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The Economic Impact of Lockdowns:
a Theoretical Assessment∗

Gabriele Camera Alessandro Gioffré
Chapman University University of Florence
University of Bologna

July 9, 2021

Abstract

The sudden appearance of the SARS-CoV-2 virus and the onset of the COVID-19 pan-
demic triggered extreme and open-ended “lockdowns” to manage the disease. Should
these drastic interventions be the blueprint for future epidemics? We construct an
analytical framework, based on the theory of random matching, which makes explicit
how epidemics spread through economic activity. Imposing lockdowns by assumption
prevents contagion and reduces healthcare costs, but also disrupts income-generation
processes. We characterize how lockdowns impact the contagion process and social wel-
fare. Numerical analysis suggests that protracted, open-ended lockdowns are generally
suboptimal, bringing into question the policy responses seen in many countries.

Keywords: decentralized markets, random matching, contagion, nonpharmaceutical in-

terventions.

JEL codes: C6, D6, I1

1 Introduction

The emergence of the SARS-CoV-2 virus and the onset of the COVID-19 pandemic

motivated many governments to bring to a stand-still all human activity, social and
∗ The authors thank the Editor, Andrés Carvajal, as well as an anonymous associate editor and
two reviewers for many helpful comments on a previous version of this paper. Gabriele Camera,
Economic Science Institute, Chapman University, One University dr., Orange, CA 92866; Tel.:
714-628-2806; e-mail: camera@chapman.edu. Alessandro Gioffré, DISEI, University of Florence;
e-mail: alessandro.gioffre@unifi.it
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economic, for many months. The stated objective is to slow down contagion and

prevent healthcare systems from being overwhelmed. Many countries have gone

to the extreme of imposing long-lasting and drastic “lockdowns” (e.g., China,

Italy, Spain, UK), i.e., mandatory stay-at-home orders, business closures, and

sweeping limitations to the freedom of movement. These lockdowns (also known

as NPI’s for nonpharmaceutical interventions) have been implemented on an open-

ended basis, with a severity and duration primarily tied to the growth rate in

infections. Apart from a few notable exceptions (e.g., Sweden), most countries

have sought to minimize a single risk, that of contagion from the SARS-CoV-2

virus, without fully accounting for the economic and social consequences of doing

so. In the aftermath of these interventions, a public debate emerged questioning

the optimality of these policies. Are these drastic interventions optimal from

a social welfare perspective? Should we keep them in place to address future

epidemics? Should their implementation be open-ended?

The answer to these questions partly depends on how one models the relevant

economic tradeoffs. This paper develops an analytical framework that makes ex-

plicit the process of contagion, and ties it to the frequency of economic activity.

The model economy has a constant population composed of individuals who can

earn income only in periods in which they meet a trade partner. Meetings occur

on a market where a matching process pairs individuals at random—all pairs gen-

erate a deterministic flow of income, and dissolve at the end of the period. The

model assumes transmissibility via asymptomatic individuals, a central feature

of the COVID-19 epidemic, as well as no cost from trading while asymptomatic.

This implies that individuals who are unaware of being infected, have no incentive

to stay out of the market and, hence, can spread the disease by meeting healthy

trade partners. Repeating this random matching process period after period is

how the epidemic spreads over time. It is assumed that precluding business ac-

tivity by closing the market, i.e., imposing a lockdown, stops further contagion.

Apart from the possibility of reaching herd immunity, no other intervention is

assumed to exist to manage the progression of the disease. Therefore, lockdowns
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are the go-to policy to reduce healthcare costs, which are assumed proportional

to the spread of the infection across the population. The severity of the policy

intervention corresponds to the lockdown duration.

Our analysis is divided into two parts. First, we lay out the mathematical

machinery needed to characterize the contagion process for general interventions,

ranging from minimal as in Sweden to extreme as in China or Italy. The initial

step is to construct transition matrices that determine the path of the infection,

for any initial state of the infection. These are then used to calculate the dynamic

evolution of the epidemic when we impose lockdowns of various degree of severity.

The analysis considers two scenarios, depending on whether the infection can or

cannot die out by achieving herd immunity by medical means or naturally.

