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Beware the Gini Index! A New Inequality Measure   

Sabiou Inoua        

Chapman University 

inoua@chapman.edu  

                                                                                                                            

Abstract. The Gini index underestimates inequality for heavy-tailed distributions: for 

example, a Pareto distribution with exponent 1.5 (which has infinite variance) has 

the same Gini index as any exponential distribution (a mere 0.5). This is because the 

Gini index is relatively robust to extreme observations; while a statistic’s robustness 

to extremes is desirable for data potentially distorted by outliers, it is misleading for 

heavy-tailed distributions, which inherently exhibit extremes. We propose an 

alternative inequality index: the variance normalized by the second moment. This 

ratio is more stable (hence more reliable) for large samples from an infinite-variance 

distribution than the Gini index paradoxically. Moreover, the new index satisfies the 

normative axioms of inequality measurement; in particular, it is decomposable into 

inequality within and between subgroups, unlike the Gini index.                                                    

Keywords: inequality, Gini index, heavy tail, power law, infinite variance, 

generalized central limit theorem, robustness                           

JEL Codes: C10, D63 

                



1 Overview  

The Gini index, proposed by C. Gini [1], is the most popular inequality measure. 

Iconic by its geometric interpretation in terms of the Lorenz curve [2], the Gini index 

is also fascinating by its rich mathematical properties and alternative formulations 

[3]. Yet the Gini index has some limitations; for example, it does not apply to a zero-

mean distribution (such as the normal distribution) and it may behave poorly, falling 

outside the interval [0,1], for variables assuming negative values. This problem is 

easily fixed, however; for one can adjust the definition of the index for negative 

values [4]. In fact, the Gini ratio’s denominator is more rigorously defined for a 

signed variable to be the variable’s mean absolute value (rather than the raw mean): 

then the ratio is well-defined and well-behaved for any nonzero variable (Section 4).                                                                                                                                                                           

More importantly, the Gini index underestimates inequality for heavy-tailed 

distributions.1 Thus a Pareto distribution with an exponent of 1.5 (an infinite-

variance variable) has the same Gini index as any exponential distribution (a mere 

0.5), because the Gini index is relatively insensitive to a distribution’s tail, namely to 

extreme realizations of a variable (Section 2). While a statistic’s robustness to 

extremes is desirable for data potentially distorted by outliers, it is misleading for 

heavy-tailed distributions, which inherently exhibit extremes. We propose an 

alternative inequality index (Section 3) that may seem paradoxical at first sight but 

that is well-behaved upon scrutiny: the variance normalized by the second moment. 

This ratio is stable for large samples even when the theoretical (population) variance 

is infinite: it is then more stable statistically than the Gini index, surprisingly (Section 

4). Moreover, the new index satisfies the normative axioms of inequality 

 
1 Seemingly related limitations of the Gini index are suggested in the literature in terms of the Gini 

index’s over-sensitive to changes in the middle of a distribution compared to changes in the 

distribution’s tails [5-8], a claim that does not stand closer scrutiny, however [9]. This paper focuses 

not so much on the Gini’s different treatments of portions of a distribution than the index’s mild 

treatment of heavy tails. Other reported flaws of the index include a small-sample bias and a bias due 

to grouping [5, 6, 8, and refs. therein].                      
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measurement: notably it is decomposable into inequality within and between 

subgroups, unlike the Gini index.                                                              

2 The Gini Index and Heavy Tails                 

The Gini index of a non-negative variable X with positive mean is by definition:2 

 

1
'| |

2( ) ,
( )

X X
G X

X
   (1) 

where 'X  is an independent copy of X (that is, X and 'X  are independent but 

identically distributed) and  is the expectation operator. For a continuous variable 

X, the Gini index is more easily computed from the distribution function ( )F x

prob{ }X x  through the formula:                                               

 0
( )[1 ( )]

( ) .
( )

F x F x dx
G X

X
 (2) 

For an empirical variable (or sample) X 1
[ ,..., ],

N
x x  the Gini index becomes         

 
2 1 1

1
| |

2( ) ,
mean( )

N N

i ji j
x x

NG X
X

 (3) 

where mean(X) stands for the arithmetic average of X. Formula (3) becomes simpler 

if one arranges X in ascending order: 
(1) (2)

x x ...
( )i

x ...
( )

.
N

x  Then    

 ( )1

1

2 1
( ) .

N

ii

N

ii

ix N
G X

N Nx
 (4) 

These are standard facts about the Gini index that we remind for the sequel.3  

The following result illustrates the above-mentioned inadequacy of the Gini index 

for heavy-tailed distributions:   

 
2 Throughout this paper, the term “variable” (used interchangeably with “distribution”) is used 

preferably to “random variable”.  
3 For a review and proof of these facts and many others, see e.g. [3]. 
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Proposition 1. If Z is an exponential distribution with mean 2/3, then Z and exp(Z) have 

the same Gini index 0.5.G  Moreover, ( ) [exp( )]G Z G Z  if mean( )Z 2/3.                 

