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ABSTRACT 

Non-specific quantitation of [14C]sucrose in blood and brain has been routinely used as a 

quantitative measure of the in vivo blood-brain barrier (BBB) integrity. However, the reported 

apparent brain uptake clearance (Kin) of the marker varies widely (~100 fold). We investigated 

the accuracy of the use of the marker in comparison with a stable isotope of sucrose 

([13C]sucrose) measured by a specific LC-MS/MS method. Rats received single doses of each 

marker, and the Kin values were determined. Surprisingly, the Kin value of  [13C]sucrose was 6-7 

fold lower than that of [14C]sucrose. Chromatographic fractionation after in vivo administration 

of [14C]sucrose indicated that the majority of the brain content of radioactivity belonged to 

compounds other than the intact [14C]sucrose. However, mechanistic studies failed to reveal any 

substantial metabolism of the marker. The water: octanol partition coefficient of [14C]sucrose 

was > 2 fold higher than that of [13C]sucrose, indicating presence of lipid-soluble impurities in 

the [14C]sucrose solution. Our data indicate that [14C]sucrose overestimates the true BBB 

permeability to sucrose. We suggest that specific quantitation of the stable isotope (13C) of 

sucrose is a more accurate alternative to the current widespread use of the radioactive sucrose as 

a BBB marker.  

Keywords: blood-brain barrier permeability, [14C]sucrose, [13C]sucrose, apparent brain uptake 

clearance  
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Introduction 

One of the essential features of the blood-brain barrier (BBB) is the presence of complex 

intercellular tight junctions between adjacent endothelial cells,1 which results in a very high 

transendothelial electrical resistance, estimated at ~1,800 Ω cm2,2 and severely restricts 

paracellular passage of polar compounds when compared to vascular beds in other organs.3 

Impairment of the BBB is recognized as either a pathophysiologic consequence or a cause of 

multiple disease states affecting the CNS, including traumatic brain injury, ischemic stroke, brain 

tumors, and neuroinflammatory, infectious, or neurodegenerative brain disorders.4-8 

Measurement of passive BBB permeability is therefore one of the most frequently used 

parameters in experimental and clinical studies.  

Diverse markers ranging from vital dyes, such as Evans Blue,9 and sugars, like sucrose 

and inulin,10 to proteins, such as radiolabeled albumin10,11 and horseradish peroxidase,12 have 

been used in the BBB field in preclinical studies to determine the integrity of the barrier. For the 

quantification of subtle changes in paracellular permeability, no single ideal marker has emerged 

to date.13 For example, as a hydrophilic small drug molecule, atenolol has been occasionally used 

to represent putative paracellular transport.14-16 However, while atenolol is 99% charged at 

physiological pH, transcellular passage of the neutral form may account for a fraction of brain 

uptake measured in vivo.17 In practical terms, a permeability marker should not have significant 

pharmacological effects, as it could alter physiological parameters. While not a drug itself, the 

disaccharide sucrose may be considered the most widely accepted standard for the precise 

measurement of paracellular BBB permeability.18-22 This is because sucrose is uncharged, not 

subject to protein binding, metabolically stable after parenteral administration, falling into the 

molecular weight range of most small molecule drugs, and, to our knowledge, lacking 



	 4	

measurable membrane transport by active or facilitative mechanisms in vertebrates. With respect 

to in vivo studies, a recent review13 on BBB markers rated radiolabeled sucrose as the only small 

molecular weight agent providing quantitatively accurate data. However, at least one earlier 

literature report23 indicated that radiolabeled sucrose, especially when used in typical fashion 

with counting of just the whole radioactivity in blood and tissue samples (i.e. without 

chromatographic separation), may give spurious data due to presence of minor lipophilic 

contaminants.  

To potentially replace radiolabeled tracers and circumvent the non-specificity of total 

radioactivity measurement associated with the use of [14C]sucrose, we recently introduced a 

highly specific and sensitive non-radioactive technique for measurement of BBB permeability, 

based on LC-MS/MS detection of [13C]sucrose.24 In the current study, we conducted a rigorous 

side-by side comparison of the two isotopically labeled sucrose analogs after intravenous bolus 

injection in rats.  

Materials and Methods 

Chemicals and Reagents 

We purchased [UL-13C12]sucrose (all the carbons in both glucose and fructose molecules 

are labeled with 13C isotope; denoted [13C]sucrose) and the internal standard, which was [UL-

13C6
fru]sucrose (all the carbons in the fructose molecule are labeled with 13C isotope), from 

Omicron Biochemicals (South Bend, IN, USA). [14C]Sucrose, Solvable, and Hionic-Fluor 

solution were purchased from PerkinElmer (Boston, Massachusetts, USA). Specific activity of 

the [14C]sucrose stock solution was 400-700 mCi/mmol. LC-MS grade water (J.T. Baker) was 

purchased from Avantor Performance Materials, Inc. (Center Valley, PA, USA). 1-Octanol was 

purchased from Alfa Aesar (Ward Hill, MA, USA). Analytical grade ammonium hydroxide and 
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LC-MS grade acetonitrile (ACN) were purchased from Fisher Scientific (Fair Lawn, NJ, USA). 

For anesthesia, ketamine and xylazine solutions were purchased from Lloyd Laboratories 

(Shenandoah, IA, USA). Heparin solution was purchased from APP Pharmaceuticals 

(Schaumburg, IL, USA). All other chemicals were analytical grade and obtained from 

commercial sources. 