Second, we construct a measure of social welfare that combines individual

payoffs from trade with expected healthcare costs associated with the spread of the

disease. Lockdowns now delineate a tradeoff: more drastic interventions prevent

overwhelming the healthcare system but destroy income flows. Numerical analysis

suggests that welfare nonlinearly responds to the severity of the intervention, which

leads to two main results. Imposing a lockdown is generally welfare-enhancing if

the infection spreads easily. However, the welfare benefit rapidly dissipates as

the lockdown length increases, and turns into a welfare loss eventually. If the

infection is detected early and has reached only a small subset of the population,

then imposing an extreme lockdown is counterproductive in terms of social welfare.

Open-ended lockdowns are not necessarily optimal either, especially if the epidemic

can be brought under control via herd immunity.

Intuitively, in our model the social gains from not overburdening the healthcare

system are eventually overtaken by the economic losses stemming from further re-

ductions in income flows. This is why extreme lockdowns are largely suboptimal.

In fact, the analysis also reveals that näıvely matching the severity of the interven-

tion to the spread of the infection is not the most logical policy because welfare

gains are non-linear. Overall, this exercise suggests that policymakers should

tread carefully. To the extent that healthcare conditions and income-generating
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processes are country-specific, the model indicates that the tradeoffs associated

with lockdown policies are also country-specific. In other words, there is no “one-

size-fits-all” kind of policy, which seems opposite to the adoption patterns seen so

far, where many governments simply followed similar policies.

There is a voluminous literature on infectious diseases, an extensive review

of which is beyond the scope of this paper. Due to space limitations, we refer

the reader to the recent survey in Avery et al. (2020) and here we explain what

our study adds to the existing literature. The novelty of our contribution lies in

the approach to studying the diffusion of epidemics, which relies on the theory

of random matching. This technique allows us to offer a framework that makes

explicit the transmission of a disease in the population—in contrast to the standard

epidemiological model, which uses a reduced-form approach. This framework is

then used to assess the economic optimality of policy interventions based on the

lockdowns imposed in the recent past.1

To elaborate on this, start by noting that the typical model used in the epi-

demiology literature – known as the SIR model – is based on three possible states

for an individual: S for susceptible (to infection), I for Infected, and R for Re-

covered. The evolution of these three mutually exclusive states is governed by

laws of motion that underlie a reduced-form process of contagion. We retain the
1Our objective to study the welfare impact of health policies is shared by other recent works,
all of which modify the standard SIR framework while maintaining its basic reduced-form
approach. For example, Eichenbaum et al. (2020) assumes that economic decisions affect the
path of the disease because consuming and working less reduces the probability of becoming
infected (hence, transition probabilities between health states). This gives rise to an externality
that can be partially internalized by imposing limits to consumption and work activity (such
as it happens in a lockdown). The model in Goenka et al. (2014) also considers feedback effects
from disease to economic decisions. They embed the SIR model into a neo-classical growth
model where investment in health capital alters the incidence of the disease, and the latter
affects labor supply. They solve an optimal control problem, showing that both a disease-
free steady state and a disease-endemic steady state may exist. The study in Alvarez et al.
(2020) also follows the typical approach in the epidemiology literature where the evolution of the
epidemic is a function of exogenous parameters, and extends it by embedding an optimal control
problem, whereby a social planner chooses the diffusion parameter to maximize social welfare.
An optimal control problem is also at the heart of Acemoglu et al. (2020), which extends the
canonical single-group SIR model to a multi-group version with group-specific parameters. In
particular, contact rates are governed by a matching function that is group-specific. In this
context, policies that apply differential lockdowns across groups are superior to uniform policies
that identically affect everyone in society. The main difference between these frameworks and
ours is that we do not use a reduced-form approach; we construct an explicit meeting process
that determines the spread of the infection.
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three-state representation typical in the literature, and innovate by constructing

an explicit model of contagion, which is based on a pairwise random meeting pro-

cess. In this manner, the model allows us to track the evolution of the disease

when the markets are open or close—thanks to the explicit matching process—and

thus study the optimality of lockdown policies under alternative scenarios for the

initial state of the infection and the probabilistic nature of reaching immunity.

