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Dynamic Resource Allocation with Cost Externality

Hao Zhao∗ David Porter†

September 1, 2021

Abstract

The inter-temporal resource allocation efficiency of a property rights-based
common-pool resource system is challenged by a cost externality when one
user’s extraction raises the extraction cost for others. This paper builds a
dynamic resource allocation model to illustrate the efficiency loss from a stan-
dard property rights market. We then create a novel inter-temporal allocation
mechanism that preserves dynamic efficiency. Our dynamic resource allocation
mechanism includes an optimal planning stage where the agents collectively de-
termine a binding extraction target for each period and a market stage where
agents can exchange their extraction rights assigned within each period. The
theoretical model demonstrates that our mechanism can achieve the socially
optimal allocation in two specific environments. A numerical simulation of our
mechanism for a general environment consistently tracks the social optimum
and significantly outperforms the traditional property rights market.

JEL classification: D45, D47, D62, Q58

Keywords: Common-pool resource management, cost externality, dynamic efficiency,
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1 Introduction

Recent studies on common-pool resource (CPR) management have found that well-
defined property rights for the CPR do not necessarily lead to efficient inter-temporal
resource allocation (Anderson et al., 1983; Boyce, 1992; Gardner et al., 1997; Moxnes,
1998a,b; Costello and Deacon, 2007; Fell, 2009; Valcu andWeninger, 2013; Huang and
Smith, 2014). A significant source of the dynamic inefficiency is a cost externality.1

If the cost to exploit a CPR increases with its depletion level, extraction rights
holders will have an incentive to exercise their rights before others. That leads to
an “extraction race” even though the total number of extraction rights is fixed for
everyone. According to the estimation by Bisack and Sutinen (2006) and Huang and
Smith (2014), the loss of dynamic efficiency can reach up to 20 percent of the social
optimum.

Despite the substantial efficiency loss, the literature has yet to develop a solution
to this extraction externality. Many have suggested delineating extraction rights
more precisely, the so-called optimal planning approach (Gisser, 1983; Gardner et
al., 1997; Costello and Deacon, 2007). However, the optimal plan is information-
intensive and easily challenged by the uncertainty from individual heterogeneity and
temporal shocks, not to mention the administrative costs when a third-party “plan-
ner” is involved in the property rights allocation process (Valcu and Weninger, 2013).
In this paper, we propose a dynamic resource allocation mechanism (DRAM) that
combines information aggregation, optimal planning, and market incentives to re-
solve the dynamic inefficiency.

The DRAM includes two stages. In an optimal planning stage, resource users
collectively determine the inter-temporal resource allocation through a majority de-
cision rule. Then in a market stage, in each period, agents start with a share of the
aggregate extraction rights determined in the planning stage, with the share reflect-
ing their initial share of property rights. They can trade their extraction rights in

1The cost externality is also referred to as a stock externality or pumping cost externality (Smith,
1977; Anderson et al., 1983; Negri, 1989; Provencher and Burt, 1993; Gardner et al., 1997; Huang
and Smith, 2014).
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a centralized market within each period, and unused rights will expire at the end of
the period.

This paper examines the effectiveness of DRAM in a theoretical model and an
extension through agent-based simulations. First, we develop a dynamic model to
investigate resource allocation over time under different institutions. As is commonly
documented in the literature, our model confirms that a standard property rights
market cannot fully resolve the “tragedy of the commons”. More importantly, we
characterize individual preferences over aggregate resource allocation across periods.
The solution to the individual problem lays out sufficient conditions when a majority
decision among the individual resource users leads to the socially optimal inter-
temporal resource allocation.

Specifically, our model identifies two unique environments where most resource
users prefer the socially optimal resource allocation over other alternatives. The first
is a homogeneous agent environment where agents’ return functions are a multiplica-
tive scaling to each other. The solution of individual preferences implies that an
agent prefers the socially optimal allocation if her initial share of property rights
represents the share of her extraction over total extraction in the society. The sec-
ond environment is a time-consistent preference environment where individual return
functions remain unchanged over time. Our model illustrates that with quadratic
return functions, most agents will have an individual preference consistent with the
social optimum.

The two specific environments seem to be very restrictive regarding what cir-
cumstances where the DRAM could apply. Therefore, we take the second step by
simulating the dynamic resource allocation of DRAM in a general environment with
individual heterogeneity, temporal shocks, and random property rights assignments,
and compare its performance with the social optimum and property rights market
outcomes. The simulation results suggest that the DRAM closely tracks the so-
cially optimal allocation and consistently outperforms the standard property rights
market. Given the quadratic return functions commonly adopted in the empirical
literature, a majority of agents exhibit a concave preference over the inter-temporal
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resource allocation.2 Therefore, even in the most complex environment, the major-
ity expresses a tendency to allocate resource “evenly” over time, that alleviates the
extraction competition resulted from the cost externality.

The DRAM has the potential to be applied in many real-world resource allo-
cation problems. Typical CPR systems that suffer from a cost externality include
groundwater aquifers and fisheries. The cost of pumping or fishing increases with the
depletion of the resource stock, incentivizing everyone to exercise extraction rights
earlier. Since the return from resource extraction usually displays decreasing returns
to scale due to congestion or concavity in return functions, the excessive extraction
in early periods will cause a welfare loss. In DRAM, the optimal planning stage
internalizes this cost externality through aggregating individual preferences over the
inter-temporal resource allocation and setting a binding extraction target in each
period. The binding targets avoid individual deviations caused by cost externality.
Moreover, the market stage within each period ensures the allocative efficiency of
the fixed extraction quotas.

The majority decision rule in the optimal planning stage is novel to the dy-
namic CPR management design.3 It aggregates individual preferences under a non-
cooperative setting, hence relaxing the prerequisite for optimal planning substantially
and avoiding any inefficiency from collective bargaining and other costs (Ostrom,
1990; Ostrom et al., 1994; Grafton et al., 2006; Cancino et al., 2007; Heintzelman et
al., 2009; Deacon et al., 2012; Richter et al., 2013; Holland, 2018). Real-world exam-
ples for resource allocation cooperatives have been found in groundwater and fishery
management (see Costello and Deacon (2007) and Ovando et al. (2013) for examples
of fishery cooperatives). For instance, in the Raymond basin of Southern California,
after groundwater rights adjudication (users collectively define and ration pumping
rights of the aquifer), pumping rights holders form a watermaster, an agency charged

2For example, Huang and Smith (2014) employ a quadratic function for the fishermen’s value
obtained from vessels. Fell (2009) and Valcu and Weninger (2013) use quadratic cost functions
to establish the convexity of efforts in fishing cost that is equivalent to the concavity of efforts in
return as established by the quadratic return functions.