Animals 

Adult, male Sprague-Dawley rats were purchased from Charles River laboratory 

(Wilmington, MA) and acclimated in single, ventilated cages with 12-h dark-light cycles in a 

temperature- and humidity-controlled room with free access to the food and water. The average 

weight of animals was in the range of 379 – 415 g, and the CV of body weight in each group was 

< 5%. 

All the animal procedures used in this study were approved by Texas Tech University 

Health Sciences Center’s Institutional Animal Care and Use Committee and were consistent with 

the guidelines set by the Guide for the Care and Use of Laboratory Animals (National Research 

Council, 2011).  

In Vivo BBB Permeability to [14C] and [13C]Sucrose 

Rats were anesthetized with ketamine: xylazine, and catheters were placed in their penile 

vein and femoral artery for drug injection and serial blood sample collection, respectively. For 

[14C]sucrose experiments, a single dose of 3 µCi (~ 5 µg/kg) was administered to different 

groups of animals, which were then euthanized 30, 60, or 240 min after the injection (n = 

3/group). Serial blood samples were collected at different time points before euthanasia. At the 

end of sampling, a catheter was placed in the left ventricle and the whole body was perfused with 

ice-cold saline at a rate of 25 mL/min for 5 min, and the brain was collected. One hemisphere of 
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the brain was cut into small pieces, and 0.2-0.3 g of the brain tissue was added to 2 mL of 

Solvable to digest the tissue. Additionally, 20 µL of blood and plasma samples were added to 2 

mL of Solvable. After 24 h at room temperature, 100 µL of hydrogen peroxide was added to 

each sample to remove any possible color quenching, and samples were subjected to liquid 

scintillation counting after adding 12 mL scintillation fluid.  

For [13C]sucrose, different groups of rats were euthanized at 15, 30, 60, 90, 120, or 240 

min after injection of [13C]sucrose at a dose of 10 mg/kg (n = 3/group). The purpose of the 

additional time points used for [13C]sucrose (15, 90, and 120 min), compared with the 

[14C]sucrose experiments, was to further characterize the kinetic profile of this newly developed 

marker, which showed a BBB permeability profile different from that of [14C]sucrose. Serial 

blood samples and terminal brain were collected as described above for [14C]sucrose. Before 

analysis, plasma samples were diluted 100 times with water, and brain was homogenized in ice-

cold water at a ratio of 1:9 to obtain brain homogenate. The brain homogenate and diluted 

plasma samples were analyzed by the LC-MS/MS method as described below. 

Fractionation of Plasma and Brain [14C]Sucrose after In Vivo Administration 

After an overnight fast, rats (n = 3) were anesthetized with a ketamine: xylazine mixture 

(80:8 mg/kg) via intramuscular injection, and [14C]sucrose was injected at a dose of 100 

µCi/animal (~ 170 µg/kg) via penile vein. During anesthesia, the body temperature of rats was 

maintained at 37ᴼC. One h after the sucrose injection, a blood sample was collected from a 

femoral artery catheter and plasma was separated. Additionally, a catheter was placed in the left 

ventricle of the heart, and whole body perfusion was conducted with ice-cold saline at a rate of 

25 mL/min for 5 min. Subsequently, the brain was collected and snap-frozen in cold (-80ᴼC) iso-

pentane. The whole brain was homogenized in ice-cold water (1:4) containing 0.03% sodium 
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azide. After centrifugation, 2 mL of the supernatant was condensed to ~200 µL under a nitrogen 

stream, followed by addition of 1800 µL of acetonitrile and water mixture (80:20), vortexed, 

centrifuged at 20000 g for 10 min, and the supernatant was collected. The supernatant was 

divided into two parts; one part was used for HPLC fractionation and radioactivity measurements 

of the individual fractions, whereas the other part was used to measure the total, unfractionated 

radioactivity in the sample.  

For fractionation, the supernatant was injected onto an HPLC column (Unison UK-

Amino; 150 mm х 2 mm, 3 µm; Imtakt, Portland, OR, USA), using an injection volume of 50 µL 

at a time. With a mobile phase of water: acetonitrile (20:80, v/v), run at a flow rate of 0.4 

mL/min, sucrose retention time was 4.25 min. Column eluent was collected every 15 sec for 15 

min. At the end of all 50 µL injections, the collected fractions at each time point were pooled and 

subjected to liquid scintillation counting along with the other portion of the supernatant. To rule 

out degradation of [14C]sucrose during sample preparation, blank brain homogenates, obtained 

from drug-free rats, were subjected to the same sample preparation process after spiking with 

[14C]sucrose concentrations as observed in the in vivo study. 

Plasma samples (10 µL) were mixed with 90 µL of acetonitrile: water (80:20), vortexed, 

and centrifuged. Similar to the brain samples, the supernatant was divided into two parts (40 µL 

each) and subjected to HPLC fractionation or direct measurement of total radioactivity. Similar 

to the brain and plasma samples, radioactivity in aliquots of the dosing solution for each animal 

was measured directly, and in individual fractions after HPLC fractionation. 