Proof. It is easy to show that a variable Z has an exponential distribution with mean 

1/  if and only if exp(Z) has a Pareto distribution with exponent (see below). The 

Gini index of any exponential distribution is 0.5 and the Gini index of a Pareto 

distribution with exponent 1  is G ( )G 1/(2 1) . [These are known facts 

that one can derive from formula (2), for example.] Thus ( )G 0.5  if 3/2,  with 

equality if 3/2.∎                                                                                    

That Z and exp(Z) could have the same Gini index is not a minor anomaly, for Z and 

exp(Z) are not different just quantitatively (though this is important enough in 

itself): exp(Z) is an infinite-variance heavy-tailed variable (Figure 1).                                                              
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Figure 1. Exponential versus Pareto distribution. The two distributions, Z 

and X = exp(Z), have the same Gini index G=0.5!                            

A heavy-tailed distribution is precisely one that is more prone to exhibit extremes 

than any exponential distribution, by having a tail that decays more slowly than any 

exponential tail. Formally, a variable X is (right) heavy-tailed if4      

 
prob{ }

lim sup
exp( )x

X x

x
 for all 0.  (5) 

A Pareto distribution is a simple such distributions. A Pareto distribution, recall, is a 

continuous variable X with prob{ }X x
min

( / ) ,x x x
min

0,x 0,  where  is 

called the tail exponent.5 It corresponds to a line in a log-log plot (Figure 2: 4th 

Subplot) and can be characterized as the exponential of an exponential distribution: 

 
4 Alternatively, X is heavy tailed if [exp( )]X  for all 0.  The two definitions are 

equivalent [10, theorem 2.6]. We prefer definition (5) to the just-mentioned and more common one, 

because the former makes it clear that heavy-tailed-ness is relatively to exponential distributions. 
5 For a more detailed introduction to the theory and empirics of Pareto distributions, see, e.g., [11].  
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if prob{ }Z z
min

exp[ ( )],z z  for z
min

,z  then prob{exp( ) }Z x prob{Z

log }x
min

exp[ (log )]x z
min

( / ) ,x x where 
min

x
min

exp( );z  conversely, log X

is exponential if X is Pareto. A power law X is a distribution that is Pareto 

asymptotically, in the sense that there is 0  such that prob{ }| |x X x 0C  as 

.x Power laws themselves belong to the class of regularly varying distributions, 

defined by prob{| |X }x ( ) ,L x x  where L is a slowly varying function, that is, a 

function that behaves asymptotically like constant, in the sense that ( )/ ( ) 1L tx L x  as 

x  for any 0t  (two common examples being a constant and a logarithmic 

function).6 Regularly varying functions are special distributions because they need 

not obey the standard laws of large numbers due to their high variability (the lower 

,  the more extreme the variability); and when they do, their sum converges more 

slowly to a Gaussian distribution compared to more common distributions. One can 

show that for any regularly varying variable X, we have (| | )X  if 0  

and (| | )X  if ,  which follow by simple integration for power laws, for 

which in addition (| | )X  if ,  and for a Pareto, ( )X min
/ ( )x  if 

0 .                 

Thanks to seminal work by P. Levy [12] and the contributions of other influential 

probability theorists of the past century, the central limit theorem has been extended 

to any variable (with light or heavy tails) into what we may call the “stable limit 

theorem”, a complete characterization of all the possible limit laws of the (properly 

normalized) sum of independent copies of a variable. (See this paper’s Appendix for 

a specialization of this theorem invoked throughout this paper, notably in 

Proposition 4, Section 4.) The only possible limit laws are called alpha-stable or Levy 

variables, in reference to their stability by convolution (that is, up to standardization, 

a stable law is preserved by addition of independent copies of it) and their 

characteristic parameter (0,2] :  the Gaussian is the only finite-variance stable law 

 
6 A constant function C satisfies ( )C xt ( ).C x   
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and it corresponds to 2;  the other stable variables are a special subclass of 

infinite-variance power laws whose exponents (0,2). 7 The limit of the sum of 

independent copies of any variable X, if this limit exists, is either an infinite-variance 

variable, namely a Levy with (0,2),  or a Gaussian when the tail of X is not heavy 

enough, in the sense that the function x 2

| |
( 1 )

X x
X  is slowly varying: this last 

condition is the general condition for convergence to a Gaussian (generalizing the 

finite second moment condition).8 A necessary condition for the sum of independent 

copies of a variable X to converge to a stable law is that X have a regularly varying 

distribution. We focus in this paper mostly on power laws, for the economic data of 

interest here (notably income or wealth distributions) are indeed power laws, as is 

known since V. Pareto’s discovery of this class of distributions [18].9             

Proposition 1 suggests that the typically moderate income or wealth Gini index 

(below 0.5 in most countries: Figure 2)  might be an understatement.       