Given the persistent nature of the current epidemic, we also allow recovered

individuals to be potential candidates for re-infection—something that is atypical

in epidemiological models, where the recovered cannot be re-infected. To explain,

in the standard SIR framework the number of susceptible individuals decreases

over time due to the recovery process. In this case, threshold parameters exist

such that an absorbing state is eventually reached where the infection vanishes as

enough individuals contract the disease and herd immunity is naturally achieved.2

By contrast, we work with a model where everyone in the population is generally

susceptible to the disease until a point where the disease can be fully eradicated. It

is assumed that in each period there is a probability that contagion stops, and until

that happens everyone remains susceptible to infection, even recovered individuals.

In this manner, a state of immunity is reached probabilistically and simultaneously

by everyone in the population. This is a mathematically convenient way to capture

a prominent aspect of current thinking behind lockdown policies: the COVID-19

disease is so dangerous and hard to contain that the epidemic must be stopped

with a mass-vaccination campaign. This set-up allows us to trace a most favorable

scenario for imposing lockdowns, which is when they delay the progression of the

disease while medical and pharmacological interventions are being developed to

address the problem.3

2The theoretical analysis in Busenberg and van den Driessche (1990) shows how three threshold
parameters govern population growth, the growth of cases, and the possibility that the disease
becomes endemic.

3“But there’s one fact I want every American to know: People who are not fully vaccinated can
still die every day from COVID-19”(President Joe Biden White House, 2021). This statement
mirrors the official WHO policy that “Herd immunity against COVID-19 should be achieved
by protecting people through vaccination, not by exposing them to the pathogen that causes
the disease.”(WHO, 2020) This policy has led many countries to mandate lockdowns in order
to gain the time necessary to set-up and execute mass-vaccination campaigns (e.g., see Wall
Street Journal, 2021).
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The paper proceeds as follows. Section 2 presents the model economy. Section

3 characterizes the dynamic process of contagion. Section 4 studies the impact of

lockdowns on the spread of the epidemic in a baseline, worst-scenario model when

there is no herd immunity threshold. In section 4.4, we extend the analysis to a

richer model where herd immunity can be reached by naturally acquired immunity

and medical discovery. In Section 5, we apply this machinery to determine how

interventions of varying severity impact social welfare; this is done by studying

income losses and healthcare cost savings associated with lockdowns via numerical

experiments. Broader policy implications of our analysis are discussed in Section

6, which concludes the study.

2 Modeling the economy

Time is discrete and infinite. The economy is composed of a constant population

of N = 2n ≥ 4 workers who can trade on a decentralized market. In every period

t = 0, 1, 2, . . ., the market can be open or closed. If the market is closed, all

individuals remain isolated and each individual obtains a payoff y. If the market

is open, then individuals meet to trade in pairs. A policymaker chooses whether

the market is closed or open in a period, which is discussed later.

Here, we note that if the market is open, then it is possible (but not certain) for

an individual to meet a random trade partner. We interpret a meeting as a trading

situation that is advantageous to both individuals. Considering a generic pair

(i, j), individual i obtains payoff ȳ > 0 from being in the meeting. Symmetrically,

we have a payoff ȳ for individual j. The payoff corresponds to the instantaneous

utility assumed in matching models of the labor market (Mortensen and Pissarides,

1994). We normalize y = 0 to underline that economic activity is beneficial, as it

is necessary to create economic surplus. Market inactivity harms economic welfare

because it does not allow surplus to be generated.

Individuals discount future payoffs with a common discount factor δ ∈ (0, 1).

Letting yt ∈ {y, ȳ} denote the generic payoff to an individual at date t, the ex-
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pected payoff to any individual at the start of the economy is therefore
∞∑
t=0

δtyt.

It is assumed that an infectious disease exists in the population, which can be

transmitted only when individuals meet to trade. That is to say, in the model

contagion occurs solely via business activity and not social interactions. This

process is described in what follows.

