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By generalizing the quantum weak measurement protocol to the case of quantum fields, we show that
weak measurements probe an effective classical background field that describes the average field
configuration in the spacetime region between pre- and postselection boundary conditions. The classical
field is itself a weak value of the corresponding quantum field operator and satisfies equations of motion
that extremize an effective action. Weak measurements perturb this effective action, producing measurable
changes to the classical field dynamics. As such, weakly measured effects always correspond to an effective
classical field. This general result explains why these effects appear to be robust for pre- and postselected
ensembles, and why they can also be measured using classical field techniques that are not weak for
individual excitations of the field.

DOI: 10.1103/PhysRevLett.112.110407 PACS numbers: 03.65.Ta, 03.65.Sq, 03.67.-a

Quantum weak measurements [1–3] have received sig-
nificant media attention in the past five years, primarily in
the context of optical implementations. Unlike traditional
projective measurements in quantum theory, which strongly
perturb the system being measured, weak measurements
gently nudge the system to leave it nearly unperturbed by
the measurement process. The price one pays for making
such a gentle measurement is that the detector signal
becomes ambiguous, or noisy [4], so many more measure-
ments are needed to overcome the statistical uncertainty.
In spite of this limitation, however, there is a distinct

advantage to performing such a weak measurement over a
traditional measurement. Due to the minimal perturbation,
a second measurement can be made after the weak
measurement that will probe nearly the same preparation.
Correlating the results of the first weak measurement and
the subsequent measurement thus enables access to other-
wise inaccessible information.
As an example, the wavelike coherence of a preparation

can be largely preserved and manipulated to engineer
“superoscillatory” interference patterns [5] in a weakly
coupled detector signal. Surprisingly, such interference
oscillates faster than the largest Fourier component initially
present in the detector, so can be used to amplify its
sensitivity. Moreover, the weakness of the measurement
can make this amplification resilient to common technical
background noise (e.g., electronic 1=f noise) [6]. As such,
this technique has been used successfully to resolve
_angstrom-scale optical beam displacements [7], and similarly,
small frequency shifts [8], phase shifts [9], temporal shifts
[10], velocity shifts [11], and even temperature shifts [12] to
extraordinary precision using modest laboratory equipment.
For another example, a weak measurement of the

momentum largely preserves the coherence with position,

so correlating averaged weak measurements of momentum
with subsequent position measurements can directly deter-
mine a locally averaged momentum vector field [13].
Kocsis et al. [14] implemented such a measurement on
an optical beam passing through a two-slit interferometer,
which correctly produced the local momentum streamlines
predicted by Madelung’s hydrodynamic approach [15] and
Bohm’s causal approach [16] to the quantum theory, as well
as those predicted by the relativistic energy-momentum
tensor of field theory [17] and the Poynting vector field of
classical electromagnetic theory [18,19].
In a similar vein, Lundeen et al. [20,21] demonstrated

that weakly measuring correlations between conjugate
quantities was sufficient information to directly determine
the preparation state itself. Using a similar tactic, Wiseman
et al. [22] showed how these correlations could be used to
determine the changes made to a preparation by an
intermediate perturbation, which has since been used to
verify error disturbance and complementarity inequalities
similar to Heisenberg’s uncertainty relation [23].
A general criticism of these experimental results is that

they can be obtained equally well using classical electro-
magnetic fields (e.g., [18,24]), so the insistence upon using
the quantum formalism to understand the effects may seem
forced. Indeed, with the exception of the few notable
experiments that exploit multiparticle correlations using
entangled photon pairs (e.g., [25]), the effects can be
described using a manifestly single-particle theory.
Moreover, many repeated measurements are statistically
required to compensate for the added noise of a weak
measurement, so the experiments require conditions essen-
tially equivalent to a classical field limit of the underlying
quantum theory. For photons, this limit produces classical
electromagnetic theory [26].
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In this Letter, we make the connection between weak
measurements and classical fields precise. Specifically, we
demonstrate that any weak interaction will probe an
effective background field that has the form of the weak
value of a local quantum field operator, as illustrated in
Fig. 1. The initial and final states for this weak-valued field
are defined on spacelike hypersurfaces and provide boun-
dary conditions. Within the bounded spacetime region, the
background field deterministically evolves to minimize an
effective classical action that satisfies those boundary
conditions. As such, the seemingly “retrocausal” character
sometimes attributed to weak values (e.g., [1]) originates
from precisely the same teleology that underscores the
celebrated principle of extremized action.
It follows that averages of weak measurements subject to