 
7 For a synthetic textbook exposition of the general central limit theorem see, e.g., [13, sec. 2.2, th. 

2.2.15] and [14, sec. 3.8, th. 3.8.2]. For intuitive derivations in a physics context, see e.g. [15, 16]. For an 

economic application, see e.g. [17].                                         

8 Throughout, 1
A

stands for the indicator function of A: that is, 1 1
A

 if A is true, 1 1
A

if A is false. 

9 For a review of power laws in natural, social, and economic data see [11, 19].     
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Figure 2. Histogram of Countries’ Income Gini Indices (Percent).10                        

The cause of this drawback of the Gini index is due to the nature of its dispersion 

concept, its numerator also known as the Gini mean difference (GMD), whose 

empirical (or sample) version is:11                                  

 
1 1

2

| |
( ) .

2

N N

i ji j
x x

GMD X
N

 (6) 

The GMD being the numerator in formula (4), it also reduces to   

 ( )2 1

2 1
( ) mean( ).

N

ii

N
GMD X ix X

NN
 (7) 

The sensitivity of the GMD to a rank-preserving variation of a particular observation 

(holding the others constant) follows from (7) by simple differentiation:                                             

 
2

( )

( ) 2 1
[ ].

2
k

GMD X N
k

x N
 (8) 

 
10 Data source: World Bank https://data.worldbank.org/indicator/SI.POV.GINI?most_recent_value_desc=true 

(the years vary across countries: but we took the most recent values for each country).     
11 Some authors define the GMD as twice the numerator of the Gini ratio. The properties of the GMD 

are reviewed e.g. in [20].           

https://data.worldbank.org/indicator/SI.POV.GINI?most_recent_value_desc=true
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Thus, the sensitivity of the Gini index to an observation depends merely on the 

observation’s rank, and a similar conclusion holds for the Gini ratio.12 Compare the 

sensitivity of the variance, which depends on the size of the observation:                                              

 
var( ) 2

[ mean( )].
i

i

X
x X

x N
 (9) 

Because empirical data are possibly contaminated by a few outliers, one usually 

assumes (for good reasons) that the lower a statistic’s sensitivity to an individual 

observation, the better: hence a certain advocacy for robust dispersion measures like 

the mean absolute deviation (MAD), or the GMD, compared to the variance.13 Yet it 

is a mistake to transpose the outlier argument to a heavy-tailed distribution, which 

intrinsically exbibits extremes that, moreover, represent a sizable portion of the 

distribution. It is in fact a defining property of heavy-tailed variables, or at least the 

most common ones in applications, the so-called sub-exponential distributions 

(which includes regularly varying distributions, hence power laws), to exhibit the 

“one-big jump phenomenon”, whereby a distribution is dominated by one 

observation (the maximum one), in the sense that for independent copies 
1

{ ,..., }
N

X X  

of a sub-exponential X we have (by definition):14                                                                                        

 1

1

prob{ ... }
1 ( , 2).

prob{max( ,..., ) }
N

N

X X x
x N

X X x
 (10) 

For power laws (or regularly varying distributions more generally), the one-big 

jump phenomenon presents itself in a specific manner that is the more striking, the 

smaller the power law’s tail exponent : in particular, when 1  one can show 

that the maximum observation in a large random sample from a (positive) power 

 
12 For a more detailed such sensitivity calculation, see [9].            
13 The MAD is even less sensitive to extremes in the sense that its sensitivity to an observation 

depends merely on the sign of this observation’s distance from the median.   
14 For a review of subexponential variables, see [21-23].                         
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law is on average of the same order of magnitude as the sum of all observations [24, 

p. 465]:15                                                         

 1

1

... 1
( )   (0 1, ).
max{ ,..., }

N

N

X X
N

X X
 (11) 

If 0.5,  for example, one single observation in a sufficiently large sample will 

represent on average 50% of the sum of all observations (Figure 3).                                                                    

 
Figure 3. The one-big jump phenomenon (or dominance of a few 

observations) is an intrinsic feature of heavy-tailed distribution: here, a 

Pareto distribution with exponent 0.5; one observation (the 5324th one) 

accounts for much of the sum of the distribution.                   

Thus, any robust summary of a heavy-tailed variable is a poor summary of that 

distribution.                                  