The health status of individuals. Partition the population of workers N into

three sets denoted healthy, symptomatic and asymptomatic. These last two sets

are collectively called infected individuals. It is assumed that an asymptomatic

individual becomes symptomatic at the start of a period with constant probability

s ∈ (0, 1). An infected individual can fully recover from a period to the next

with probability a ∈ (0, 1), thus regaining a healthy state and becoming non-

infectious, a standard assumption in the epidemiology literature.4 This probability

of recovery is independent of symptoms. As a result, the healthy set includes both

individuals who were never infected or those who were and recovered. We thus

have three possible states for an individual: infected and symptomatic, infected

and asymptomatic, and healthy (never infected and recovered); see Fig. 1.

We make two assumptions that match the empirical characteristics of the

COVID-19 disease and partly depart from the standard SIR model discussed in

the epidemiology literature.

Assumption 1. An individual who is recovered is not infectious but is susceptible
to future infection.

This assumption sets our model apart from the standard epidemiology litera-

ture, which typically assumes that recovered individuals cannot be re-infected and

cannot infect others (e.g., see Avery et al., 2020).

Assumption 2. An individual who is infected and asymptomatic cannot be dis-
tinguished from a healthy individual.
4We also assume that the state of an infected individual (symptomatic or not) is probabilistically
determined at the start of each period. This allows us to avoid tracking the history of symptoms
of individuals, which is necessary to keep the state space manageable and the model tractable.
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Figure 1: State transitions.

symptomatic asymptomatic

healthy
(never infected,

recovered)

infection

recovery recovery

This implies that the only state that can be identified is being symptomatic,

thus allowing for these individuals to be isolated. Neither the asymptomatic in-

dividual nor her counterparts can detect the presence of the infection. It follows

that in our model trading activity can transmit contagion when asymptomatic and

healthy individuals meet to trade. It is assumed that in such a meeting contagion

occurs with probability η ∈ (0, 1], independent of whether or not the healthy in-

dividual is someone who recovered from the disease in the past. In other words,

it is assumed there is no permanent immunity to the disease and that it cannot

be rooted out by naturally acquired immunity or medical means. That is, we

make the infection very difficult to handle, so we give best shot at a lockdown

policy to be welfare enhancing.5 Since not all infected individuals are present in

the market—symptomatic individuals are excluded—to calculate the transmission

rate of the disease we must first discuss how individuals are matched into potential

trade meetings. This is done in the following subsection.
5We later relax this assumption by introducing the possibility of medical progress or naturally
acquired immunity as a way to root out the disease.
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Trade Meetings. Consider a period when the market is open. At the start

of the period a matching process determines a proposed partition of the entire

population of workers, into pairwise trade meetings. This means that every worker

is assigned to a proposed pair, for the period. Pairs are selected using a uniform

random matching process, e.g., as in Diamond (1982). Therefore, in each period

t, the probability that individual i is assigned to meet any other individual is 1
N−1 .

No meeting can last for more than one period, meaning that rematching takes

place in each new trading period.

The population partition is only “proposed” because not all meetings necessar-

ily take place: we assume that symptomatic workers are prevented from joining a

meeting (e.g., they are sick, so cannot work). As a result, only healthy and asymp-

tomatic workers join their proposed meeting. To clarify, consider Fig. 2, which

displays the timeline of events in a period. First, meetings are proposed (a parti-

tion is proposed), then all workers join their assigned meeting but for symptomatic

individuals. This is an analytically convenient way to maintain tractability, be-

cause we can run the matching process on a stationary population of size N .

Figure 2: Timeline of events.

k infected
exit t

k̃ infected
enter t+ 1

some infected
recover

meetings
assignment

symptoms
detected

trade &
contagion

k′ infected
exit t+ 1

t t+ 1

We now explain the remaining aspects of the timing of events in a period.

If there are k infected individuals in the economy after meetings take place in

a period t, then at the start of the following period they may decline to k̃ ≤ k

because some of them might recover before a new set of meetings takes place. At
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that point a set of N/2 trades is proposed by assigning everyone in the population

to a trade pair, using a uniform random matching process. After this assignment,

some infected individuals may show symptoms and are prevented from meeting

their assigned trade partner. As a result, not all proposed trades take place. In

the meetings that do take place, some will involve asymptomatic individuals who

may end up transmitting the infection to their healthy partner. Hence, in t + 1

after meetings take place we have k′ ≥ k̃ infected individuals. This process repeats

itself indefinitely and governs the progression of the infection in the economy.