3Walker et al. (2000) and Bernard et al. (2013) conduct experiments to investigate how binding
voting affects extraction in a static open access CPR system.
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with administering adjudicated water rights, to determine annual extraction rights
supply to the whole basin. The annual yield is adjusted according to drought cycles
and deficit pumping is limited to a negligible extent to avoid over-extraction. It is
noteworthy that within the watermaster, board members make decisions through
majority voting. Therefore, not only is the DRAM a theoretical proposition but also
it has proved practical in real-world applications.

The remainder of the paper is organized as follows. Section 2 presents the dynamic
resource allocation problem and demonstrates resource allocation under the social
optimum and property rights market. Section 3 introduces the dynamic resource
allocation mechanism. Section 4 compares the simulated allocation outcomes under
the DRAM and property rights market. Section 5 offers concluding remarks.

2 Dynamic Resource Allocation Problem

The presence of a cost externality results in a declining value of the CPR stock
as resource is withdrawn. A standard rights-based market for the CPR can not
fully capture this stock value heterogeneity and therefore does not guarantee first-
best economic outcomes. This section introduces the underlying dynamic resource
allocation problem that is abstracted from rights-based CPR management, such as
groundwater extraction. Within this framework, we identify the socially optimal
allocation and demonstrate the inefficiency of a property rights market.

In our model, there are N ≥ 2 agents who own extraction rights (or property
rights) to a CPR. The total resource rights equal Q and expire after T ≥ 2 periods.4

Unlike the classic CPR problem, in this model, we assume that the extraction rights
to the resource are well-defined and assigned to the agents before extraction. There-
fore, there is no quantity externality that each agent’s extraction affects the amount of
resource available to others. Instead, we consider that the conflict of interests among
the agents comes from the cost externality that one agent’s extraction will raise the
extraction cost for others. Specifically, we assume that the resource’s marginal ex-

4In the example of groundwater extraction, this corresponds to the situation where N pumpers
share Q units of groundwater stock within T years.
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traction cost increases with the existing depletion linearly: MC(X) = kX, where
MC denotes the marginal cost, X is the existing depletion level, and k is a cost
parameter. We further assume that the agents pay the same average extraction cost
within a period.5 For example, in period t, the starting level of depletion, Dt, and
the total amount of extraction, Xt, result in an average extraction cost k(Dt + Xt

2
)

for each agent.

The return to the extracted resource differs by time and the identity of the agent.
Specifically, agent i’s return from extraction xit in period t is fit(xit), where f ′′(·) < 0

indicates a concave return function. We also impose a boundary condition f ′(0) > 0

and f ′(Q) < 0 to ensure that a single agent does not use all the resource. Agent
i’s profit in period t is the difference between her return and the total cost paid for
the resource. For simplicity, we assume that there is no discount of individual utility
regarding the profit across time. Therefore, an agent’s target is to maximize her
total profit over the T periods.

In this section, we derive two resource allocation equilibria. The first is the social
optimum, where the extraction by each agent i in each period t maximizes the total
social welfare across the T periods. One can think about the social optimum as
the case where a social planner who knows every agent’s preference assigns property
rights xit to agent i in period t that solves the social welfare maximization problem.
The socially optimal allocation serves as a benchmark for comparison, as it indicates
the maximal potential welfare that could be achieved in the economy.

We then move to the agent-based model and derive the equilibrium with a contin-
uous property rights market where the agents can trade their property rights freely
through the T periods. In both cases, the total amount of resource extraction is
limited to Q, which serves as an aggregate resource constraint for the economy:∑

i,t xit ≤ Q.

5There are two ways to interpret this assumption. We can think about the “period” as the
minimal time instant at which the agents conduct an action, or we consider that the agents extract
the resource each at a constant rate during the whole span of a “period.”
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2.1 Social Optimum

Aggregating over the marginal costs, the total extraction cost across T periods is

∑
t=1,...,T

k(Dt +
Xt

2
)Xt =

k(
∑

tXt)
2

2
=
k(
∑

i,t xit)
2

2
(1)

where Xt =
∑

i xit is the total extraction in period t. We normalize the starting level
of depletion as 0, so Dt = 0 for t = 1 and Dt =

∑
s=1,...,t−1Xs for t > 1.

The socially optimal (SO) resource allocation is determined by maximizing the
aggregate return net of the total extraction cost in T periods:

max
{xit|i=1,2,...,N ;t=1,2,...,T}

∑
i,t

fit(xit)−
k(
∑

i,t xit)
2

2
s.t.

∑
i,t

xit ≤ Q. (2)

The problem has two different sets of solutions depending on whether the resource
constraint binds or not. When Q is large enough, resource use by each agent is only
constrained by the rising cost of extraction. At the optimum, the marginal return
of resource is equalized across all agents and periods, and it is equal to the marginal
cost at the end of period T. Denote the total depletion in the equilibrium by Q̄. The
socially optimal allocation is xSOit = f ′−1it (kQ̄) for all i, t with

∑
i,t x

SO
it = Q̄.

The second solution, which we focus on, is obtained when the aggregate resource
constraint binds (Q ≤ Q̄). Unlike in the first case, the amount of resource Q is
relevant in the derivation of socially optimal allocation. We can think about Q as a
regulatory cap imposed by the government to prevent over-depletion of the resource.
Under the socially optimal allocation, the resource is distributed to the agents within
the limit Q. Since the individual return function is concave, in the equilibrium, the
marginal return of resource is the same across agents and time, and the aggregate
extraction equals the cap:

f ′it(x
SO
it ) = f ′js(x

SO
js ) ∀ i, j, t, s s.t.

∑
i,t

xSOit = Q. (3)
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2.2 Property Rights Market

The equilibrium equation (3) that defines the social optimum is unlikely to hold when
the agents make the extraction decisions by themselves since the extraction cost rises
with depletion. Even with a well-established property rights market, it only ensures
equalized marginal profit across agents within a period. However, due to the cost
externality, everyone values the resource more in earlier periods, resulting in a market
allocation where the resource is depleted faster than the social optimum. Below we
formally illustrate the property rights market equilibrium with cost externality.

Consider an arbitrary allocation of total extraction rights Q among the agents at
the beginning of period 1. Denote the extraction rights held by individual i at the
beginning of period t by Rit.

∑
iRi1 = Q. We assume the agents trade their rights at

the beginning of each period, and trading results in an equilibrium price pt in period
t.6 Given the market price, agent i first chooses her net purchase rit, then decides
her extraction xit. Note that agent i’s choice of extraction xit will affect the amount
of resource left after period t, hence the resource’s price and allocation in all the
following periods. Therefore, in period t, the agent solves a dynamic optimization
problem

max
{xis,ris}Ts≥t

T∑
s≥t

[fit(xis)− k(Ds +
Xs

2
)xis − psris] s.t. xis ≤ Ris + ris, (4)

where the individual property rights holding Ris satisfies the transition equation

Ri,s+1 = Ris + ris − xis. (5)

The state variables of the dynamic system are the property rights allocation Rit

for each agent i at the beginning of period t. Denote the rights allocation across all
6The property rights market described in this model is how the standard market is implemented.