By its greater sensitivity to extremes, the variance is a more faithful measure of 

dispersion for power laws than the GMD. That the variance is infinite for a broader 

 
15 For an intuitive derivation of this formula, and the corresponding ones for 1,  see [16, p. 106]. 
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class of distributions can itself be counted as a virtue in this respect.16 The concept of 

infinite variance should not deter us, for an infinite theoretical (population) variance 

empirically simply means that the sample variance cannot reasonably be reduced to 

any point estimate, but rather it is a variable that fluctuates wildly from sample to 

sample.17 But if the variance is properly normalized into a ratio, through a 

denominator whose sample fluctuation is of the same order of magnitude as that of 

the variance, then it yields a statistically stable measure of variability. The right 

denominator to that effect is none other than the second moment: as it turns out, the 

variance normalized by the second moment is a natural inequality measure.                                                                                                                                  

3 An Alternative Inequality Measure               

We propose, therefore, for any (nonzero) empirical variable 
1

[ ,..., ]
N

X x x , the 

inequality measure:                                        

 
2

variance( )
( ) .

mean( )

X
I X

X
 (12) 

Clearly, 0 1.I  Besides the obvious interpretation as a normalized variance, the 

ratio I has various other interpretations that illustrate its potential versatility as a 

general concept (beyond the specific use as an inequality measure). Suffice it here to 

mention a few known results across the sciences that implicitly involve the 

inequality index I and on which therefore new light may be shed if this connection is 

made explicit. Consider, to begin with, the following simple but powerful result in 

probability theory (usually known as the “second moment method”):                                                                                 

Second moment method. For any finite-variance 0X  we have prob{ 0} ( ).X I X     

 
16 The GMD of a distribution is finite whenever the mean of the distribution is finite; thus, the GMD of 

a power law with exponent 1  is finite. More on this in Section 4.                                         
17 The second moment of a large sample from an infinite-variance power law is an infinite variance 

Levy variable by the general central limit theorem (see Appendix): more precisely, if 
1

{ , ..., }
N

X X  are 

independent copies of an (infinite-variance) power law with ]0,2[,  then 
2/ 2

1
N
i iN x converges 

in distribution to Levy variable with index /2.   
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This result is a consequence of Cauchy-Schwarz inequality, it is known:    

       2 1/2 2 1/2 2 1/2 1/2

{ 0} { 0}
( ) ( 1 ) [ ( )] [ (1 ) ] [ ( )] [prob{ 0}] ,

X X
X X X X X   

from which (13) follows, if one solves for prob{ 0}.X                                                       

The I index has also a series of potential applications, notably in economics, 

inherited from its simple relationship with the Hirschman-Herfindahl index [25, 26]:      

 
2

1

2

1

( ) .
( )

N

ii

N

ii

x
H X

x
 (14) 

Clearly, we have18        

 
1

( ) 1 .
( )

I X
NH X

 (15) 

Thus, any interpretation of the H index can be rephrased in terms of the I index. The 

H index is of course primarily used as a concentration measure: H is then interpreted 

as measuring an inverse effective number of observations in a distribution (the 

number of dominant elements in it so to speak). That is, a variable X is mostly 

concentrated on 1/H(X) number of its elements (e.g. 1/H(X) 2.05 for X

[1,2,1,90,110]); in particular, perfect equality means 1/ ( )H X N, and perfect 

inequality is approached by a large distribution concentrated on one individual, for 

which 1/ ( )H X 1 1/ .N  It makes sense therefore to measure the degree of equality 

in a distribution X by the fraction of its dominant elements, namely by the ratio 

[1/ ( )]/H X N 1 ( ),I X  or the effective number of elements in X relatively to that of a 

perfectly equal distribution of the same size.                                                                                                                                                            

A similar interpretation of I follows from the following probabilistic interpretation of 

H. To any nonnegative variable X 1
[ ,..., ]

N
x x  we associate the two probability 

systems P [ ]
i

p and [ ],
i

Q s where
i

p 1/N and / N
k ki i

q x x ( 1,..., ),i N and 

 
18 An author, G. Prathap, brought to my attention an unpublished draft of his 

(https://www.academia.edu/2562606/A_Tale_of_Four_Indices_-) in which he mentions this formula as 

an inequality measure.  
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denote by 
P

 and 
Q

the corresponding expectation operators. The probability 

systems can be called the uniform versus “rich-get-richer” probability measures (as 

would suggest the following experiment: pick at random a value from X, where the 

probability of picking 
i

x  is ,
i

p and increase the picked value by some amount; 

consider the same experiment, but with probability 
i

q  instead.) We have ( )
P

P

1/N  and ( )
Q

Q .H  Thus, 1 ( )I X  measures the degree of equality in X by 

comparing the two associated probability measures through the ratio ( )/ ( ).
P Q

P Q                                                                                                    

The index I also has an informational interpretation: since the inverse ratio 1/H 

measures the effective number of elements in a distribution, it follows that H itself 

measures the frequency of each element in the distribution adjusted for the relative 

size of each element: that is, H is effectively a probability. But since to each 

probability, one can associate an information measure by taking the log-probability, 

we have an information interpretation of H in terms of  

 
2
( ( )) log ( ),R Q X H X  (16) 

namely the second order Rényi entropy of the “rich get richer” probability system 

associated to X. The Rényi entropy [27] of a probability system 
1

[ ,..., ]
n

P p p  is more 

generally defined as                 

 
1

1
( ) log( )         ( 0, 1).