In Vitro Stability of [13C]Sucrose in Liver and Brain Homogenates and Blood 

Fresh, heparinized blood, collected from rats, and water (control) samples were spiked 

with [13C]sucrose to achieve a concentration of 10 ng/mL (n = 3). Fresh drug-free liver and brain 
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samples were homogenized (1:9) in citrate-phosphate buffer (100 mM), pH 6.5. Tissue 

homogenates and citrate-phosphate buffer (Control) were spiked with [13C]sucrose to achieve a 

final concentration of 10 ng/mL. The spiked samples were kept in a shaking water bath at 37ᴼC 

for 3 h, and serial samples (20 µL each) were collected and processed for LC-MS/MS analysis. 

In Vitro Stability of [13C]Sucrose in Brain Cell Culture 

Brain co-cultures consisted of a mixture of mouse primary astrocytes, glial cells, and 

neurons after first passage, where cells were 50% confluent. Neurons were 10 days and 

astrocytes and glial cells were 17 days old. Total numbers of cells per well were 30,000-40,000 

for astrocytes and neurons and 5,000-10,000 for microglial cells. Three different concentrations 

of [13C]sucrose (2, 4, and 10 ng/mL) were added to different wells in a 12-well plate, containing 

either cells or the culture medium alone (n = 3). The plates were then incubated for 24 h in a 

CO2 incubator, and serial samples (20 µL) were collected at different time points (0, 2, 12, and 

24 h) and subjected to LC-MS/MS analysis. 

In Vitro Stability of [14C]Sucrose in Brain Homogenates 

Fresh drug-free brain was homogenized (1:9) in citrate-phosphate buffer (10 mM), pH 

6.5, and the resulting brain homogenates were spiked with 2500 dpm/mL (0.7 ng/mL) of 

[14C]sucrose. This concentration was selected to be close to the brain concentrations observed 

after in vivo administration of 100 µCi of [14C]sucrose in the above fractionation studies. The 

spiked homogenates were placed in a shaking water bath at 37ᴼC, and samples were taken at zero 

(baseline) and 3 h, and subjected to the same procedure described above for fractionation studies 

(i.e., addition of 0.03% sodium azide, centrifugation, 10-fold concentration of the supernatant, 

and precipitation of proteins with acetonitrile: water). Similarly, the final supernatant was then 
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subjected to both HPLC fractionation, followed by radioactivity measurements of the individual 

fractions, in addition to counting of the total, unfractionated radioactivity. 

Partition Coefficients of [14C] and [13C]Sucrose 

Partition coefficients [14C] and [13C]sucrose between 1-octanol and water were 

determined according to the established methods. Water is very slightly soluble in 1-octanol 

(1.64 mol/l). Therefore, to reduce any errors during partitioning experiments, equal volumes of 

1-octanol and water were mixed together and kept overnight with continuous stirring at room 

temperature to pre-saturate 1-octanol with water. The water-saturated 1-octanol was used for the 

following studies. 

 [13C] (100 µg/mL) or [14C] (146000 dpm/mL or ~ 40 ng/mL) sucrose solutions (5 mL) 

were made in water and added to an equal volume of pre-saturated 1-octanol in a separating 

funnel. Subsequently, the contents of the funnel were mixed for 30 min in a rotary machine, and 

samples (500 µL) were taken from both the water and 1-octanol media for analysis. Additionally, 

the water part was separated and underwent a second and third partitioning by the addition of 

equal volumes of fresh 1-octanol, followed by shaking and sampling as described above. For 

[13C]sucrose measurements, undiluted 1-octanol and 100 fold diluted water samples were 

analyzed by LC-MS/MS. For [14C]sucrose  measurements, samples were added to the 

scintillation fluid and subjected to scintillation counter. 

 In addition to determination of the partition coefficient of the [14C]sucrose stock solution 

used in the animal studies, partition coefficient of a second stock of [14C]sucrose was also 

determined to investigate the potential differences between different lots of the marker.      
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LC-MS/MS Analysis of [13C]Sucrose 

The LC-MS/MS method is described in a recent publication.24 In brief, samples (20 µL), 

after proper dilution, were subjected to protein precipitation by the addition of 180 µL of 

acetonitrile: water (80:20), which contained IS.  Chromatographic separation was then performed 

using an Acquity BEH amide column (50 mm х 3 mm, 1.7 µm) and an isocratic mobile phase of 

acetonitrile: water: ammonium hydroxide (72:28:0.1, v/v), run a flow rate 0.2 mL/min. Column 

temperature was maintained at 45oC. The retention time of sucrose was ~2.5 min. The MRM was 

monitored in negative mode, and the transitions for [13C]sucrose and IS were 353à92 m/z and 

347à89 m/z, respectively. 

As reported before,24 the recovery of [13C]sucrose from the brain homogenates at 

concentrations of 10 (94.0%) and 100 (100%) ng/mL was almost quantitative. However, 

additional recovery experiments at a brain homogenate concentration of 3 ng/mL (n = 5) were 

conducted in the current study to verify the recovery of the marker at concentrations observed in 

this study. Similar to the previous method,24 the recovery was determined by comparison of peak 

areas of brain homogenates and aqueous solutions spiked with [13C]sucrose and subjected to an 

identical sample preparation method. In agreement with the previous report,24 the recovery 

(mean ± SD) at a brain homogenate concentration of 3 ng/mL was 102 ± 4%.    