Maybe there is a way to redefined the property rights to take into account the cost externality, but
that would require knowledge beyond the purview of the planner.
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the agents in period t as {Rt}. Agent i’s value function is

vit({Rit}) = fit(xit)− k(Dt +
Xt

2
)xit − ptrit + vi,t+1({Ri,t+1}) (6)

with Ri,t+1 = Rit + rit − xit. Her individual optimization problem in period t can be
reformulated as

max
xit,rit

vit({Rit}) s.t. xis ≤ Ris + ris. (7)

There is also a market-clearing condition∑
i

rit = 0 ∀ t. (8)

Given f ′(0) > 0 and the market-clearing condition, the price in the market is always
non-negative: pt ≥ 0. The first-order condition for the optimization problem (7)
yields a no-arbitrage condition

pt = ps ∀ t, s. (9)

Denote the no-arbitrage market price by pM , where the subscript M denotes the
outcome variables in the market equilibrium. The first-order condition for agent i is

f ′it(x
M
it )− k(DM

t +
XM
t

2
+
xMit
2

) = pM ∀ t. (10)

The first-order condition and the binding resource constraint
∑

i,t x
M
it = Q determine

the resource allocation in the property rights market equilibrium.

Moreover, the first-order condition suggests that the difference between marginal
return and marginal extraction cost equals a constant for all the agents and time.
As the accumulated depletion increases with time, the marginal cost of extraction
also increases with time. To balance the rising cost, the equilibrium marginal benefit
for each agent needs to increase with time. Compared with the social optimum,
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agents use more resources in earlier periods and fewer resources later. This result is
summarized in the following proposition.

Proposition 1. There exists a period t ∈ [1, T ) that for all periods s ≤ t, agents use
more resources under the property rights market equilibrium than the social optimum
(XM

is > XSO
is ), and for all periods s > t, agents use fewer resources under the property

rights market equilibrium than the social optimum (XM
is < XSO

is ).

Proof. See Appendix B.1 for the proof.

Proposition 1 demonstrates that the straight market approach is not able to deliver
a fully efficient resource allocation outcome. However, for the command-and-control
regime to out-perform the market, the planner requires specific knowledge of indi-
vidual preferences. Next, we will show that there is a way to fix the rights-based
management system with incentives while avoiding the difficulty of information ac-
quisition faced by the social planner.

3 Dynamic Resource Allocation Mechanism

So far, we have shown that the property rights market only yields a sub-optimal
resource allocation when a cost externality exists. In theory, optimal planning can
generate the first-best allocation, but it is difficult to design the optimal plan since
the planner may not perfectly observe individual preferences. Moreover, the rigid
plan may also limit the agents’ ability to respond to unanticipated profit shocks.

This section introduces a market design that combines the advantages of optimal
planning and the property rights market to solve the dynamic resource allocation
problem. The mechanism includes two key steps. The first is an optimal planning
stage where the agents collectively decide the total resource supply in each period.
The second is a market stage where the total resource supply determined in the first
stage is allocated to the agents through a within-period extraction rights market.
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3.1 Market Stage

Individual decisions in the optimal planning stage depend on the allocation outcome
in the market stage. Therefore, before investigating the individual preferences over
the aggregate resource allocation, we first specify rules for the market. Here we
assume a perfectly competitive market, so the equilibrium price in each period always
equals the agents’ marginal benefit minus the average cost of extraction within that
period.

Given the competitive equilibrium price pt and total resource supply St in period t,
the total market revenue is ptSt. In the DRAM, we impose a market revenue sharing
rule that agent i’s share of market revenue σi equals her initial share of property
rights: σi = Ri1

Q
. For example, this outcome can be obtained from a multi-unit

ascending-bid consignment auction where total auction revenue is returned to agents
according to their share σi (Hahn and Noll, 1982; Khezr and MacKenzie, 2018). In
this case, agent i earns a market revenue σiptSt.

Market competitiveness implies that the within-period resource allocation is ef-
ficient. The revenue share σi, as we will show later, plays an important role in
correcting the distortion in agents’ incentives caused by individual heterogeneity.
The revenue sharing rule based on each agent’s property rights share is also politi-
cally appealing since it ensures that the yield from property rights is the same across
individuals.7 All that remains in the mechanism design is to specify the rules of
collective action in the optimal planning stage so that the inter-temporal resource
allocation reflects the social optimum. Next, we will derive individually optimal re-
source supply in each period. Based on the individual preferences, we then discuss
potential decision rules that can implement the optimal planning outcome.

3.2 The Individual’s Problem

Denote the inter-temporal aggregate resource supply by {St}Tt=1, with
∑

t St = Q.
Agent i prefers the allocation {St} that solves the individual profit maximization

7Schott et al. (2007) show that output sharing provides a free-riding incentive to offset overuse
in a CPR experiment.
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problem

max
{St}

∑
t

[fit(xit)− ptxit − k(Dt +
St
2

)xit] + σi
∑
t

ptSt. (11)

In each period t, the individual pays a market price pt for each unit of resource she
extracts, while she also earns σiptSt from the total market revenue according to the
market revenue sharing rule.8 The agent also pays a unit extraction cost k(Dt + St

2
)

that depends on the existing depletion Dt and the total extraction St in period t.

Note that, in the individual problem, the total resource constraint binds, Xt = St,
for all periods t = 1, ..., T . In this market design, the resource supply in each period
is strictly fixed. Unused rights will forfeit and then be reallocated to others through
a secondary market, and saving for the future is not allowed. In reality, there might
be excessive use beyond individual rights. Agents should purchase extra rights from
others to make up for any deficit through the secondary market. If the overall
extraction exceeds the cap St, those violators must pay a large enough fine, so it is
strictly preferred to abide by the resource constraint.

On the equilibrium path, the individual extraction xit and market price pt are
derived from the within-period optimization problem

max
xit

fit(xit)− ptxit − k(Dt +
St
2

)xit (12)

with
∑

i xit = St. Note that, the agent’s share of market value σiptSt is independent
of individual extraction decision since agents are price takers.

The first-order condition yields

f ′it(xit) = pt + kDt +
kSt
2
. (13)

In equilibrium, every agent obtains the same marginal return since the resource price
and extraction cost are the same across individuals.

