk+1|qk,rk) ≡ δd (qk+1 − E[qk,rk]),

= (1/2πi)d
∫ i∞

−i∞
ddpk

× exp{− pk · (qk+1 − E[qk,rk])},

where E[qk,rk] ≡ qk + δtL[qk,rk] + O(δt2) and use ddpk

as an integration measure of the d-dimensional vector pk .
We also rewrite the function P (rk|qk) = exp[ln P (rk|qk)] =
exp[δtF[qk,rk] + · · · ] in exponential form. The other two δ

functions for the boundary conditions in Eq. (1) are also written
in Fourier form,

δd (q0 − qI ) = (1/2πi)d
∫ i∞

−i∞
ddp−1

× exp[− p−1 · (q0 − qI )],

δd (qn − qF ) = (1/2πi)d
∫ i∞

−i∞
ddpn

× exp[− pn · (qn − qF )].

As a result, the PDF Eq. (1) is a product of all terms presented
above,

P = C

∫ i∞

−i∞
· · ·

∫ n∏
j=−1

ddpj exp

[
B +

n−1∑
k=0

(Lk + Fk)

]
,

(A1)

where,

B = − p−1 · (q0 − qI ) − pn · (qn − qF ),

Lk = − pk · (qk+1 − E[qk,rk]),

Fk = ln P (rk|qk),

C = (1/2πi)d(n+2).

The stochastic path integral Eq. (3) is a continuous version of
(A1) derived by taking the continuum limit δt → 0 and n →
∞. Neglecting second- and higher-order terms in δt yields
the replacements: qk+1 − E[qk,rk] ≈ q̇dt − L[q,r]dt and
ln P (rk|qk) ≈ dtF[q,r]. In general, there may be a (rk,qk)-
independent correction to the approximation of ln P (rk|qk)
that does not vanish in the continuum limit, but it can always
be absorbed by the constant C. Note that we used the contin-
uous coordinate function q = q(t) = limδt→0{qk}, conjugate
function p = p(t) = limδt→0{ pk} and measurement record
function r = r(t) = limδt→0{rk}. The functional measure used
in Eq. (1) is defined as D p ≡ limδt→0 C

∏n
j=−1 ddpj .

The most likely path in Eq. (5) can be obtained by
extremizing the exponent of (A1) over all variables (k =

0, . . . ,n − 1),

−qk+1 + E[qk,rk] = 0,

(A2a)

− pk−1 + ∂

∂qk

( pk · E[qk,rk]) + ∂

∂qk

( ln P (rk|qk)) = 0,

(A2b)
∂

∂rk

( pk · E[qk,rk]) + ∂

∂rk

( ln P (rk|qk)) = 0,

(A2c)

including the boundary conditions: q0 = qI , qn = qF . After
taking the continuum limit, the Eqs. (A2) reduce to Eqs. (5).

Since the solutions of (A2) as well as (5) extremize the
action S, a Taylor series expansion of the action up to second
order around the extremal point q̄, p̄,r̄ , gives the integral∫
DqDrD p eS= P (qF |qI ) in the form,

P (qF |qI ) = eS[q̄, p̄,r̄] ×
∫

dη e
1
2! η
· D2S[q̄, p̄,r̄] · η + O(η3), (A3)

where the components of the vector η are all components of
(q − q̄), ( p − p̄), and (r − r̄), and D2S[q̄, p̄,r̄] is a matrix of
second-order partial derivatives of the action S evaluated at the
extrema q̄, p̄,r̄ . In the saddle-point method, one neglects the
higher-order terms keeping only second-order contributions.
However, here we focus on the leading term eS[q̄, p̄,r̄], which
is the contribution from the most likely path q̄, p̄,r̄ to the
probability P (qF |qI ), similar to the large deviation function
studied in the macroscopic fluctuation theory [41].