Liquid Scintillation Counting 

All radioactive samples (brain, plasma, HPLC fractions) were measured in a Beckman 

LS6500 liquid scintillation counter with appropriate window settings for 14C. Quench monitoring 

(H-number) and automatic quench correction was applied to convert counts per minute (cpm) 

into disintegrations per minute per gram tissue (dpm/g) or dpm/mL for brain and plasma 

samples, respectively. 
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Pharmacokinetic Analysis 

To determine the BBB permeability to both markers in naïve animals, apparent brain 

uptake clearance (Kin) values were estimated for individual time groups using the following 

equation:25 

 𝐾!" =
!!"
!!"#$

!"#!"#$%#
!!!!"#$ (1) 

where 𝐶!"
!!"#$ and 𝐴𝑈𝐶!"#$%#

!!!!"#$  are the amount of the marker in the terminal brain sample (in units of 

mass/g of brain) corrected for the marker presence in brain plasma and the area under the plasma 

concentration-time curve (AUC) from time zero to the last sampling time, respectively. The 

𝐴𝑈𝐶!"#$%#
!!!!"#$  was estimated by the log-linear trapezoidal rule. Additionally, the Kin values were 

also estimated from the Patlak plot,26 which is defined by the following equation: 

 𝐶!"
!!"#$ 𝐶!"#$%#

!!"#$ = 𝐾!"×𝐴𝑈𝐶!"#$%#
!!!!"#$ 𝐶!"#$%#

!!"#$ + (𝑉!+𝑉!) (2) 

where 𝐶!"#$%#
!!"#$  is the terminal plasma concentration of the marker and Vp and V0 are the volume 

of the plasma space (in the absence of brain vascular washout) and an additional hypothetical 

volume outside the brain parenchyma in which the marker may be rapidly distributed. 

 To allow comparison of data between the [13C] and [14C]sucrose, the mass of the markers 

in the blood and brain were corrected for the injected dose and expressed as percentage of 

injected dose (%ID). 

Statistical Analysis 

Statistical analysis of data was performed using Prism software (GraphPad Software, 

LaJolla, CA). Data with three or more groups were analyzed by one-way ANOVA, followed by 

Tukey’s multiple comparisons. Two-way ANOVA, followed by Bonferroni multiple 
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comparisons, was used for the comparison of AUC, 𝐶!"
!!"#$, and Kin values of [13C] and 

[14C]sucrose at 30, 60, and 240 min. For in vitro stability studies, the relationships between the 

concentration of the marker and time were analyzed using linear regression analysis. In all cases, 

a p value < 0.05 was considered significant. Data are presented as mean ± SD or individual 

values. 

Results 

Plasma Kinetics and Brain Disposition Profiles of [13C] and [14C]Sucrose 

The plasma concentration-time profiles of [13C] and [14C]sucrose in different groups of 

animals, which were euthanized at different time points (15-240 min), are presented in Fig. 1. 

Both markers showed similar profiles with an apparent multiexponential decline in their plasma 

concentrations. Additionally, the respective area under the plasma concentration-time curve from 

time zero to the last sampling time (𝐴𝑈𝐶!"#$%#
!!!!"#$ ), terminal brain concentrations 𝐶!"

!!"#$, and 

apparent brain uptake clearance (Kin) values are presented in Table 1. As expected, the 

𝐴𝑈𝐶!"#$%#
!!!!"#$  values generally increased with an increase in the sampling time for both markers (p 

< 0.01, Table 1). The plasma concentration-time course (Fig. 1b) and AUC values (Table 1) of 

[13C] and [14C]sucrose for the 30 min groups were very similar and not significantly different 

from each other. Although there was a trend towards higher plasma concentrations (Fig. 1c and 

Fig. 1f) and AUC values (Table 1) of [14C]sucrose for the 60 min and 240 min groups, the 

differences between the AUC values of the two markers were not statistically significant (Table 

1).  

In contrast to a significant time-dependent increase in the AUC of both markers (Table 

1), the terminal brain concentrations of both [13C] and [14C]sucrose remained relatively 
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unchanged (P > 0.05) during the 15-240 min sampling period for [13C]sucrose and the 30-240 

min sampling period for [14C]sucrose (Table 1).  Additionally, despite similar 𝐴𝑈𝐶!"#$%!
!!!!"#$  values 

for [13C] and [14C]sucrose, the brain concentrations of [14C]sucrose were, on average, 7-10 fold 

higher than those of [13C]sucrose at the same time intervals (Table 1).  In contrast to the 

relatively constant brain concentrations, there was a progressive decline in the Kin values with an 

increase in the sampling time for both [13C] (p < 0.0001) and [14C] (p < 0.01) sucrose (Table 1). 

Of particular note is the finding that the Kin values for [14C]sucrose were, on average, 6.3 (30 min 

group), 6.4 (60 min group), or 7.6 (240 min group) fold higher than those for [13C]sucrose at the 

corresponding sampling time (p < 0.0001, Table 1). Whereas the Kin values ranged from 0.182 to 

0.382 µL/(min.g) for [14C]sucrose, the values for [13C]sucrose ranged from 0.0241 to 0.0801 

µL/(min.g) (Table 1). 