1

N

i
i

R P p  (17) 

The I index is also a normalized version of the second order generalized inequality 

entropy measure, the general class of which plays a central role in the axiomatic 

approach to inequality measurement discussed shortly: 

 2

2 1 mean( )

1 1 1
[ ( ) 1] [ 1].

2 2

N i

i X

x
E NH

N
 (18) 

In other words          

 2

2

2
.

2 1

E
I

E
 (19) 
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Finally, the new index has this other general interpretation also inherited from the H 

index: usually this latter emerges as a measure of how much of the variability of an 

aggregate variable (e.g. GDP [17]) is due to the typical fluctuation of the individual 

components (firms’ sales), provided these latter are statistically independent from 

one another. That is, the following interpretation holds in many contexts:    

 
aggregate  volatility

individual  volatility 
.H  (20) 

In terms of the new inequality index, we have       

 
aggregate  volatility

individual  volatility 

1 1
.

1N I
 (21) 

Thus, a large aggregate volatility can emerge even in a very large system of 

independent components if these latter are highly unequal: 1/N is the damping 

factor due to the aggregation of independent homogenous components; but this 

damping factor is offset if the individual components are highly unequal. The 

argument in terms of the H index is known [17].19 But the reformulation in terms of 

the new index uncovers an                           

 
0

1
Inequality Multiplier .

1
k

k

I
I

 (22) 

Any situation where the H index plays a role, so could also do the inequality 

multiplier; and this is potentially the case of any sum of individual variables. 

Consider, for example, the return of an index or portfolio of assets, which is the 

average return of the individual assets, say 1
N
i i iR x R , where [ ]

i
x X  are the 

asset weights. In the simple case of independent, identically distributed, zero-mean 

individual asset returns, the portfolio’s volatility is var( | )R X 1
( )var( ).H X R 20                       

Relaxing the assumption of independent individual components, one can also define 

a linkage multiplier, the part of aggregate fluctuation due to the network 

 
19 According to [17], the micro shocks of 100 largest firms in the US could account for one-third of 

aggregate fluctuations of the country’s GDP.  
20 The H index appears in portfolio theory as an effective portfolio diversification measure [28, 29]. 
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amplification or propagation of interdependent individual shocks [30], or even 

consider a multiplier due to the inequality of network degrees (since some 

individuals are more heavily connected than others), usually measured by the 

coefficient of variation (CV) of the degrees [30]. The link between CV and I is a direct 

one:21         

 
2

2
.

1

CV
I

CV
 (23) 

To summarize: the new index has potentially a range of applications due to its 

simple connections with a few core concepts across the sciences, connections given 

by the conversion formulas (already proven or easy to establish):                                   

 2 1

0

1 (1 ) ,k

k

NH CV I I  (24) 

 2 1

1

(1 ) .k

k

CV I I I  (25) 

 
2

log[ (1 )].R N I  (26) 

 2

1
.

2 1

I
E

I
 (27) 

 

As an inequality measure, more specifically, the I index enjoys the axioms of the 

normative approach to inequality measurement, which requires that an inequality 

measure J J(X) satisfy a list of properties, notably:                                                                                                      

1. Normalization: 0 ( ) 1.J X   

2. Scale invariance: ( ) ( )J X J X  for 0.     

 
21 In this form (23), the index I appeared (p. 183) as the dual of CV in a recent book [31], as was 

pointed in a comment to an earlier draft of this paper by one of the authors of that book: the dual 

J*(X) of an inequality measure J(X), as I understand it from the comment, is defined in that book as 

follows: to a variable X, associate the hypothetical transform variable X*= [a,…,a, 0,..,0], a>0, such that 

J(X) = J(X*); then the dual inequality index J*(X) is the proportion of zero elements in X*.  
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3. Anonymity: J(X) should be invariant to the way the elements of X are indexed 

(invariance to permutations of X).    

4. Transfer principle: a rank-preserving transfer from a greater to lower element 

of X (from a richer to a poorer person) should reduce inequality. 

5. Population principle: J(X, X)  J(X) (invariance to pooled replications of X). 

6. Decomposability: if X comes in subgroups, then J should be decomposable into 

inequality within subgroups and inequality between subgroups.     