specific boundary conditions will produce values associ-
ated with a corresponding classical background field. This
Letter complements and explains the observation in [18,19]
that measuring weak values of photon observables will
identically recover the observable values of the classical
electromagnetic field. Importantly, this result also implies
that the conditions for making a weak measurement may be
considerably generalized: any measurement that does not
appreciably perturb the classical background field or its
boundary conditions will produce the same result as a
quantum weak measurement, whether or not the measure-
ment coupling is weak for every field excitation.
The quantum action principle.—As a brief review, the

essential dynamical principle for quantum fields can be
elegantly expressed using Schwinger’s variational principle
for transition amplitudes [27],

δhFjIi ¼ i
ℏ
hFjδŜjIi: (1)

Here, δ expresses a variation, δŜ is any Hermitian variation
of the quantum action in operator form, and jIi and hFj are
specific initial and final field states. These states are defined
on spacelike hypersurfaces σI and σF (i.e., initial and final

times) to provide boundary conditions for local fields in the
interior, as illustrated in Fig. 1. The remaining boundaries
for the spacetime volume are assumed to extend to infinity
in the spacelike directions, where the fields are assumed to
vanish.
For collider experiments, one typically uses this relation

to calculate scattering matrix amplitudes with boundaries
that also asymptotically approach infinity in the timelike
direction. These scattering amplitudes are usually ex-
pressed in terms of vacuum-to-vacuum amplitudes that
are calculated perturbatively from known asymptotically
free solutions. However, it is worth noting that the dynami-
cal principle of Eq. (1) applies generally even outside
these scattering conditions. Indeed, Schwinger [27] dem-
onstrated how to derive the operator forms of all con-
served quantities, their commutation relations, and the
equations of motion for quantum electrodynamics solely
from this principle.
Under the assumption of local interactions at each

spacetime point (ct, x, y, z), Schwinger [27] also showed
that variations in the action are additive, so the full variation
δŜ connecting the boundaries at σI and σF has the general
form,

δŜ ¼ 1

c
δ

Z
σF

σI

d4xL̂ðxÞ; (2)

in terms of a spacetime integral of a local Lagrangian
density L̂ðxÞ. This Lagrangian density must be invariant
under the appropriate global and local group symmetries,
including the Poincaré group that defines spacetime itself.
One can understand Eq. (2) as a differential formulation of
Feynman’s path integral for the amplitude. Such a variation
is illustrated schematically in Fig. 2.
The density L̂ðxÞ ¼ L̂½φ̂ðxÞ; ∂μφ̂ðxÞ� can be further

expanded as a functional of local field operators hxjφ̂jx0i ¼
hxjφ̂jxiδðx − x0Þ ¼ φ̂ðxÞδðx − x0Þ and their derivatives,
whose specific structure we leave arbitrary here.
Conjugate fields cπ̂μ ¼ ∂L̂=∂ð∂μφ̂Þ can then be introduced

FIG. 1 (color online). Classical background field: given two
spacetime hypersurfaces σI and σF, on which field states jIi and
hFj are defined as boundary conditions, the classical background
field φðxÞ has the form of a weak value of the quantum field
operator φ̂ðxÞ. It satisfies a classical equation of motion obtained
by extremizing an effective action Γ½φ�.