It is worth noting that the set of equations (A2) can also be
obtained through constrained optimization of the PDF directly,

P ({rk}|{qk}) =
n−1∏
k=0

P (rk|qk) = exp

[
n−1∑
k=0

ln P (rk|qk)

]
,

where the conjugate variables { pk} play the role of Lagrange
multipliers for the constraints q0 = qI , qk+1 = E[qk,rk] (for
k = 0, . . . ,n − 1), and qn = qF , respectively. Therefore, the
maximum probability conforming to the constraints is,

Max[P ({rk}|{qk})] = exp

[
n−1∑
k=0

ln P (r̄k|q̄k)

]
, (A4)

where q̄k and r̄k are solutions of Eq. (A2). This maximum
probability is proportional to eS[q̄, p̄,r̄] in (A3) in the continuum
limit.

APPENDIX B: CONTINUOUS QUBIT MEASUREMENT

We now show more details about the derivations of
the action in Bloch coordinates Eq. (8). In discrete form,
the unitless measurement readout is given by rk = (Ik −
Ī0)/�Ī where Ik is an average current passing through
the QPC between time tk and tk+1. The probability density
function is explicitly expressed in Bloch sphere coordinates
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qk = (xk,yk,zk) at time tk

P (rk|qk) =
√

δt

2πτ
e− δt

2τ
(rk−1)2

(1 + zk)/2

+
√

δt

2πτ
e− δt

2τ
(rk+1)2

(1 − zk)/2,

ln P (rk|qk) ≈ − δt

2τ

(
r2
k − 2rkzk + 1

)
+ 1

2
ln

(
δt

2πτ

)
+ O(δt2),

where we find that F[qk,rk] = −(r2
k − 2rkzk + 1)/(2τ ). The

constant term proportional to ln(δt) will be absorbed by the
integration measure.

We take the state update Eq. (6) in discrete form, express it
in Bloch sphere coordinates, and take the first-order expansion
in δt ,

xk+1 = xk + (−εyk − xkzkrk/τ )δt, (B1a)

yk+1 = yk + (+εxk + �zk − ykzkrk/τ )δt, (B1b)

zk+1 = zk + ( − �yk + (
1 − z2

k

)
rk/τ

)
δt, (B1c)

where the right-hand side is the vector function E[qk,rk].
Substituting E[qk,rk] and F[qk,rk] into (A1), we obtain the
action in the discrete form,

S = B +
n−1∑
k=0

(−px
k (xk+1 − xk − (−εyk − xkzkrk/τ )δt)

−p
y

k (yk+1 − yk − (+εxk + �zk − ykzkrk/τ )δt)

−pz
k

(
zk+1 − zk − (−�yk + (

1 − z2
k

)
rk/τ

)
δt

)
− (

r2
k − 2rkzk + 1

)
δt/2τ

)
, (B2)

where px
k ,p

y

k ,p
z
k are conjugate variables and B is a term

describing the boundary conditions q0 = (xI ,yI ,zI ) and qn =
(xF ,yF ,zF ) as defined in (A1).

APPENDIX C: QND MEASUREMENT CASE

In the QND case when � = 0, we can solve for the analytic
solutions x̄,ȳ,z̄ as in Eqs. (10) and solve for solutions of
conjugate variables p̄x,p̄y,p̄z

p̄x = pxI cos εt − pyI sin εt

(cosh r̄ t/τ + zI sinh r̄ t/τ )−1
, (C1a)

p̄y = pyI cos εt + pxI sin εt

(cosh r̄ t/τ + zI sinh r̄ t/τ )−1
, (C1b)

p̄z = r̄ − z̄ + p̄x x̄ z̄ + p̄y ȳ z̄

1 − z̄2
, (C1c)

where pxI ,pyI ,pzI are arbitrary constants. Generally the
conjugate variables px,py,pz are constrained by the choice
of final boundary conditions xF ,yF ,zF for the coordinates,
so the six coupled differential equations must be solved
simultaneously. However, in the special case of � = 0 then the
most likely readout r̄ is a constant, so the constraint becomes
infinitely degenerate. As a result, solutions for px,py,pz can be
obtained through direct integration, which produces arbitrary
integration constants pxI ,pyI ,pzI that indicate the degeneracy.