We know of no inequality measure in the literature that satisfy all the 6 axioms. The 

Gini index satisfies Axioms 1-5, but not necessarily Axiom 6 (decomposability), 

except in the case of nonoverlapping subgroups [32, Appendix A]. By an important 

theorem [33-35], an inequality measure ( ),J X continuous with respect to each element 

of X, satisfies the principle of transfers, scale independence, and decomposability if 

and only if it is some increasing function of a generalized entropy measure (where  

can be any real number including 1 if interpreted as 1) 22                        

 
1 mean( )

1 1
[ ( ) 1].

( 1)

N i

i X

x
E

N
 (28) 

Proposition 2. The index I satisfies the Axioms 1-6 listed above.                                                                                                                                       

Proof. The index I obeys the population principle and anonymity in a 

straightforward way, and it is normalized. Since I 2 2
2 /(2 1),E E  a strictly 

increasing function of 
2
,E  it satisfies the principle of transfers, scale independence, 

and decomposability by virtue of the above-mentioned theorem. ∎                                          

One can also derive the 6 properties for I by direct calculation; for example, the 

transfer principle: a rank-preserving transfer 0t from richer to poorer, or ( , )
i j

x x

( ,
i

x t ),
j

x t  is by definition one such that
i

x t ,
j

x t hence it is one such that 

22 ( ) 4 .
j i

t x x t  The transfer preserves mean(X) but decreases the second moment: 

 
22 This is a central theorem of the axiomatic approach [36: see Theorem 4]. See also [37]. 
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2mean( )X 2mean( )X 22t 2 (
j

t x ).
i

x  Thus, the transfer lowers I, namely 1

2(mean( )) /X 2mean( ).X  The decomposition of I by subgroup components can be 

established from the corresponding decomposition formula of the generalized 

entropy
2

E through a standard (if tedious) procedure [32, Appendix A].                               

4 Comparing the Two Inequality Measures          

At least two reasons are in favor of the new index over the Gini (that I reflects better 

extreme variability and that it is always decomposable). A systematic empirical 

investigation of the two inequality measures using income or wealth distributions 

(in view notably of the first argued limitation of the Gini index) is beyond this 

paper’s scope: for such study to be conclusive one would need to work with 

complete income or wealth distributions, rather than the relatively aggregated and 

often partial data, coming, say, by income classes, such as the US census data used in 

Figure 4. (We should not expect a major diffence between the two indices using 

aggregated data that even out extremes, although we note a turning point around 

1995 when G becomes greater than I.)23 Thus we will be contempt here with 

theoretical comparisons of the two indices illustrated, when needed, with simulated 

heavy-tailed data.                 

 
23 Source: Historical Income Tables, census.gov. These are income data (in dollars) grouped in classes: 

[under 15000], [25,000 to 34,999], …, [200000 and over]. We take the lowest income to be zero and 

roughly estimate the highest income in such a way as to recover the summary statistics (such as the 

mean income) reported in the data. An overview of the limitations of common inequality data can be 

found e.g. in the recent review paper [38]. 
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Figure 4. The inequality measures G and I for the USA census income data.  

The two measures I and G share a few similarities. They coincide for at least two 

distributions: the exponential one, for which I G 0.5, and the Bernoulli one, or the 

indicator function of an event E, for which I G 1 prob( ).E For a Pareto with 

exponent , we have ( )G G 1( 1) if 1, as already mentioned earlier; in 

contrast  ( )I I 2( 1) for 2,  as one can establish using the moment formula 

for the Pareto mentioned in the brief reminder on power laws (Section 2). Simple 

calculations yield ( ) ( )I G  if 2 2 2 and ( )I ( )G if 2 2.                  

Conceptually, moreover, both indices are just normalized dispersion measures. In 

fact, the two indices belong to a general class of inequality measures:                                                                                        

 

1
'| |

2( ) ,
| |

p

p p

X X
I X

X
 (29) 
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where, again, 'X  is an independent copy of X, and 1.p 24 The general index pI  is 

well-defined for any nonzero variable X with | ,| pX  and it is in the range [0,1]. 

This is true by the triangle inequality:25                                                                                                         

 1/ 1/ 1/ 1/( ' ) ( | ) ( '| ) 2( | ) .| | | | |p p p p p p p pX X X X X  (30) 

For 2,p  the numerator in (29) is (X 2') /2X 2(X 2 'X X 2 )/2X var( ),X  

so 
2

.I I  For 1p  we recover G if 0X  and ( ) 0.X  In fact we should define the 

Gini index more generally as 
1

( ) ( ),G X I X  namely          

 

1
'| |

2( ) .
| |

X X
G X

X
 (31) 

As announced earlier (Section 2), this general definition circumvents the undesirable 

behavior of the common definition of G vis-à-vis signed variables. In particular, if X 

is a symmetric variable (that is, X and X  have the same distribution), then ( )G X