Now consider a proposed trade meeting. We say that we have a mixed match

if the meeting involves an infected and a healthy individual. From an ex-ante

perspective, a mixed match results in a new infection with probability

p := (1− s)η.

This is the probability that the infected individual in the proposed mixed match

remains asymptomatic in the period, and infects her healthy counterpart. With

the complementary probability 1−p the proposed meeting does not result in a new

infection because (i) if the infected is symptomatic (with probability s), then she

cannot enter the meeting and (ii) if the infected is asymptomatic, then contagion

does not occur with probability 1− η.6

Summing up, in our model the infection is transmitted by asymptomatic indi-

viduals, who cannot be recognized and isolated, in contrast with those who show

symptoms–who can be excluded from all trading activity. Hence, the asymp-

tomatic are the main channel of contagion, which reflects the empirical observa-

tion that the SARS-CoV-2 virus is infectious even without symptoms. Two other

empirically relevant features of the model are that the disease is not necessarily

endemic in the population (recovery is possible), and past exposure to the infection

is not a guarantee of permanent immunity. Finally, the empirical observation that
6This is a convenient way to model the transmission process as opposed to tracking individ-
ual histories of those who have been exposed to the virus. This allows us to avoid tracking
all individual histories and characterize the distribution of all individuals across a minimum
of six different states, healthy and never exposed, exposed and asymptomatic, exposed and
symptomatic, exposed and recovered, exposed and deceased, exposed and relapsed.
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the disease has a very low fatality rate in the working-age population motivated us

to consider a zero fatality rate since we only consider contagion occurring through

economic interactions.7 This is also analytical convenient as doing so makes the

population size stationary. We now proceed by showing how to trace the dynamics

of the contagion in our model.

3 Characterizing the Evolution of the Disease

As seen above, the evolution of the disease in the economy involves two separate

processes. The contagion process that occurs through trading activity, and the

recovery process that takes place in-between separate rounds of trading. This

section discusses these two processes, starting with that operating in the market.

3.1 Contagion Through Business Activity

Consider the start of a period when the market is open. For notational convenience

let k̃ = k denote the number of infected individuals. That is to say, there are

k = 1, . . . , N infected individuals who might interact in the market.

We start by deriving the probability Qkk′(N) that k′ ≥ k individuals are in-

fected by the end of a period of market activity. Two sources of randomness affect

this probability: the matching process, which determines how many meetings oc-

cur between infected and healthy individuals, and the biological process, which

determines if the infection is transmitted in these meetings.

Meetings between healthy and infected individuals. Here, we derive the

probability λk`(N) that, if we have k infected individuals and N − k healthy

individuals, then there will be ` = 0, 1, . . . ,min(k,N − k) pairs composed of one

infected and one healthy individual. We call these pairs “mixed matches,” i.e., the
7The Infection Fatality Rate (IFR) from COVID-19 disease for individuals in the working-age
category is small. In the US, it is 0.02% for a 20-49 year old and 0.5% for a 50-69 year old. See
CDC (Table 1 2020). Other studies report the average global IFR from COVID-19 as being
0.15% (Ioannidis, 2021a) and the median IFR for the population below 70 years of age as 0.15%
(Ioannidis, 2021b).
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only meetings were contagion can occur in the model. We have:

λk`(N) :=


`!
(
k
`

)(
N−k
`

)
(k − `− 1)!!(N − k − `− 1)!!

(N − 1)!! if ` ∈ Lk
0 if ` /∈ Lk,

(1)

where8

` ∈ Lk :=
 {0, 2, 4, . . . ,min(k,N − k)} if k = even,
{1, 3, 5, . . . ,min(k,N − k)} if k = odd.