FIG. 2 (color online). Weak measurement: a weak perturbation
of the action δŜ that keeps the boundary states fixed produces a
change in the functional −iℏ lnhFjIi equal to the weak value of
the perturbation. The effective action Γ½φ� is the Legendre
transform of this functional, so the classical background field
φðxÞ is correspondingly perturbed.
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to relate the Lagrangian density to a Hamiltonian density
Ĥ½φ̂; π̂μ� using an appropriate Legendre transform.
Integrating this density over a spacelike hypersurface σ
produces the Hamiltonian operator Ĥ ¼ R

σ d
3xĤ used to

generate translations along the timelike coordinate normal
to σ [27].
A standard technique to formally compute time-ordered

amplitudes of the field operators is to introduce an
auxilliary classical source JðxÞ using a linear variation
δŜ ¼ R

d4xδJðxÞφ̂ðxÞ of the Lagrangian density. After
defining the source-dependent amplitude Z½J� ¼ hFjIiJ,
it then follows from Eq. (1) that

g

�
ℏ
i

δ

δJðxÞ
�
Z½J� ¼ hFjT gðφ̂ðxÞÞjIiJ; (3)

for any analytic function g of the field operators, where T is
the time-ordering operation and the right-hand side gen-
erally requires regularization. Similarly, the time-ordered
n-point correlation functions of the field operators are
generated by the functional W½J� ¼ −iℏ lnZ½J� [27]
according to

Fhφ̂n � � � φ̂1iI ¼ e−iW½J�=ℏ ð−iℏÞnδn
δJn � � � δJ1

eiW½J�=ℏ: (4)

Background field.—The background field φ associated
with a quantum field operator φ̂ is defined as the one-point
correlation function from Eq. (4) [27,28],

φðxÞ ¼ Fhφ̂ðxÞiI ¼
δW½J�
δJðxÞ ¼ hFjφ̂ðxÞjIiJ

hFjIiJ
: (5)

This background field φðxÞ is a classical field that
represents the average field at the point x, and is illustrated
schematically in Fig. 1. That is, in addition to satisfying the
boundary conditions jIi and hFj, it satisfies the classical
equations of motion δΓ½φ�=δφðxÞ ¼ −JðxÞ, which (in the
source-free limit J → 0) extremize an effective action Γ½φ�
that is related to the functional W½J� by a Legendre
transform Γ½φ� ¼ W½J� − R

σF
σI

d4xJðxÞφðxÞ [29]. This effec-
tive action can be expanded in powers of ℏ to enumerate the
quantum loop contributions to the field dynamics, where
the zero-loop contribution can be obtained directly from the
quantum action Ŝ½φ̂� in Eq. (2) by replacing the field
operators φ̂ðxÞ with the effective background fields φðxÞ.
In high energy scattering regimes, one typically focuses

on the vacuum-to-vacuum transition amplitudes between
asymptotic infinite times, so the correlation functions of
Eq. (4) reduce to vacuum expectation values and the
background field φðxÞ asymptotically reduces to a free
field at the boundaries. More general plane wave scattering
amplitudes can be expressed in terms of these vacuum
expectations through a standard reduction procedure.
However, the intermediate interactions can change the

structure of the final asymptotic vacuum state from the
initial asymptotic vacuum state, leading to distinct initial
and final states even for these vacuum-to-vacuum
transitions.
Weak value connection.—Observe that the last expres-

sion for the background field φðxÞ in Eq. (5) has the form of
a weak value [1] of the local field operator φ̂ðxÞ with
respect to the chosen boundary states. The classical back-
ground field is defined precisely as the weak-valued
approximation to a quantum field that applies in the region
between the corresponding spacetime hypersurfaces. This
classical background field and its effective action will
deterministically describe the average configuration in
the interior of the bounded spacetime region.
Importantly, this definition implies that if a local inter-

action at a point x does not appreciably affect the field
dynamics or the boundary conditions, then it will sta-
tistically sample the effective classical background field
φðxÞ at that point. Conversely, since local probes must not
appreciably perturb (on average) the dynamics of the
background field φ or the boundary conditions for the
definition in Eq. (5) to apply, then these probes must satisfy
a weakness criterion to measure φ that generalizes the one
used by Aharonov et al. in [1]. In particular, the local
interaction does not have to be weak for every excited
quantum mode of the field; it only has to be weakly
perturbing on average with respect to the effective back-
ground field to measure the same result.
Weak measurements.—To measure the response to an