The Patlak plots for [13C] (Figs. 2a and 2b) and [14C] (Figs. 2c and 2d) sucrose are 

depicted in Fig. 2. These plots were constructed using individual animal data for all the time 

points (Figs. 2a and 2c) or after exclusion of the 240-min groups (Figs. 2b and 2d). As 

demonstrated, exclusion or inclusion of the 240-min group did not substantially affect the 

intercepts or slopes of the plots for either [13C] or [14C]sucrose (Fig. 2).  The Kin values estimated 

from the slopes of the Patlak plots were 0.0229 and 0.173 µL/(min.g) for [13C] (Fig. 2a) and 

[14C] (Fig. 2c) sucrose, respectively, indicating a 7.6 fold higher Kin for [14C]sucrose when 

compared with the corresponding value for [13C]sucrose. Similarly, the intercept of the line, 

which is an indication of a residual volume, was 4.6 fold higher for [14C]sucrose (11.7 µL/g) than 

that for [13C]sucrose (2.54 µL/g) (Fig. 2).     
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Fractionation of Brain and Plasma Samples after In vivo Administration of [14C]Sucrose 

Figure 3 depicts the chromatograms of three individual brain samples (Figs. 3a-3c), 

which were collected 1 h after the in vivo administration of [14C]sucrose, along with the 

chromatograms of their respective dosing solutions. Additionally depicted in the figure are the 

chromatograms of a blank brain homogenate spiked in vitro with [14C]sucrose (Fig. 3d) and a 

representative terminal plasma sample collected 1 h after the in vivo administration of  

[14C]sucrose (Fig. 3e). As demonstrated in Fig. 3, whereas the dosing solutions (Figs. 3a-c), the 

in vitro spiked brain homogenate (Fig. 3d), and the in vivo plasma sample (Fig. 3e) showed a 

single peak related to sucrose at ~4.5 min, the chromatograms of the in vivo brain samples 

contained several prominent peaks, in addition to the peak expected at the sucrose retention time 

(Figs. 3a-3c). In fact, most of the total peak areas in the chromatograms of in vivo brain samples 

could be attributed to the retention times other than that for the sucrose peak (Figs. 3a-3c). We 

also measured the total radioactivities of the brain samples in the unfractionated samples to 

determine the recovery of the radioactivity from the fractionation procedure. The extent of 

recovery for the three samples was 95.0 ± 7.5%, indicating the chromatograms represent an 

almost complete recovery of the radioactivity in the brain samples.   

Stability of [13C]Sucrose in Biological Samples 

To determine the possibility of in vivo metabolism of [13C]sucrose, the stability of the 

marker in various biological media was tested in vitro at 37oC. To avoid saturation of 

metabolism, the concentrations of [13C]sucrose were selected to be much lower than the in vivo 

concentrations achieved after intravenous injection of [13C]sucrose (10 ng/mL ≈ 0.00025 %ID 

per mL; 4 ng/mL ≈ 0.0001 %ID/mL, and 2 ng/mL ≈ 0.00005 %ID/mL). Figure 4 demonstrates 

the concentration-time courses of [13C]sucrose in brain homogenate (Fig. 4a), brain cell co-
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culture (Fig. 4b), liver homogenate (Fig. 4c), and blood (Fig. 4d). There were no significant 

changes in the concentrations of the marker in any of the biological samples tested as the slopes 

of the regression lines for all the biological samples were not significantly (p > 0.05) different 

from zero (Fig. 4). 

Also shown in Fig. 4 are the chromatograms of brain homogenates before (time zero) and 

3 h after incubation of a low concentration (2500 dpm or 0.7 ng per mL) of  [14C]sucrose at 

37oC, followed by HPLC fractionation of the samples (Fig. 4e). As demonstrated, both 

chromatograms showed a single major peak at the expected retention time of sucrose (4.25 min), 

which were virtually superimposable for the zero and 3 h samples, indicating no noticeable 

metabolism of [14C]sucrose during the incubation period. Finally, the recovery of [14C]sucrose 

from the HPLC fractions, relative to the unfractionated samples, was quantitative, indicating 

complete recovery of the radioactivity form the HPLC column during the 15 min run. 

Octanol: Water Partition Coefficient of [13C] and [14C]Sucrose 

The octanol: water partition coefficient (Kp) values of [13C] and [14C]sucrose after three 

successive partitioning procedures are presented in Fig. 5. The Kp values of [13C]sucrose after the 

first (2.75 x 10-4 ± 0.07 x 10-4), second (2.66 x 10-4 ± 0.21 x 10-4), and third (2.63 x 10-4 ± 0.29 x 

10-4) experiments were almost identical (p > 0.05) (Fig. 5a). However, the Kp values of 

[14C]sucrose after the second (4.67 x 10-4 ± 0.41 x 10-4) and third (4.32 x 10-4 ± 0.26 x 10-4) 

experiments were significantly (p < 0.01 and < 0.001, respectively) lower than that after the first 

experiment (5.74 x 10-4 ± 0.40 x 10-4) (Fig. 5b).  Furthermore, the Kp value of [14C]sucrose (Fig. 

5b) after the first experiment was more than two-fold higher than the corresponding value for 

[13C]sucrose (Fig. 5a). Even after the third partitioning experiment, the Kp value of [14C]sucrose 

(Fig. 5b) remained 60% higher than the corresponding value for [13C]sucrose (Fig. 5a). The 
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partition coefficient values for a second lot of [14C]sucrose (Fig. 5c), which was not used in the 

studies reported here, were very similar to those of the lot used in the current studies (Fig. 5b) in 

terms of both absolute values and pattern after successive partitioning.     

Discussion 

The search for ideal markers for the in vivo assessment of BBB integrity has been elusive. 