8For example, in a consignment auction, the agent pays pt for her bid xit of the resource, and
receives a fraction of the auction revenue, σiptSt, when the auction closes.
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Denote the marginal return by Kt: Kt = pt + kDt + kSt

2
. From the first-order

condition, we have
xit = f ′it

−1
(Kt). (14)

The period t resource constraint can be rearranged as

St =
∑
i

xit =
∑
i

f ′it
−1

(Kt). (15)

Since f ′it is a decreasing function (f ′′(·) < 0), there is a one-to-one mapping between
total resource supply St and the marginal return of extractionKt. As a result, Kt can
be expressed as a function of St: Kt = Kt(St). Consequently, individual extraction
xit = f ′it

−1(Kt(St)) and market price pt = Kt(St) − kDt − kSt

2
are also functions of

St.

The total market revenue across T periods can be expressed as

∑
t

ptSt =
∑
t

[Kt(St)− kDt −
kSt
2

]St

=
∑
t

Kt(St)St − k
Q2

2
.

As a result, agent i’s inter-temporal profit maximization problem can be rewritten
as

max
{St}

∑
t

uit(St)− σik
Q2

2
(16)

where uit(St) = fit(xit(St))− xit(St)Kt(St) + σiKt(St)St.

The first and second-order derivatives of uit to St are

u′it(St) = −xit(St)K ′t(St) + σiStK
′
t(St) + σiKt(St) (17)

u′′it(St) = [2σi − x′it(St)]K ′t(St) + [σiSt − xit(St)]K ′′t (St). (18)

The individual problem takes an interior solution at {St} if u′it(St) = u′is(Ss) for all
s, t and

∑
t u
′′
it(St) < 0, or a corner solution at St = Q for some t and Ss = 0 for all

13



s 6= t if
∑

t u
′′
it(St) > 0. Note that, if the individual problem takes multiple extrema,

the solution is the extremum that yields the highest profit.

By definition, Kt(St) = f ′it(xit). Hence, the allocation of resources reaches the
social optimum when Kt(St) = Ks(Ss) for all s, t = 1, ..., T . Therefore, the cor-
ner solution to the individual problem cannot be socially optimal. The following
proposition establishes a necessary and sufficient condition for an individual interior
solution to be consistent with the social optimum.

Proposition 2. Agent i prefers the socially optimal allocation if and only if at the
solution {St} of the individual problem,

(C1)
∑

t u
′′
it(St) < 0 and

(C2) u′it(St) = u′is(Ss) ⇒ Kt(St) = Ks(Ss).

The proof of Proposition 2 is as follows. Condition (C1) implies that the solution
is an interior solution at which u′it(St) = u′is(Ss) for all s, t. Then condition (C2)
demonstrates that the solution that satisfies u′it(St) = u′is(Ss) also satisfies Kt(St) =

Ks(Ss), or f ′t(·) = f ′s(·), the equation that defines the social optimum. Combining
the two conditions, we obtain the result that the individual preference is equivalent
to the social optimum.

To check the necessary and sufficient conditions, we need to solve the individual
problem and evaluate the first and second-order conditions at the solution. That
requires detailed model specifications to calculate u′i(St) and u′′i (St) in each period.
To avoid such complexity, we examine a set of stricter conditions that preserve the
sufficiency to establish the equivalence between individual preference and social op-
timum.

Following Proposition 2, a sufficient condition for the equivalence between indi-
vidual preference and social optimum is that for all {St},

(C1′) u′′it(St) < 0 and
(C2′) u′it(St) = u′is(Ss) ⇒ Kt(St) = Ks(Ss).

14



Note that if the individual problem has a unique extremum, condition (C2′) is
the same as the necessary condition (C2). As for condition (C1), the necessity only
requires

∑
t u
′′
it(St) < 0, which can hold even if in some periods, u′′i (St) > 0. Applying

the stricter version u′′i (St) < 0 only requires checking the sign of each u′′i (St). Since
both conditions (C1′) and (C2′) are stricter than the original conditions (C1) and
(C2), they are sufficient to align individual preferences with the social optimum.

In this model, individual return functions differ by two dimensions: agent identity
and time. As shown by equations (17) and (18), when heterogeneity exists in both
dimensions, an agent’s preference over aggregate resource allocation is not guaranteed
to satisfy the sufficient conditions (C1′) and (C2′). Hence the individual may not
prefer the socially optimal resource allocation. However, since∑

i

u′it(St) = Kt(St) (19)∑
i

u′′i (St) = K ′t(St) (20)

and
K ′t(St) =

dKt

dSt
=

1
dSt

dKt

=
1∑

i
1

f ′′it(f
′
it
−1(Kt))

< 0, (21)

the whole society, or the “average” agent, prefers the social optimum. It follows that
every agent will prefer the social optimum if the return function and initial property
rights share are the same for all agents.

Beyond the “average” agent, our model also identifies two specific environments
where a majority of agents will prefer the optimal plan. The first is a homogeneous
agent environment, where in each period, agents’ return functions are a multiplicative
scaling to each other. The second is a time-consistent preference environment where
individual return functions are quadratic and consistent over time. In the following
two subsections, we will develop the formal model of the two environments and
present the corresponding designs of the dynamic resource allocation mechanism.

15



3.3 Homogeneous Agents

Previously we have shown that all agents prefer the social optimum if their initial
property rights shares and return functions within each period are identical. We
extend this result to the environment where individual return functions are a multi-
plicative scaling to each other.

Define two agents i, j as homogeneous agents if there exists a constant µij such
that i’s return equals µij times of j’s return when i’s extraction equals µij times of
j’s extraction. Namely,

fit(µijxjt) = µijfjt(xjt). (22)

µij captures the relative “size” of i and j. For example, if µij = 2, i’s return from
extraction 2xjt equals twice of j’s return from extraction xjt, or i behaves as two j’s
together. By definition, µijµji = 1, and µij is constant over time.

This condition can be found with a group of farmers who share a groundwater
basin. Suppose the return of water at each acre of farmland is constant, and other
sources of economies of scale are negligible. Then one farmer using x units of water
to irrigate µ acres of land generates the same return as µ farmers using x

µ
units of

water to irrigate 1 acre of land.

In an environment where all agents are homogeneous to each other, we can express
every agent j’s return using the return function of i: fjt(xjt) = 1

µij
fit(µijxjt). It

follows

f ′jt(xjt) =
1

µij
f ′it(µijxjt) · µij = f ′it(µijxjt) (23)

f ′′jt(xjt) = f ′′it(µijxjt) · µij. (24)

As shown in equation (13), in the equilibrium, every agent receives the same
marginal return: f ′it(xit) = f ′jt(xjt) = Kt(St) for all i, j. According to equation (23),
the equilibrium extractions by individual i and j must satisfy the following equation

xit = µijxjt. (25)
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Since µij is constant over time, in each period t, agent i takes a fraction µij∑
i µij

of
total resource supply St, which also represents i’s return share and is also constant
over time.