( )G X  by the extended definition (31). However, one can show that G 1/ 2 0.7 

for the Gaussian, suggesting this latter is more unequal distribution than an 

exponential variable, for example; more generally, a significant presence of negatives 

in a distribution tends to produce relatively high values for both indices, which is 

perhaps intuitively reasonable: a society with symmetric income distribution would 

be one in which only half of the population have positive incomes and the other half 

are indebted to them, an extreme form of inequality! This is even better reflected in 

the new index, since ( ) 1I X  if mean( ) 0.X  But then both indices (especially the 

new one) are poor measures of heavy-tailed-ness for signed variables (by ranking 

higher a Gaussian compared to say a Pareto with index 1.5, for example: the next 

 
24 If we define dispersion more strictly in terms of the distance function ( , )X Y pX Y  induced by 
the norm pX X 1/( | )| ,p pX  then we would consider instead 

1/ pI as inequality measure. But 
statisticians use more flexible “distance” concepts (such as a square distance).                                          

25 The triangle inequality is applied, that is, to the distance function referred to in the preceding note. 
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paragraphs define I for infinite-variance variables). This is easily fixed however: the 

heavy-tailed-ness of X can be measured by ( ).| |I X                                                             

We close the comparison of the two indices by a discussion of their respective 

statistical stability. One might be inclined to prejudge that I is a more volatile statistic 

compared to G, and to assume that I is the more volatile, the heavier the tail of X. But 

this is only true of the ratios’ numerators. In fact, I is more stable statistically then G 

for infinite-variance variables, paradoxically: moreover, we have the curious pattern 

that I(X) is the more stable compared to G(X), the more volatile is X; and the reverse 

pattern for G (Figure 5). 

 
Figure 5. Statistical Stability of G versus I for Pareto variables (100 large 

samples of 100000 random draws). Notice the curious pattern: the lower is 

alpha (hence the heavier-tailed the Pareto), the more stable is I (red) compared 

to G (blue), and vice versa.                     

The slow convergence pattern of G is not surprising per se and it has been 

documented [8]. What is surprising is the inverse pattern of I compared to that of G. 
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This suggests a scrutiny of the limit behavior of the I index. Formally, we model the 

possible sample realization of ( )I X  by the following estimator, based on N 

independent copies 
1

{ ,..., }
N

X X  of X, to investigate its large-sample behavior:                          

 
2

1

2

1

( ) 1 .
( )

N

ii
N N

ii

X
I X

N X
 (32)  

Because ( )
N

I X  involves sums of independent copies of X and X2, its limit behavior is 

regulated by the general central limit theorem (in the same way as for the H index, 

whose limit behavior for a Pareto with 1  is known [17, prop. 2]).  

Proposition 3. If X is a positive power law with exponent (0,2),  then ( ) 1
N

I X  as 

.N  Moreover, 1 ( )
N

I X 0  like 1N  if (0,1), 1 2/N if (1,2),  and 

1 2(log )N N  if 1 and X is Pareto.26                                                                                                                                                               

This proposition, proven in the Appendix, explains the above-mentioned seemingly 

paradoxical statistical stability of the index I (Figure 5): the heavier the tail of the 

power law, the more stable the index I, with the possible exception of 1 (which 

more generally is a singular parameter in the theory of the limit sum of power laws).      

 
26 We assume X≥0 merely to avoid worrying about an additional condition: see Appendix.                                                                 
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Figure 6. Convergence rate of the empirical (or sample) inequality index 

( )
N

I X  for infinite-variance Pareto variable X. The lower is the tail 

exponent , the more rapid the convergence rate (for 1).               

Proposition 3 suggests that we extend the definition of the I index to a theoretical 

variable X as the large sample limit of its empirical version, namely as ( )I X

lim ( ),
N N

I X  which for a finite-variance distribution reduces of course to 

2var( )/ ( ),X X by the law of large numbers, and for an (infinite-variance) power law 

X with (0,2)  is ( ) 1I X  (by Proposition 3). An apparent limitation of this 

extension to infinite-variance theoretical distributions is that it does not reflect the 

gradation of inequality for power laws of exponent in the range (0,2),  a scale of 

inequality that we know is inversely related to . But this is hardly a real problem, 

for the gradation of inequality for power laws  with (0,2)  is recovered 

empirically in the speed of the convergence ( ) 1,
N

I X  which is the more rapid, the 

lower is , so that for a comparably large sample size N, the index ( )
N

I X  tends to be 

higher, the lower is .                        
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The limit behavior of the Gini index, on the other hand, is that of the estimator 

 ( )
( ) 2 1.