However, radiolabeled small molecules, such as sucrose and inulin, are believed to be one of the 

most appropriate groups of markers for the evaluation of the BBB integrity in pathological 

conditions.13 In particular, radiolabeled [14C]sucrose has been extensively used for quantitative 

determination of BBB integrity in many in vitro,27-30 in situ brain perfusion,31-36 and in vivo11,18-

22,37-45 studies. This is because sucrose is a water-soluble molecule with no significant 

metabolism after parenteral injection, no binding to plasma or tissue proteins, and very low 

permeability across the intact BBB. However, the literature values for the in vivo permeability of 

intact rat BBB to [14C]sucrose, measured as the Kin value, vary widely, making it difficult to 

determine the true permeability of the BBB to the marker. 

Two different methods have been used in the literature for the determination of the in 

vivo apparent brain influx clearance (Kin) of sucrose.25 The single-brain sample method uses one 

group of animals to determine the terminal brain concentration and the plasma AUC of the 

marker over a defined sampling time (Equation 1).  The multiple-brain sample method is based 

on the Patlak plot (Equation 2), which requires similar data obtained from multiple groups of 

animals with terminal brain samples taken at multiple times after the marker dosing. In the 

current study, we employed both methods for the estimation of Kin using both [14C] and 

[13C]sucrose markers (Table 1 and Fig. 2). Our results show that the single-brain sample Kin 
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values decline with time for both markers (Table 1), and the values for the longest tested 

sampling time (240 min) are close to the corresponding values obtained from the Patlak method 

(Fig. 2). The Kin values obtained from the slope of the Patlak plot are theoretically more accurate 

as any intercept arising from the residual blood contamination in the brain and/or distribution of 

sucrose to a fast-equilibrating space in the brain (represented by V0 in Equation 2)26 does not 

contribute to the Kin value.  

The estimation of Kin using Equation 1 and Equation 2 are based on the assumption that 

brain is a compartment separate from the plasma and other tissues, receiving the marker through 

a unidirectional transfer from the plasma.25,26,46 For very low permeability markers, such as 

sucrose, assuming unidirectional or bidirectional transfer would essentially yield the same results 

if sampling time is relatively short (within minutes to few hours). This is because the main 

determinant of the brain concentration is the rate of entry of the marker into the brain from the 

plasma, where the concentrations are much higher than those in the brain (for [13C]sucrose: 500 

and 100 fold at 15 min and 2 h, respectively; Fig. 1 and Table 1). The rate of back transfer of the 

marker from the brain to plasma would be negligible during the time when plasma 

concentrations are much higher than those in the brain. Using a two-compartment model with 

plasma and brain as separate compartments, Ohno et al.20 predicted that the brain concentrations 

of sucrose would reach its maximum around 60 min after an intravenous dose of the tracer, with 

a very slow rate of decline afterward.20 However, this model did not include the additional, fast-

equilibrating space in the brain (represented by V0 in Equation 2), which was suggested by Patlak 

et al.26 In our studies, we observed relatively constant brain concentrations for both [13C] and 

[14C]sucrose during the entire sampling period (15 min to 4 h) (Table 1). Therefore, our data is in 

agreement with the presence of the fast-equilibrating space in the brain26 and/or contamination of 
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our brain samples with residual blood, which both prominently add to the total brain 

concentrations of the markers at the earlier time points, thus overestimating the brain 

concentrations and Kin values at those single-brain sample points (Table 1). 

Regardless of the experimental design, however, the Kin values obtained for the 

radioactive [14C]sucrose were 6.3-7.6 fold higher than those for [13C]sucrose (Table 1 and Fig. 

2). This surprising finding prompted us to conduct brain fractionation studies, which revealed 

that, indeed, most of the radioactivity in the brain after the in vivo administration of [14C]sucrose 

was attributable to compounds other than the intact sucrose molecule (Fig. 3). In fact, if one 

could accurately estimate and use the radioactivity related to the sucrose peak only (Figs. 3a-c) in 

calculation of Kin values for [14C]sucrose , the 6-7-fold difference in the Kin values between 14C- 

and [13C]sucrose would likely disappear. 

Although it is generally believed that sucrose does not enter cells and is not subject to 

significant metabolism after intravenous administration, the possibility of minor metabolism of 

the marker in the liver by a very low activity sucrase enzyme has been raised.47 Additionally, 

other investigators have shown that α-glucosidase activity, which breaks down starch and 

disaccharides to glucose, is also present in brain tissue.48 Therefore, based on the fractionation 

studies (Fig. 3), we initially hypothesized that the intact [14C]sucrose entered into the brain is 

subsequently metabolized in the brain. However, our in vitro studies with [13C]sucrose in the 

brain homogenates (Fig. 4a) and brain cell co-cultures (Fig. 4b) did not support this hypothesis. 

 Although we tested the in vitro metabolism of [13C]sucrose in brain at concentrations 

that were much lower (Figs. 4a and 4b) than those obtained after in vivo administration of the 

marker (Table 1), these concentrations were still much higher than the in vivo brain 

concentrations of [14C]sucrose (Table 1). Therefore, it might be argued that metabolism of 
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sucrose at [13C]sucrose concentrations used in our in vitro studies (Figs. 4a and 4b) is saturated. 