(2)

To derive (1), notice that if k is even (odd), then the number ` of mixed matches

cannot be odd (even), which explains why λk`(N) = 0 in (1) if ` /∈ Lk. Now

consider ` ∈ Lk. There are
(
k
`

)
possible ways to draw ` individuals from the

set of those who are currently infected on the market (k individuals). Similarly,

there are
(
N−k
`

)
possible ways to draw ` individuals from the set of those who are

currently healthy on the market (N −k). All healthy individuals, be they infected

and recovered or never infected, are on the market trading. Hence, there are(
k

`

)(
N − k
`

)

possible ways to draw ` infected and ` healthy individuals. Consider now all

possible ways to form ` mixed matches. Fix an infected individual and match

him to any of the ` healthy individuals. Once this match is formed, fix another

infected individual and match him to any of the `−1 remaining healthy individuals.

Repeating the process until everyone is matched, there are

` · (`− 1) · (`− 2) · · · 3 · 2 · 1 = `!

possible mixed matches between ` infected and ` healthy individuals.

Hence, the number of pairings that give rise to at least ` mixed matches is

`!
(
k

`

)(
N − k
`

)
.

Since we are interested in finding the number of pairings that generate exactly
8In expression (1) we use the standard notation !! of the double factorial. For an integer n, the
double factorial is recursively defined as n!! = n · (n − 2)!! and, by definition, we have 0!! = 1
and (−1)!! = 1.
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` mixed matches, we need to make sure that the pairings among those who are

left do not generate additional mixed matches. In other words, we need to make

sure that the remaining k− ` infected individuals are matched among themselves,

and so are the remaining N − k − ` healthy individuals. Recall that k − ` and

N − k− ` are necessarily even numbers. Considering the set of remaining infected

individuals and fix one of them. Match him to one of the remaining k − ` − 1

infected individuals of this set. Once this match is formed, fix another infected

individual and match him to one of the k− `− 3 infected individuals who are left.

Repeating this procedure until all k − ` infected individuals have been matched

among themselves gives

(k − `− 1) · (k − `− 3) · · · 3 · 1 = (k − `− 1)!!

possible pairings. Similarly, we have (N − k− `− 1)!! possible pairings among the

remaining healthy individuals.9

Therefore, the number of pairings that generate exactly ` mixed matches is

`!
(
k

`

)(
N − k
`

)
(k − `− 1)!!(N − k − `− 1)!!.

Finally, using the same argument above, the number of possible proposed pairings

in the population of N individuals, is (N − 1)!!. This concludes the derivation of

the probability λk`(N) of having ` market meetings among healthy and infected

individuals, when there are k infected individuals.10

Transmission of the infection conditional on a mixed match. The infec-

tion might not spread in all mixed matches because we assumed that transmission
9Note that if ` = k then by definition of the double factorial we have (k − ` − 1)!! = 1 and if
` = N − k then we have (N − k − `− 1)!! = 1.

10Note that λk`(N) for ` ∈ Lk simplifies to

λk`(N) = 2` Γ(k + 1)Γ(N − k + 1)Γ( N
2 + 1)

Γ(`+ 1)Γ( k−`
2 + 1)Γ( N−k−`

2 + 1)Γ(N + 1)

where we have usedm! ≡ Γ(m+1) and, form = 2k−1 (odd number), we have usedm!! ≡ (2k)!
2kk! .

This functional transformation of λk`(N) simplifies the calculations in Matlab, where we can
use the gammaln() function to work with log linearized expressions.
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of the disease between a healthy and an infected individual occurs with probability

p < 1. This has two implications. First, the number ` of mixed matches that can

result in k′ − k ≥ 0 new infections is ` = k′ − k, . . . ,min(k,N − k). Second, the

probability that we have enough market meetings capable of creating k′ − k new

infections is
min(k,N−k)∑
`=k′−k

λk`(N),

i.e., the probability that we have at least k′ − k mixed matches. By construction,

the sum of probabilities ∑min(k,N−k)
`=0 λk`(N) = 1.