N

ii
N N

ii

iX
G X

N X
 (33) 

The study of ( )
N

G X  involves more care and technique because ( )
N

G X  involves a 

sum of ranked (hence dependent) variables in the numerator. For a power law X, a 

characterization of the limit behavior of ( )
N

G X  has already be done for the case 

1 2 [8], which show the slow convergence of ( )
N

G X  for infinite-variance power 

laws: the complement case 0 1  would involve essentially the same 

technicalities, which we do not repeat here. We mention however:                                

Proposition 4. If X is a power law with exponent 1, then ( ) 1
N

G X  as .N     

In lieu of a formal but long proof, we just emphasize here a simple intuitive 

argument as to why this result is to be expected (referring the reader to [8] for the 

preliminary technique needed before one can apply the general central limit theorem 

for a formal proof). The intuitive argument is based on Atkinson’s formula [39], 

according to which “when a very top group of the income distribution, infinitesimal 

in numbers, owns a finite share S of total income, the Gini coefficient G can be 

approximated by )* (1G S S , where G* is the Gini coefficient for the rest of the 

population” [40]. In a large sample from a power law with 1, the highest 

“income” on average has the share S 1  according to equation (11), and we also 

have *G G approximately (because G is only mildly affected if one observation, 

here the biggest one, is removed). So G G (1 ),  hence G lim 1.
N N

G                             

5 Summary  

Beyond the specific discussion on inequality measurement, this paper revisits 

received doctrine on robustness, whose desirability might be questionable for heavy 

tailed variables. The Gini index remains a powerful inequality measure for light-
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tailed distributions potentially distorted by outliers. But the variance normalized by 

the second moment better suits heavy-tailed variables, and it satisfies the normative 

axioms of inequality measurement, including decomposability. As a concept, the 

new index is potentially useful beyond the specific purpose of inequality 

measurement due to its simple relationships with fundamental concepts across the 

sciences, such as: variance, Herfindahl-Hirschman index, and Rényi entropy.        

     



Appendix 

For two functions F and G of x, the notation F G  means ( )/ ( ) 1F x G x  as .x  

For variables { }
N

X  and Y, 
N

X
N N

a b Y  means the convergence in distribution 

(
N

X ) /
N N

a b Y  holds. Many claims in the main text rely on the following [13: sec. 

2.2, th. 2.2.15, 14: sec. 3.8, th. 3.8.2]:                                                                   

Limit Theorem for Power Laws. Let 
1

{ ,..., }
N

X X  be independent copies of a variable X  

with prob{ } ,| |X x Cx  0,C  (0,2),  and lim[prob{ } / prob{ }]| |
x

X x X x

[0,1] . Then 1/

1
( ) ( )

N

i Ni
N X b  as ,N  where ( )  is a Levy variable 

with exponent ,  and 0
N

b  if (0,1), ( )N X  if (1,2),  and | |
( 1 )

X N
N X  if 1.                                                                                                                                                             

For a Pareto 1,X  the theorem says 1/

1
( ) ( )

N

i Ni
N X b  as ,N  where                

 

0,              1

log ,   1

( ) ,     1.
N

b N N

E X N

 (34) 

Proof of Proposition 3. Without loss of generality, assume 0X  (otherwise, simply 

add the condition [0,1]).  We investigate the limit behavior of                                                         

                                                     

2

1

2

1

( )
( ) 1 .

N

ii
N N

ii

X
I X

N X
  

By the limit theorem,
1

( )
N

i Ni
x b 1/ ( )N and 2

1

N

ii
x 2/ ( /2).N 27 Thus                          

 
1/ 2

1 2/

[ ( ) ( )]
( ) 1 .

( /2)
N

N

b N
I X

N
 (35) 

Hence         

 
27 The second sum is just an application of the theorem to X2 which is a Pareto with exponent /2,

since 
2

prob{ }X z
1/2 1/2

prob{ ( ) .}X z z           
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2

2
1 2/

[ ( )] 1
,            (0,1)

( /2)
1 ( )

[ ( )]
,      (1,2). 

( /2)

N

N
I X

X
N

 (36) 

In particular, ( ) 1
N

I X  as N  in either case. The case 1 requires special 

care; for a Pareto, we have 1 ( )
N

I 1 2

1
[log ] / (1/2)] 0.C N N  More generally, 

(1)
N

b ( 1 )
X N

N X 1

0
( ) ,

N
N L x x dx  where by assumption ( )L x C  as ,x  a 

slowly-varying function, which therefore obeys 1 1

0
[ ( )] ( )

N
L N L x x dx as N  

[23, Remark 1.2.7], hence 1

0
( )

N
L x x dx  [since ( ) ]L N C , that is, (1) / .

N
b N   

This suggests writing (35) for 1 as follows:                                                                   

 1/2

3/2 1/2 5/2 1/2

[ (1) (1)] 1 [ / (1)] (1)
[1 ( )] 0.

[ (1/2)] [ (1)/ ] [ (1/2)]
N N

N

N

b N N b
I X

N b N N
 (37) 

All in all, ( ) 1
N

I X  for every (0,2).∎                                                               
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