Consequently, an additional experiment was conducted to test the metabolism of [14C]sucrose at 

very low brain concentrations, similar to those observed after our in vivo experiments (Figs. 3a–

3c). The results of these experiments at low [14C]sucrose concentrations (Fig. 4e) were in 

agreement with those at higher concentrations of [13C]sucrose (Fig. 4a), which showed absence 

of any noticeable in vitro metabolism of sucrose in the brain homogenate. Furthermore, in vitro 

spiking of the brain homogenate and subjecting it to the sample preparation method used in the 

fractionation study did not reveal any additional peaks other than the intact [14C]sucrose (Fig. 

3d). Therefore, presence of substantial peaks appearing in the brain chromatograms after in vivo 

administration of [14C]sucrose (Figs. 3a-c) cannot be attributed to a potentially significant 

metabolism of [14C]sucrose in the brain. 

Alternatively, [14C]sucrose could be metabolized in the periphery and the metabolites 

enter the brain. However, in vitro studies in the liver (Fig. 4c) and blood (Fig. 4d) did not reveal 

any substantial peripheral metabolism of the marker. Nevertheless, our studies do not rule out a 

very minor peripheral metabolism of sucrose to highly BBB permeable metabolites. Although 

the apparent Kin value of [14C]sucrose, traditionally obtained by counting total radioactivity of 

brain and plasma samples without fractionation, is susceptible to error by a potential peripheral 

metabolism, the specific measurement of [13C]sucrose by LC-MS/MS method is devoid of such 

potential problems.    

A previous study23 showed that old stocks of [14C]sucrose produce higher Kin values 

when compared with new stocks of the marker. Based on the Patlak plots, the Kin values for new, 

4-year-old, and 7-year-old stocks of [14C]sucrose showed Kin values across different regions of 

the brain in the ranges of 0.072-0.14, 0.31-0.38, and 0.50-0.58 µL/(min.g), respectively. It was 
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speculated that these differences were due to presence of impurities in the older stocks of 

[14C]sucrose, which could readily cross the BBB. Our stock solution of [14C]sucrose was new 

and the Patlak plot of [14C]sucrose data in our studies (Fig. 2c) resulted in a Kin value of 0.173 

µL/(min.g), which was close to the values reported by Preston et al.23 for their new stock. 

Therefore, we first concentrated on other possibilities, such as the in vivo metabolism of 

[14C]sucrose. However, after failing to demonstrate any appreciable metabolism of [14C]sucrose 

(Fig. 4), we hypothesized that even a new stock solution of [14C]sucrose might have small 

quantities of BBB permeable impurities, which could result in the observed peaks in the brain 

chromatograms (Figs. 3a-c) and an overestimation of the true Kin value. Indeed, our successive 

water: octanol partitioning experiments, demonstrating higher Kp value for [14C]sucrose, 

compared with that of [13C]sucrose, clearly show that the lipid solubility of the two marker 

solutions are not similar as expected. These experiments are in agreement with the presence of 

lipid soluble impurities in the [14C]sucrose solution, which are partially removed by successive 

partitioning (Fig. 5). Collectively, these data suggest that the 6-7 fold higher Kin values observed 

in our studies for [14C]sucrose, compared with [13C]sucrose, is due to the presence of BBB 

permeable impurities in the [14C]sucrose stock solution combined with the non-specific 

radioactive counting of the brain samples. Therefore, the [13C]sucrose Kin values obtained by the 

specific LC-MS/MS method of quantitation should represent a more accurate estimation of the 

BBB permeability to sucrose.  

In addition to the extent of the radioactive impurities, the nature of impurities and their 

BBB permeability properties are important factors that could affect the outcome of studies with 

[14C]sucrose. For instance, Preston et al.23 showed that whereas the new and 4-year-old stock of 

[14C]sucrose showed the same percentage of impurities, the older stock resulted in 3.5 fold 
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higher Kin values. Therefore, presence of even a small percentage of a highly BBB permeable 

impurity may drastically increase the estimated Kin value of [14C]sucrose using the traditional 

nonspecific, total radioactivity counting method. Based on the above considerations, it appears 

also plausible that the true Kin values of other BBB permeability markers may be substantially 

lower than those reported in the literature, at least when used in form of tracers labeled with 

radioisotopes. The polysaccharide inulin may serve as a case in point. It is considered a 

hydrophilic marker of passive permeability with an average molecular weight of 5,000 Da, about 

15 times the molecular weight of sucrose. The estimated Kin of [3H]inulin ranged between 0.044 

and 0.062 µL/(min.g), which was close to half the Kin of [14C]sucrose measured in parallel in the 

same study.19 However, that inulin Kin value is 2-3 fold higher compared to the Kin of 0.0229 

µL/(min.g) as determined in our present experiments for [13C]sucrose. These data suggest that, 

like [14C]sucrose, the previously reported Kin values for [3H]inulin are also an overestimation of 

the true BBB to inulin.   