Meanwhile, by equations (14) and (21),

x′it(St) =
1

f ′′it(f
′
it
−1(Kt))

K ′t(St) =

1
f ′′it(f

′
it
−1(Kt))∑

i
1

f ′′it(f
′
it
−1(Kt))

=

1
f ′′it(xit)∑
i

1
f ′′it(xit)

. (26)

According to equation (24), 1
f ′′it(xit)

= µij
1

f ′′jt(xjt)
when xit = µijxjt. Hence in the

equilibrium,

x′it(St) =

1
f ′′it(xit)∑
i

1
f ′′it(xit)

=
µij∑
i µij

, (27)

which also equals agent i’s extraction share in each period.

Therefore, if the initial property rights allocation is set to be σi =
µij∑
i µij

, agent
i’s individual problem has the following first and second-order derivatives of uit with
respect to St :

u′it(St) = σiKt(St)

u′′it(St) = σiK
′
t(St).

Equation (21) confirms that K ′t(St) < 0. As a result, the sufficient conditions (C1′)
and (C2′) hold, and we have the following proposition.

Proposition 3. If the resource users are homogeneous agents, and if agent i’s initial
property rights share σi =

µij∑
i µij

, the agent will prefer the socially optimal inter-
temporal resource supply, St =

∑
i x

SO
it , over all other allocations.

The specific DRAM design should include

Step 1: Each agent i is assigned σi =
µij∑
i µij

share of resource rights;
Step 2: In the optimal planning stage, any subset of the agents decide the aggregate

resource supply {St} over the T periods;

17



Step 3: In the market stage, participants can trade their shares of the resource supply
St in each period t.

The property rights assignment in step 1 is usually referred to as “grandfathering”.
Although the regulator may not perfectly observe each agent’s return function, he
can infer the relative size of agents, µij, by checking their historical production or
resource extraction. In this case, trading the share of resource rights has to be
associated with the trading of the production units such as land, so that after the
trade, an agent’s share of property rights still equals her extraction share in each
period.

According to Proposition 3, an agent i will prefer the socially optimal allocation
plan if her initial property rights share σi =

µij∑
i µij

. Therefore, if the property rights
assignment follows the “grandfathering” principle, every agent in this economy will
prefer the optimal plan. Hence in the optimal planning stage, anyone can make the
socially optimal choice of {St}. Consequently, in the market stage, since each agent’s
share of market revenue equals her initial share of property rights, the market reaches
a no-trade equilibrium. Nobody will sell or purchase additional extraction rights at
the competitive price. Therefore, the market is redundant and can be replaced by
an allocation rule that each agent i receives σi share of the resource supply in each
period.

A caveat to the DRAM design in the homogeneous agent environment is that the
initial property rights assignment σi needs to strictly follow the size ratio µij∑

i µij
.

Any disturbance that causes σi to deviate from the ratio will result in an individual
preference different from the social optimum. A potential way to fix the “mistake” in
the property rights assignment process is to introduce a majority decision rule in the
optimal planning stage. In that case, as long as most agents’ property rights share
reflects the size ratio, a majority decision can still yield the socially optimal resource
allocation. A well-functioning market in the market stage is then required to fix the
deviation in σi so that the within-period resource allocation is efficient.

In this model, we have shown that when the users are homogeneous agents, re-
source allocation can achieve social optimum if the inter-temporal resource allocation
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is determined by the agents themselves. Compared with the DRAM, optimal plan-
ning by the regulator might be infeasible as it requires access to agents’ private
information of return functions in each period. Moreover, the return functions may
change over time due to unexpected profit shocks. The DRAM can account for the
shock by repeating the optimal planning stage at the beginning of each period, while
an optimal plan set by the regulator might be inflexible to make such adjustments.

3.4 Time-Consistent Preferences

The other case where the DRAM can generate the socially optimal allocation is when
the agents’ preferences are consistent over time: fit(x) = fis(x) for all s, t.9

In the time-consistent preference environment, specifically, we assume that the
agents’ return functions are quadratic. It follows that f ′′′(x) = 0 and

K ′′(S) = −
d2S
dK2

( dS
dK

)3
= 0 (28)

since d2S
dK2 = −

∑
i
f ′′′i (f ′i

−1(K))

(f ′′(f ′i
−1(K)))3

= 0. As a result, the first and second-order derivatives
of uit with respect to St in agent i’s problem are

u′it(St) = −xi(St)K ′(St) + σiStK
′(St) + σiK(St)

u′′it(St) = [2σi − x′i(St)]K ′(St).
9The time-consistency of individual preferences is challenged by profit shocks that occur over

time. However, if the profit shocks are unanticipated, the consistency still holds ex ante. Namely,
in period t, agent i perceives fis(x) = fit(x) for the future period s > t, even though an unexpected
shock in period s may cause fis(x) 6= fit(x) ex post. Given the ex ante time-consistent preferences,
the allocation outcome under DRAM is ex ante optimal.
If the profit shocks are predictable, the time-consistency of preferences shall still hold in a com-

plete market environment where financial tools are created to hedge the foreseeable risk. For
example, oil prices fluctuate with economic cycles that may cause heterogeneity in the value of oil
extraction over time. However, oil companies can sell oil futures in the financial market to lock in
profits, and thus the pumpers’ preferences over extraction could still be considered time-consistent.
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(C2′) of the sufficient condition always holds since u′it(St) is independent of time.
Let σi, agent i’s property rights share, also represents her decision power in the
collective decision-making process. Define a majority J as a set of agents whose
total decision power exceeds 1/2:

J = {j1, j2, ...jm, ..., jM |
∑

m=1,...,M

σjm >
1

2
}. (29)

We show that (C1′) of the sufficient condition holds for a majority in the following
lemma.

Lemma 1. There exists a majority set J such that u′′jmt(St) < 0 for all jm ∈ J .

Proof. See Appendix B.2 for the proof.

As the sufficient condition holds for a majority of agents, the socially optimal
allocation can be implemented through majority decision-making.

Proposition 4. If the resource users have time-consistent preferences, and if in-
dividual return functions are quadratic, there exists a majority J who prefers the
socially optimal property rights allocation, St =

∑
i x

SO
it , over all other allocations.

The specific DRAM design should include

Step 1: In the optimal planning stage, agents decide the aggregate resource supply {St}
over the T periods through a majority decision-making procedure;

Step 2: In the market stage, participants can trade their shares of the resource supply
St in each period t.