interaction that is weak for every field excitation, as in
recent experiments [14,20,22,23], one can introduce a
small variation δŜ ¼ 1

c

R
σF
σI

d4xδL̂ðxÞ in the quantum
Lagrangian density itself as illustrated in Fig. 2 to see
how the detection probabilities change. As in nonrelativ-
istic quantum mechanics, the normalized amplitude a ¼
hFjIi= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihFjFihIjIip

will be related to measurable proba-
bilities through a complex square p ¼ jaj2. Hence, the
relative variation in this measurable probability due to the
interaction will have the form,

δp
p

¼
�ðδa�Þ

a�
þ ðδaÞ

a

�
¼ −

2

ℏ
Im

hFjδŜjIi
hFjIi ; (6)

according to Eq. (1), in complete analogy to the situation
discussed in [3,30]. This relation allows one to experi-
mentally measure the imaginary part of the weak value of
the perturbation δŜwith respect to the initial and final states
of the field by examining logarithmic changes to the
detection probability.
To recover the traditional case of a weak von Neumann

measurement used in [1], consider a variation that is
approximately constrained to a spacelike hypersurface σ
with orthogonal timelike coordinate ct. If the interaction
involves two separate degrees of freedom of a local field,
δL̂ðxÞ ¼ −ðδgÞδðt − t0ÞĤ1ðxÞ ⊗ Ĥ2 with a variable
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coupling strength δg, and if the initial and final states of the
field are product states, then the measurable imaginary joint
weak value of Eq. (6) splits into a symmetric sum [3]

δ lnp
δg

¼ 2

ℏ
½ReHw

1 ImHw
2 þ ImHw

1ReH
w
2 �; (7)

of both real and imaginary parts of the weak values

Hw
1 ¼ hF1jĤ1ðσÞjI1i

hF1jI1i
; Hw

2 ¼ hF2jĤ2jI2i
hF2jI2i

: (8)

Here Ĥ1ðσÞ ¼
R
σ d

3xĤ1ðxÞ is the effective field
Hamiltonian that contributes to an effective interaction
Hamiltonian ĤI ¼ ðδgÞδðt − t0ÞĤ1ðσÞ ⊗ Ĥ2 in von
Neumann form. Typically Ĥ1ðσÞ is a transverse momentum
operator that generates spatial translations in the field along
a direction in the hypersurface σ, while Ĥ2 is a spin
operator for the field. The translation operator is con-
structed from the local conjugate fields π̂μðxÞ according to
Ĥ1ðσÞ ¼

R
σ d

3xqμπ̂μðxÞ, where the unit vector qμ specifies
the translation direction. All four components of the weak
values in Eq. (7) can be determined from averaged
measurements that resolve ∂g lnp by strategically choosing
the boundary conditions to isolate each component up to
known scaling factors [3].
Classical weak measurements.—Due to the averaging

necessary to resolve the relative probability correction of
Eq. (6), the measured result will match that obtained by
introducing the small variation directly to the effective
action δŜ½φ̂� → δΓ½φ� of the classical background field φðxÞ
itself. To see this, note that the perturbation δŜ affects the
generating functional W½J� according to

δW½J� ¼ −iℏδ lnhFjIiJ ¼
hFjδŜjIiJ
hFjIiJ

; (9)

which is precisely the weak value that appears in Eq. (6).
According to Eq. (5), this perturbation correspondingly
alters the classical background field. Indeed, the Legendre
transform of Eq. (9) produces the change in effective action
δΓ½φ� that alters the equations of motion for φðxÞ.
Classical electromagnetism.—As a poignant example,

classical electromagnetism can be considered a special case
of Eq. (5) when the boundaries are coherent states, or
eigenstates of the positive frequency part of the field
operator F̂ ∝ Êþ icB̂ [26]. Typically, the initial polariza-
tion state is assumed to be pure and uncorrelated with the
field state, while the final state is left unspecified and thus
averaged over all possibilities. In this special case, Eq. (5)
produces the classical electromagnetic field ~F ¼ hF̂i as an
eigenvalue of the field operator with a definite vector
orientation of the polarization determined from the initial
state. The effective action Γ½~F� is the classical electromag-
netic field action when the loop corrections are neglected;