To derive the conditional probability that transmission occurs in exactly k′−k
of these ` ≥ k′ − k matches start by considering the case ` = k′ − k. Here, the

probability that the infection is transmitted in all mixed matches is pk′−k. Instead,

if ` > k′ − k, then transmission occurs in exactly k′ − k cases with probability(
`

k′ − k

)
pk
′−k(1− p)`−(k′−k)

Putting together all this information leads to the following:

Lemma 1. The probability that k′ ≥ k individuals are infected by the end of a
period of market activity is:

Qkk′(N) =
min(k,N−k)∑
`=k′−k

λk`(N)
(

`

k′ − k

)
pk
′−k(1− p)`−(k′−k). (3)

In deriving Qkk′(N) we have only considered states in which someone is in-

fected, k, k′ > 0. For the remaining cases k = 0 and k′ = 0 we define the transition

probabilities Q00 = 1, Q0k′ = 0 for all k′ > 0, and Qk0 = 0 for all k > 0. The

first two definitions imply that the zero-infection state is absorbing (if the disease

is non-existent we cannot have new infections) and the third simply follows from

the observation that market interaction can only generate new infections.

Note that the random process determining the number of infected individuals

is a finite Markov chain because the transition probability Qkk′ depends only on

the state k = 0, 1, . . . , N at the start of a trading period and not on the entire

history of infections.11

11The proof of Lemma 1 immediately implies that all Qkk′(N) ≤ 1, as by construction they are
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These considerations lead to the following.

Corollary 1. Let the market be open at the start of a period. The spread of the
infection during the period is fully described by the (N + 1) × (N + 1) upper-
triangular Markov matrix Q:

Q :=



1 0 0 0 0 0 . . . 0 0 0
0 Q11 Q12 0 0 0 . . . 0 0 0
0 0 Q22 Q23 Q24 0 . . . 0 0 0
...

...
...

...
...

... . . .
...

...
...

0 0 0 0 0 0 . . . QN−2,N−2 QN−2,N−1 QN−2,N
0 0 0 0 0 0 . . . 0 QN−1,N−1 QN−1,N
0 0 0 0 0 0 . . . 0 0 1


.

Because the number of infections is a finite Markov chain the square matrix

Q is a Markov matrix. An important property of Markov matrices is that the

transition probabilities taking place after j ≥ 1 steps is determined by the product

Qj. Matrix Q is a central element to calculate the evolution of the disease in the

economy, but not the only one. The reason is that Qkk′(N) only tells us the

probability that k′ − k ≥ 0 new infections occur as a consequence of market

activity. It does not account for the possibility of recovery from the disease, in

which case the infection might decline or even be completely eradicated. This

additional component is discussed in what follows.

3.2 A Random Recovery Process

Fig. 2 indicates that the number of infected individuals present at the start of a

trading period depends on the recovery process that occurs between the end of a

period and the beginning of the next. This process is next described.

Assume that an individual who results infected by the end of a period, recovers

with probability a by the beginning of the following period. This implies that if

we start with k infected individuals, and some recover, then at the beginning of

next period we may have k̃ ≤ k infected individuals.

probabilities. Although the analytical calculation
∑N

k′=0 Qkk′(N) = 1 is not straightforward
for a generic N , we note that this holds because Qkk′(N) = 0 for k′ < k and k′ > min(2k,N),
and the states with positive transition probability k′ = k, . . . ,min(2k,N) are mutually exclu-
sive. By means of example, if N = 4, p = 1/2, k = 2 we have λ20 = 1/3, λ21 = 0, λ22 = 2/3,
and Q22(4) = λ20 + λ22

(2
0
)
( 1

2 )2 = 1
3 + 1

6 , Q23(4) = λ22
(2

1
)
( 1

2 )2 = 1
3 , Q24(4) = λ22

(2
2
)
( 1

2 )2 = 1
6 ,

so
∑4

k′=2 Q2k′(4) = 1.
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We use Rkk̃ to denote the probability that, given k = 0, 1, . . . , N individuals

being infected at the end of a period, k − k̃ have recovered by the start of the

following period, where

Rkk̃ =
(

k

k − k̃

)
ak−k̃(1− a)k̃ k̃ = 0, . . . , k. (4)

It should be clear that if k = 0, then the contagious process stops and the disease is

permanently eradicated. So, given k = 0, 1, . . . , N infected individuals, the disease

is eradicated with probability Rk0 = ak. With the complementary probability, it

continues.