Unlike in the homogeneous agent model, when the agents have time-consistent
preferences, the initial assignment of property rights σi is irrelevant to the DRAM
allocation. However, in the optimal planning stage, the decision-making rule is
stricter, as it requires a majority to determine the socially optimal allocation. A
well-functioning market in the market stage is also necessary to induce within-period
allocative efficiency.
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As for the detailed majority decision-making mechanism, since a majority strictly
prefers the socially optimal allocation, any mechanism that abides the majority’s
preference will work. For example, the policymakers can collect supply allocation
proposals from the agents and ask them to vote for their preferred proposal. The
median voter, weighted by decision power, will decide the allocation.10 Note that,
since individual preferences are fixed over time, the resources are equally distributed
over time in the socially optimal allocation: St = Q

T
. Therefore, the social optimum

is public information, and the majority decision making could be organized as a
majority voting system where agents vote over St = Q

T
and other alternatives.

In this environment, a third party like the government can implement the optimal
plan directly. However, since the initial property rights allocation σi is arbitrarily
determined, a subset of agents might have a convex preference over the aggregate
resource allocation:

∑
t u
′′
it(St) > 0 (see the proof of Lemma 1 in Appendix B.2).

Those agents strictly prefer an extreme allocation with St = Q for some t and Ss = 0

for s 6= t. Thus, the government’s optimal plan may face severe resistance from a
subset of the population, and majority voting might be more politically acceptable.

In summary, the DRAM design to apply to a general environment is as follows:

Step 1: Each agent i is assigned σi =
µij∑
i µij

share of resource rights;
Step 2: In the optimal planning stage, agents decide the aggregate resource supply {St}

over the T periods through a majority decision-making procedure;
Step 3: In the market stage, participants can trade their shares of the resource supply

St in each period t.
10The water districts in adjudicated basins of Southern California have adopted a similar decision-

making structure. A water district usually establishes a management board with the board seats
distributed to pumping rights holders based on their rights share. The board will collectively decide
the total pumping rights available (the so-called varying safe yield) each year.
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4 Comparison of DRAM and Market Allocation in
a General Environment: Numerical Simulations

Our theory has revealed that the DRAM can generate the socially optimal resource
allocation in a homogeneous agent or time-consistent preference environment. How-
ever, in a general environment where individual heterogeneity and temporal shocks
coexist, the DRAM does not guarantee a social optimum. An interesting question
remains as to how well the DRAM performs in a general environment, especially
when compared to the standard property rights-based market. To provide some in-
sights into this comparison, we run numerical simulations of the DRAM and market
allocation outcomes in an environment where the return functions vary across both
agents and time.

Consider the following form of the return function for agent i in period t:

fit(x) = −µij(a+ ζt + bi −
x

µij
)2 + ci (30)

where µij is the relative size of i to j as defined in the homogeneous agent model;
ζt is a common shock to all agents that differs by time; bi and ci are individual
heterogeneity that is constant over time. When bi = bj for all i, j, the individual
return function fits a homogeneous agent environment.11 When ζt = ζs for all s, t,
the return function fits a time-consistent preference environment.

The parameter values applied in the simulations are shown in Appendix Table
A.1. Specifically, the relative agent size µij is evenly distributed over the range
[1, 4] (namely, the largest agent’s size is around four times the size of the smallest
agent). The individual property rights share σi is initially set as σi =

µij∑
i µij

. The
individual heterogeneity factor bi and temporal profit shock ζt are drawn from a
uniform distribution U(0, 1). The two random sequences bi and ζt are depicted in
Figure 1 to illustrate their volatility.

11Although a strict definition of homogeneous agent also requires that ci = µijcj , the constant
term does not affect the decision on xi since it is not included in the marginal return function.
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Figure 1: Simulation of Random Factors bi and ζt
Note: This figure illustrates the volatility of random parameters used in the numerical simulations.
Sub-figure 1(a) demonstrates individual specific profit terms among the 100 agents. Sub-figure 1(b)
demonstrates the common profit shocks over the 20 periods.

In the simulation, we make three critical assumptions on agents’ behavior. First,
we assume that the agents have full information on individual heterogeneity bi, tem-
poral shock ζt and property rights share σi across all the T periods. Therefore, even
in a non-stationary environment where individual heterogeneity and property rights
share change over time, and temporal shocks vary across individuals, the agents
fully anticipate those variations and can make decisions accordingly. The second
assumption is that in the optimal planning stage, agents always reveal their true
preference regarding the inter-temporal allocation of resource. Therefore, the major-
ity decision-making process always conforms to the median voter’s choice.12 Lastly,
we assume that the extraction rights trading always reaches competitive equilibrium
in the market stage. The three assumptions simplify the process to find the equi-
librium allocation outcomes under different institutions, while we also acknowledge

12Theoretically, a majority of agents could form a coalition to obtain a more preferred inter-
temporal allocation than the medium voter’s allocation scheme, as shown in Boylan et al. (1996).
However, according to the experimental results in Boylan et al. (1991), in an anonymous voting
environment, the majority decision is likely to converge to the medium voter’s preference.
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that the comparison between DRAM and property rights-based market allocations
does not hinge on any of the three conditions.

The simulation for each resource allocation regime proceeds as follows. In the
property rights market equilibrium, there is a no-arbitrage resource price pM that
applies to every agent and period. Hence the market allocation can be simulated
following the procedure:

1. Calculate each agent’s demand for extraction rights xit in each period given a
resource price p;

2. solve for the value p such that
∑

i,t xit = Q;
3. calculate xit and f(xit) given p.

The social optimum is achieved when marginal returns are equalized across indi-
viduals and time. Hence the socially optimal allocation can be simulated following
the procedure:

1. Calculate each agent’s demand for extraction rights xit in each period when
marginal return equals p;

2. solve for the value p such that
∑

i,t xit = Q;
3. calculate xit and f(xit) given p.

For the DRAM allocation, in the optimal planning stage, each agent reveals her
preference over the aggregate source supply scheme {St}, and the social choice is
determined by the median voter (weighted by agents’ decision power σi). Note that,
since the identity of median voter may change over time, the optimal planning stage
needs to be repeated at the beginning of each period. The social choice of Ss in
period s can be simulated following the procedure:

1. Calculate each agent’s demand for extraction rights xit in period t ≥ s given
a resource price pt, the aggregate resource allocation plan {St}t≥s, and the
existing depletion Ds before period s;

2. solve for the value pt such that
∑

i xit = St;
3. calculate each agent’s return fit(xit) given pt and St;
4. calculate each agent’s total return

∑
t≥s fit given {St}t≥s;
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5. solve for the {Sit}t≥s that maximizes each agent’s total return subject to the
resource constraint

∑
t≥s Sit = Q−Ds;

6. find the weighted median of Sis with the weights being each agent’s property
rights share σi.

We run the procedure above from period 1. After determining the social choice of
S1, we can calculate D2 and then simulate the social choice of S2. The same process
repeats until the last period. Given the social choice of {St}, we can finally calculate
individual extraction and return xit and f(xit) accordingly. The social extraction
and return is calculated by summing up individual values in each period.