however, it generally contains additional nonlinear correc-
tions when the loops are included [31]. Moreover, the
photon number uncertainty in the coherent boundary
conditions implies that individual photons may be absorbed
by local probes without appreciably perturbing the average
background field dynamics, which makes the classical
background field description particularly robust in practice.
Optical experiments that determine the Poynting vector

field by measuring the momentum transfer to small probe
particles (e.g., [18,32–34]) are an example of a classical
weak measurement. For each individual photon in the
quantum field such a local interaction is not weak: the
photon gets absorbed and rescattered. However, the cross
section of each probe particle is so small that the classical
background field is essentially unperturbed by these
interactions. Hence, the averaged interactions measure
the local orbital momentum of the classical field [18,19].
This is in sharp contrast to the direct technique recently
employed by Kocsis et al. [14], who used a local interaction
that was weak for each individual photon of the quantum
field. Nevertheless, after averaging these weak interactions
over an ensemble of individual photons they obtained the
local orbital momentum of the same effective classical
field [18,19].
Similarly, Lundeen et al. [20] directly measured the

classical background field ~E itself by using a local
interaction with a birefringent crystal. Recall that in an
anisotropic medium D̂ ¼ ϵðÊÞ ¼ ∂L=∂Ê, where ϵ is the
dielectric function and L is the effective Lagrangian of the
medium [35,36]. The relationship between D̂ and Ê
determines the birefringence. For a linear crystal, D̂ ¼
ðϵ0 þ δ̂ÞÊ with a small nondiagonal correction tensor δ̂.
Hence, a local birefringence at a point x0 originates from a
perturbation of the form δL̂ ¼ δðx − x0ÞÊ†ðxÞδ̂ðxÞÊðxÞ.
For uniaxial birefringence, this perturbation is approxi-
mately Zeeman-like δ̂ðxÞ ¼ −i½δgðxÞ�Ŝ∂ ~q, where −i∂ ~q
generates translations of the field along a direction
with unit vector ~q in the plane transverse to the propaga-
tion, Ŝ is a spin operator, and δgðxÞ is a local coupling
strength [37]. After expanding the left field operator
in the transverse Fourier plane of the hypersurface
containing x, the perturbation becomes δL̂ ¼
δðx0 − xÞðδgÞ R d3kÊ~ke

i~k·~xð~q · ~kÞðŜ ⊗ ÊÞ. Hence, choosing
hFj to be an eigenstate of the Fourier conjugate field Ê~k
(e.g., with a Fourier lens and a pinhole) produces a
correction to the effective action according to Eq. (9) that
is linear in a product Ŝ ⊗ Ê of the field and spin operators.
As a result, one can measure the classical background field
itself up to a constant according to Eq. (7) by strategically
choosing the spin boundary conditions. Measuring the field
at each point across the beam profile permits the elimina-
tion of a global constant by renormalizing to an effective
transverse wave function, as shown by Lundeen et al. [20].
Conclusion.—We have made precise the connection

between locally weak interactions and an effective classical
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background field. This background field has the form of a
weak value of the corresponding quantum field operator
and evolves deterministically to extremize an effective
action while also satisfying the chosen spacetime boundary
conditions. It describes the average situation at each local
point, but does not describe each field excitation.
Ideally weak measurements are noisy, so must be

averaged over many realizations. As such, they probe
the properties of this average classical background field,
and not the properties of each field excitation. This
observation explains why weak values can also be mea-
sured in classical field experiments that don’t satisfy the
usual criteria of quantum weak measurements. Each field
excitation may be strongly perturbed in these experiments,
but as long as the classical background field is negligibly
perturbed by the local interaction then the same weakly
measured averages will be obtained. In this precise sense,
sufficiently weakly measured quantities can be considered
robust properties of a classical background field.
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