By substituting the extremum x̄,ȳ,z̄,r̄ back to the action
in Eqs. (8), all terms except the last term in the stochastic

FIG. 3. The exponential of the extremized action Eq. (C2) as a
function of zF for the QND case when zI = 0.2 plotting at three
different time T = 0.01 τ (dotted) T = 0.5 τ (dashed) and T = 2 τ

(solid).

Hamiltonian vanish and we obtain the optimized action,

S[x̄,ȳ,z̄,r̄] = − T

2τ
(r̄2 + 1) + 1

2
ln

(
1 − z2

I

1 − z2
F

)
, (C2)

where r̄ = τ
T

tanh−1( zI −zF

zI zF −1 ). Here, we can see how the leading
term of P (qF |qI ) in Eq. (A3) changes as we vary the boundary
conditions qF , qI . We plot the exponential of the extremized
action (C2) as a function of zF setting zI = 0.2 in Fig. 3.
We see that at very short time, T = 0.01 τ , the final state
zF is still mostly around the initial state. As the time grows
to T = 0.5 τ , T = 2 τ , the curves gets broader and the most
probable final states move toward either of the poles zF = ±1.
The asymmetry of the long time distribution is due to the initial
state zI �= 0.

APPENDIX D: QUANTUM JUMP ANALYSIS

Further insight can be gained about the critical stochastic
energy Ec = −�2τ/2 mentioned in the main text by extrem-
izing the equations of motion. There exists a local stationary
point (see inset of Fig. 2 where the nullclines of the dynamics
cross), θ̇ = 0, ṗθ = 0. This condition gives stationary values
for the fixed point θs,rs,pθ,s , found from the Eqs. (12),

�τ = rs sin θs,

0 = pθ,s rs cos θs + rs sin θs.

Together with the last condition in Eq. (12), rs = cos θs −
pθ,s sin θs , we can solve for the three unknowns,

θs = tan−1 �τ, (D1a)

pθ,s = −�τ, (D1b)

rs =
√

1 + �2τ 2. (D1c)

The leading term in the action associated with this stationary
point is

S[θs,rs] = −
∫ tf

ti

dt
1

2τ

(
r2
s − rs cos θs + 1

)
(D2a)

= −�2τ

2
(tf − ti), (D2b)

assuming that the qubit stays at the steady state from ti
to tf .

This approach gives us another way to understand the nature
of the critical stochastic energy Ec. For the particular value
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of the detector output rs , the Hamiltonian dynamics of the
qubit is exactly canceled by the (conditional) measurement
dynamics, so the qubit state is frozen at angle θs . The rate Ec

indicates how quickly the probability of this happening falls
off as |tf − ti | is increased. Notably, the critical energy is a
factor of 2 smaller than the Zeno (switching) rate derived in
the main text. We remind the reader that r(t) = rs does not
mean just the single trajectory with that detector output, but
encompasses the family of trajectories whose most likely value
is rs . The physical paths that connect the states |1〉 (θ = 0) and
|2〉 (θ = π ) (see Fig. 2), have two finite action contributions
to the probability that consist of bringing the state from |1〉 to
the vicinity of the fixed point, as well as taking the state from
the fixed point to the state |2〉. This is only possible if E > Ec.
In the limit where the total time T is much longer than the
measurement time, T � τ , the probability of staying near the

fixed point will dominate the transitional pieces. If E < Ec,
the connecting trajectories will return the state back to its point
of origin.

The fixed point (D1) has been calculated exactly, with no
smallness condition on �τ . We note that since the stochastic
energy is a measure of the likeliness of the solution (with
H = 0 being most likely), when �τ is small compared to 1,
such trajectories become more probable; this is also seen since
rs ≈ 1 + �2τ 2/2 is only slightly larger than the measurement
eigenvalue r = +1, the average output of the detector when
the system is in eigenstate |1〉.

In the opposite limit, �τ � 1, the Hamiltonian dynamics
will be the dominant effect, so it will be much more unlikely
for the qubit state to get stuck at the singular point. We see this
from the fact that Ec → −∞, as well as rs → ∞ in this limit.
More on this limit will be published later.
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