Next, we will present the simulated social extraction and return over time in the
two baseline environments. Then we allow ζt and bi to vary simultaneously. Note that
the heterogeneity within bi and ζt are independent of each other; namely, the same
individual heterogeneity persists over time. We will relax this condition by shuffling
bi in each period. We also mix σi, the agents’ property rights share, to differentiate
the environment from the homogeneous agent model. Lastly, we augment the random
factors to examine how the DRAM performs in an adequately volatile environment.

4.1 Baseline Environments

A homogeneous agent environment requires bi = bj for any agents i, j. Hence we
replace bi by 1

N

∑
t bi, its average value over the N agents. The simulated social

extraction and return in each period are presented in Figure 2. In the time-consistent
preference environment, we replace the temporal shock ζt by 1

T

∑
t ζt, its average

value over the T periods. The simulated social extraction and return in each period
are presented in Figure 3. In both figures, the temporal and accumulated social
extraction are shown in the left panels, and the corresponding social returns are
shown in the right panels. The aggregate social returns are representative for overall
efficiency since the total extraction costs are the same under different regimes.

The simulated results confirm our theoretical prediction that the DRAM is superior
to the standard property rights market in the two baseline environments. In both
cases, the market extraction is too high in the first several periods (Sub-figures 2(a)
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Figure 2: Homogeneous Agent Environment
Note: This figure compares the DRAM/SO and property rights market allocations over 20 periods
in a homogeneous agent environment with temporal profit shocks. Sub-figure 2(a) demonstrates
temporal social extractions. Sub-figure 2(b) demonstrates temporal social returns. Sub-figure 2(c)
demonstrates accumulated social extractions. Sub-figure 2(d) demonstrates accumulated social
returns.

and 3(a)), depleting the resource much faster than the socially optimal rate. Based
on the quadratic return functions, the DRAM/SO allocation results in a constant
social return over time (Sub-figures 2(b) and 3(b)). The market allocation yields a
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Figure 3: Time-Consistent Preference Environment
Note: This figure compares the DRAM/SO and property rights market allocations over 20 pe-
riods in a time-consistent preference environment with individual heterogeneity. Sub-figure 3(a)
demonstrates temporal social extractions. Sub-figure 3(b) demonstrates temporal social returns.
Sub-figure 3(c) demonstrates accumulated social extractions. Sub-figure 3(d) demonstrates accu-
mulated social returns.

higher return in early periods as a result of over depletion, but a lower total social
return over the whole time span (Sub-figures 2(d) and 3(d)).
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It is noteworthy that the simulated results in both environments are very simi-
lar, except for the temporal social extraction. In the homogeneous environment, the
profit shocks are reflected in the extraction (Sub-figure 2(a)). While in the time-
consistent preference environment, since the agents’ return functions do not change
over time, social extraction per period does not display any volatility. As a result, so-
cial extraction is constant under the DRAM/SO allocation and is smoothly declining
in the market allocation (Sub-figure 3(a)).

4.2 General Environment

Figure 4 presents the simulated results in a general environment where both bi and
ζt follow the simulated shocks illustrated in Figure 1. The simulated outcomes are
similar to the results in the homogeneous agent environment (Figure 2). Surprisingly,
the DRAM allocation seems to overlap with SO. Even in Sub-figure 4(c) when we
compare the DRAM with SO alone, the social extraction in the two regimes is not
distinguishable. The differences between the two regimes are only observable in Sub-
figure 4(d), where the social return resulted from the DRAM displays some level
of volatility, reflecting the temporal profit shock ζt. However, the magnitude of
fluctuation is tiny, making it indistinguishable when comparing the two regimes with
the property rights market allocation.

The simulation results suggest that even when individual heterogeneity and tem-
poral shocks exist simultaneously, the DRAM performs better than the property
rights market in terms of resource allocation efficiency if the two dimensions of het-
erogeneity are independent of each other. In such an environment, the size ranking
among agents keeps the same over time, resulting in a situation similar to the ho-
mogeneous agent environment. In reality, the relative size of resource users usually
does not change dramatically over time. Therefore, the DRAM is likely to perform
better than the property rights market.

The fact that agent composition in the general environment is similar to that in
the homogeneous agent environment is the main cause of consistency between the
DRAM and SO allocations. Therefore, we expect the DRAM allocations to deviate
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Figure 4: General Environment
Note: This figure compares the DRAM, SO and property rights market allocations over 20 periods
in a general environment with temporal profit shocks and individual heterogeneity. The left panels
demonstrate temporal and accumulated social extractions; right panels demonstrate temporal and
accumulated social returns.
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from SO outcomes when the individual heterogeneity bi and property rights share σi
are time-variant. In Figure 5, we shuffle bi in each period t and present the simulation
results in the top panels; we shuffle σi in each period and present the simulation
results in the middle panels; in the bottom panels, both bi and σi are shuffled. The
results demonstrate higher volatility in social return under the DRAM. However, the
volatility is so tiny that the DRAM allocation still tracks SO very closely.

Lastly, we adjust the magnitude of individual heterogeneity and temporal shocks.
In the previous simulations, the upper bound of each random variable is 1, only
one-tenth of the preference parameter a. One might expect that the allocation under
DRAM will deviate from SO if the random components exert greater influence on
agents’ returns. In the following exercise, on top of the time-variant individual
heterogeneity and property rights share, we augment the two random variables bi
and ζt to check if the DRAM still outperforms the classic market. Note that when
the negative shock is large, the normalized social return could be negative.

The simulation results are presented in Figure 6. As the augmenting factor in-
creases, the DRAM allocation deviates further from SO. However, as we noticed in
the bottom panel, even when bi and ζt are augmented by a factor of 5, the DRAM
still results in an allocation that is closer to SO than the market allocation. As shown
in the right panels, the DRAM always generates an allocation with temporal return
fluctuating around the social optimum, while the market leads to an allocation with
a declining return over time.