Radioactive sucrose in any format (14C or 3H-labeled) is unsuitable for clinical use. In 

contrast, nonradioactive sucrose is nontoxic as a nutrient, and it is an ingredient in parenteral 

drug formulations (e.g., iron sucrose and some preparations of IVIG). From that perspective, 

[13C]sucrose could potentially be used in humans as a marker of BBB permeability. An example 

is brain microdialysis sampling, which is applied for metabolic monitoring in neurointensive care 

of patients suffering traumatic brain injury or subarachnoid hemorrhage49 and in clinical studies 

in glioblastoma patients.50 Given the sensitivity and accuracy of the analytical measurement of 

[13C]sucrose by LC-MS/MS, quantification in microdialysate samples after systemic 

administration (e.g., intravenous bolus or infusions) could be used to monitor BBB permeability 

in humans. 
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There are variations in experimental designs in the literature for the in vivo determination 

of Kin values.  For example, whereas some investigators remove the residual blood form the brain 

by in situ perfusion at the terminal sampling time, others use brain vascular markers, such as 

radiolabeled albumin, to estimate the contribution of brain blood to the brain concentrations of 

the marker. Additionally, as mentioned above, some investigators use the single-brain method 

while others use the multiple-brain (Patlak) method. Therefore, the question becomes what 

experimental design would likely yield the most accurate estimate of the true Kin value of 

sucrose. Based on our findings here, we propose to use the [13C]sucrose marker in at least two 

groups of animals with different sampling intervals (such as 1 and 2 h), followed by removal of 

the residual blood, as much as possible using the in situ perfusion of the brain, and construction 

of the Patlak plot. Alternatively, if only one group of animals is used, we suggest a longer 

sampling time (such as 2 h) to reduce the error associated with single-brain sample method at 

earlier time points.  

Conclusions 

In conclusion, our data indicate that the use of [14C]sucrose as a marker of BBB 

permeability might result in a substantial overestimation of the true BBB permeability to sucrose. 

This is mainly due to the non-specific method of quantitation of the total radioactivity in the 

brain, which might contain substantial amounts of radioactive compounds other than the intact 

marker. We suggest that the LC-MS/MS quantitation of the stable isotope (13C) of sucrose is a 

more accurate alternative to the current widespread use of the radioactive sucrose as a BBB 

marker.  
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FIGURE LEGENDS 

Figure 1. Plasma concentration-time courses of [13C] (a-f) and [14C] (b, c, and f) sucrose in rats. 

Different groups of animals (n = 3/group) received a single intravenous dose of [13C]sucrose (10 

mg/kg) or [14C]sucrose (3 µCi). Serial blood samples were taken over 15 (a), 30 (b), 60 (c), 90 

(d), 120 (e), or 240 (e) min for [13C]sucrose or over 30 (b), 60 (c), or 240 (f) min for 14C-sucrose. 

Symbols and bars represent mean and SD values, respectively. 

Figure 2. Patlak plots of [13C] (a and b) and [14C] (c and d) sucrose in rats, including (a and c) 

and excluding (b and d) the 240 min group data. Different groups of animals (n = 3/group) 

received a single intravenous dose of [13C]sucrose (10 mg/kg) or [14C]sucrose (3 µCi). Serial 

blood samples were taken over 15, 30, 60, 90, 120, or 240 min for [13C]sucrose or over 30, 60, or 

240 min for [14C]sucrose. Terminal brain samples were also collected after blood removal. 

Symbols represent individual animals. 

Figure 3. HPLC fractionation of brain samples collected 1 h after the in vivo administration of 

[14C]sucrose (a, b, and c), a blank brain homogenate spiked in vitro with [14C]sucrose (d), and a 

representative plasma sample collected after the in vivo administration of [14C]sucrose (e). For 

comparison, the fractionation of dosing solutions is also shown along with each brain sample (a-

c). For in vivo experiments, a single intravenous dose (100 µCi) of [14C]sucrose was injected into 

the rats (n = 3), and brain (after blood removal) and plasma samples were collected at 1 h after 

dosing. 

Figure 4. In vitro stability of [13C]sucrose in brain homogenate (a), brain cell co-culture (b), liver 

homogenate (c), and blood  (d) and that of [14C]sucrose in brain homogenate (e). [13C]Sucrose 

was incubated at 37oC for 180 min (brain homogenate, liver homogenate, and blood) or 24 h 
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(brain cell co-culture), and serial samples were collected. For comparisons, the time courses of 

[13C]sucrose concentrations in the buffer or medium are also included. The brain (a) and liver (c) 

homogenate experiments were conducted simultaneously using the same buffer control. The 

concentrations of [13C]sucrose were selected to be much lower than the in vivo concentrations 

achieved after intravenous injection of [13C]sucrose (10 ng/mL ≈ 0.00025 %ID per mL; 4 ng/mL 

≈ 0.0001 %ID/mL, and 2 ng/mL ≈ 0.00005 %ID/mL). Symbols and bars represent mean and SD 

values (n = 3), respectively, and the lines represent linear regression analysis of data. For 

[14C]sucrose (e), brain homogenate samples were spiked with 2500 dpm or 0.7 ng per mL of the 

marker and incubated at 37oC for 3 h. Subsequently, samples were taken at zero (before 

incubation) and 3 h and subjected to HPLC fractionation before counting. Also included in Fig. 

4e are chromatograms of blank (vehicle) and tracer solutions. 

Figure 5. Octanol: water partition coefficient (Kp) of [13C] (a) and [14C] (b) sucrose (n = 

5/marker), which were used for in the current in vitro and in vivo studies, and a second lot of 

[14C]sucrose (c), which is demonstrated for comparative purposes (n = 3). Aqueous samples 

were successively partitioned for 3 times. Symbols and horizontal lines represent individual and 

mean values, respectively. **p < 0.01; ***p < 0.001 based on one-way ANOVA, followed by 

Tukey’s post-hoc analysis. 
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