In sum, the simulation results confirm that the DRAM outperforms the standard
property rights market in an environment with significant time-variant individual
heterogeneity, temporal shocks, and randomly distributed property rights. With the
quadratic return functions, as proved in Lemma 1, there is always a majority of
agents whose total profits are concave to the resource allocation St in each period.
Those individuals prefer a dynamic resource allocation that yields the same marginal
profit in each period. Although the most preferred allocation might be different
across individuals, the concavity of the profit functions results in allocations that
generate an approximately equalized marginal return among the agents. Therefore,
the DRAM still tracks the social optimum even in a complex environment.
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(d) Time-variant σi
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(e) Time-variant bi and σi
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Figure 5: General Environment, Time-variant Individual Heterogeneity
Note: This figure compares the DRAM, SO and property rights market allocations over 20 periods
in a general environment with shuffled individual heterogeneity bi and property rights assignment
σi. The top panels demonstrate temporal social extractions and returns with time-variant bi only;
middle panels demonstrate temporal social extractions and returns with time-variant σi only; bot-
tom panels demonstrate temporal social extractions and returns with both time-variant bi and σi.
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(a) Augmenting factor = 2
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(b) Augmenting factor = 2
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(c) Augmenting factor = 3
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(d) Augmenting factor = 3
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(e) Augmenting factor = 5
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(f) Augmenting factor = 5

Figure 6: General Environment, Augmented Individual Heterogeneity
Note: This figure compares the DRAM, SO and property rights market allocations over 20 pe-
riods in a general environment with augmented individual heterogeneity and profit shocks. The
augmenting factor is 2 in top panels, 3 in middle panels and 5 in bottom panels. Sub-figures on
the left demonstrate temporal social extractions and sub-figures on the right demonstrate temporal
social returns.
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Before the end of the discussion, we note that although the quadratic return func-
tions are necessary for Lemma 1, the result that a majority of agents have concave
preference over the aggregate resource allocation St is still likely to hold even with
arbitrary return functions. We have shown that

∑
i u
′′
i (St) = K ′t(St) < 0. As long

as the distribution of individual heterogeneity is not too skewed, the median agent
is likely to have a concave preference similar to the “average” agent. Therefore,
the DRAM still generates more efficient resource allocation than the property rights
market in the general environment.

5 Conclusion

Creating property rights for the stock is essential to the CPR valuation problem
(Smith, 1977). Well-defined property rights and competitive resource markets resolve
the quantity externality that has long been considered as the cause of “the tragedy
of the commons” (Garrett, 1968). However, the recent literature has shown that
the single price resulted from the property rights market could not fully account for
the heterogeneity in the stock value caused by other production externalities. In
this paper, we investigate the case with cost externality. If the cost of extraction
increases with resource depletion, the stock value declines over time, incentivizing
resource users to exercise their extraction rights earlier. The crowded extraction in
early periods and decreasing returns to scale can cause a substantial loss of social
efficiency.

We propose a dynamic resource allocation mechanism to resolve this inefficiency.
The DRAM aggregates individual preferences over total resource allocation over time
and implements an optimal allocation plan that puts a binding extraction cap in each
period. We develop a theoretical framework to lay out the individual optimization
problem over the aggregate resource allocation. The model solution implies that the
DRAM can implement the socially optimal allocation if the agents are homogeneous
or their preferences are time-consistent.

We further relax the restrictions on the environment and simulate the DRAM
allocations in a general environment with individual heterogeneity, temporal profit
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shocks, and random assignment of property rights. The simulated outcomes confirm
that the DRAM outperforms the property rights market even in a non-stationary
environment. Since most agents exhibit a concave preference over the resource al-
location in each period, the DRAM consistently results in an allocation that tracks
social optimum more closely than the property rights market.

Coordinating extraction effort has been found to improve the efficiency of allocat-
ing scarce resources such as groundwater, oil, fishery, etc. (Wiggins and Libecap,
1985; Costello and Deacon, 2007; Ostrom, 2010; Zhou and Segerson, 2016). This
paper adds new insights to this approach as it proves that even in a non-cooperative
setting, coordination can be achieved through a majority decision. Therefore, the
DRAM has an advantage over the existing cooperatives as it easily aggregates prefer-
ences among a large population while the latter might experience coordination failure
or incur substantial bargaining costs facing a huge group size.
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Appendices

A Additional Tables and Figures

Table A.1: Parameter Values in Simulation

Parameter Variable type Value (range)

N constant 100
T constant 20
Q constant 10000
µij constant [1, 4]
a constant 10
k constant 0.001
ci constant 120µij
bi random U(0, 1)
ζt random U(0, 1)

B Proofs and Other Technical Details

B.1 Proof of Proposition 1

From equation (10), agent i’s marginal extraction cost in period t, k(DM
t +

XM
t

2
+

xMit
2

),
is always smaller than any agent j’s marginal extraction cost in period t+ 1 since

DM
t +

XM
t

2
+
xMit
2

< DM
t +

XM
t

2
+
XM
t

2
= XM

t+1,0 ≤ XM
t+1,0 +

XM
t+1

2
+
xMj,t+1

2
.

As pM is constant across time, according to equation (10), we have

f ′it(x
M
it ) < f ′js(x

M
js ) ∀ s > t and ∀ i, j.

Therefore, minj f
′
js(x

M
js ) > maxi f

′
it(x

M
it ) for all s > t.
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Recall the socially optimal allocation represented by equation (3). Denote the
value of f ′it(xSOit ) by a constant c. There must exists a period t such that c ∈
[mini f

′
it(x

M
it ),maxi f

′
it(x

M
it )]. Otherwise, if c > maxi f

′
iT (xMiT ), we have f ′it(xMit ) < c

and thus xMit > xSOit for all i and t. This is a contradiction to the binding resource
constraint under the two equilibria

∑
i,t x

SO
it =

∑
i,t x

M
it = Q. A similar contradiction

arises when c < mini f
′
i1(x

M
i1 ).

Given the period t that c ∈ [mini f
′
it(x

M
it ),maxi f

′
it(x

M
it )], for all s < t, f ′is(xMis ) < c

since maxi f
′
is(x

M
is ) < mini f

′
it(x

M
it ), and similarly, for all s > t, f ′is(xMis ) > c since

mini f
′
is(x

M
is ) > maxi f

′
it(x

M
it ). As f(·) is concave, that implies xMis > xSOis for s < t

and xMis < xSOis for s > t. Therefore XM
s > XSO

s for s < t and XM
s < XSO

s for s > t.

For s = t, it could be either XM
t < XSO

t or XM
t ≥ XSO

t . If XM
t ≥ XSO

t , we have
establish the fact that for all s ≤ t, XM

s ≥ XSO
s and for all s > t, XM

s < XSO
s .

If XM
t < XSO

t , for all s ≤ t − 1, XM
s ≥ XSO

s and for all s > t − 1, XM
s < XSO

s .
Moreover, the threshold t in the first case or t− 1 in the second case must be within
the interval [1, T ), otherwise the binding resource constraint will be violated.

B.2 Proof of Lemma 1

We prove by contradiction. If there does not exist a majority set satisfying the
condition, there must exists a majority set J such that u′′jm(St) ≥ 0 for all jm ∈ J .

Since K ′(St) < 0, 2σjm − x′jm(St) ≤ 0 for all jm. Hence
∑

jm
[2σjm − x′jm(St)] ≤ 0.

However,
∑

jm
2σjm = 2

∑
jm
σjm > 1 by the definition of majority. Meanwhile,

according to equations (26), x′i(St) > 0 and
∑

jm
x′jm(St) < 1. That leads to∑

jm
[2σjm − x′jm(St)] > 0. Contradiction!
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