Again, the random process determining the number of infected individuals

between the end of a period t at the beginning of t + 1 is a finite Markov chain

because the transition probability Rkk̃ depends only on the state k = 0, 1, . . . , N ,

i.e., the number of infected individuals at the end of the period (not on the entire

history of infections).12

This discussion immediately implies the following.

Lemma 2. Let there be k = 0, 1, . . . , N infected individuals at the end of a period.
The number of infected individuals at the start of the following period is fully
described by the (N + 1)× (N + 1) lower-triangular Markov matrix

R :=



1 0 0 0 . . . 0 0 0
R10 R11 0 0 . . . 0 0 0
R20 R21 R22 0 . . . 0 0 0
R30 R31 R32 R33 . . . 0 0 0

...
...

...
... . . .

...
...

...
RN−2,0 RN−2,1 RN−2,2 RN−2,3 . . . RN−2,N−2 0 0
RN−1,0 RN−1,1 RN−1,2 RN−1,3 . . . RN−1,N−2 RN−1,N−1 0
RN,0 RN,1 RN,2 RN,3 . . . RN,N−2 RN,N−1 RN,N


.

In the next section, we show how to use matrices R and Q to calculate the

evolution of the number of infected individuals over time.

4 How lockdowns affect the contagious process

In each period the market can be either open or closed. If the market is open,

then the random matching process proposed N/2 trade meetings. If the market
12By construction, Rkk̃(N) ≤ 1 and

∑N
k̃=0 Rkk̃(N) = 1.
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is closed, then everyone remains unmatched for the period.

4.1 The “lockdown” policy intervention

Market interventions are imposed by an external authority (a government), which

can select to close the market for any desired extended length of time, without

restrictions and without consultation with the population. This is what we call a

“policy intervention.”

The policy is completely described by the two parameters (T, j), with T, j ≥ 0.

The policy specifies an initial lockdown phase composed of T consecutive rounds of

market inactivity, followed by a reopening phase consisting of j consecutive trading

rounds. This means that the policy’s horizon is T + j periods, after which the

policy expires and a new policy can be considered. Fixing the policy horizon T +j

to some arbitrary value, the parameter T defines the severity of the lockdown;

T = 0 corresponds to no lockdown. As T increases, the lockdown is stricter.13

As an illustration, consider a policy (T, j) that is repeated until the infection

is eradicated. In this case we have what we call a lockdown cycle (T, j). This kind

of open-ended policy intervention is illustrated in Figure 3. The policy comes into

effect in period τ , i.e., the market is open up until period τ − 1. All trading stops

for T periods at regular intervals τ then τ + T + j, and so on. The market is also

(re)opened for j periods at regular intervals τ + T , then τ + 2T + j and so on.
13Alternatively, one can interpret T/(T + j) as controlling what fraction of the entire set of

market activities is forced to shut down until there is no more risk of infection. For example,
if T = 5 and j = 20 then only 20% of market activities remain open (= 1/5), while 80% of
the market is shut down. These are discrete jumps in market inactivity. The model can be
generalized to attain smaller and more progressive reduction in market activity.
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τ − 1 τ τ+T τ+T+j τ+2T+j

O O O

T T

lockdown starts

market reopens

new lockdown

market reopens
no lockdown

Figure 3: An open-ended lockdown intervention (T, j).

Notes: The lockdown policy (T, j) comes into effect in τ . The market reopens regularly every
T periods, in τ + T, τ + 2T + j, . . .. O=market is open.

As we assumed that infection can only occur in trade meetings, the contagion

spreads at random across the population only when markets are open. Whenever a

lockdown comes into effect, trade stops for T consecutive periods, preventing fur-

ther contagion and allowing some recoveries to occur. Therefore, the two Markov

matrices Q and R allow us to characterize the evolution of the infection in the

economy for a any policy intervention.

With this machinery, we can calculate the expected number of infections for

any given lockdown policy (T, j) and, its welfare consequences.

4.2 The expected number of infections

It is convenient to first consider the case T = 0, i.e., when there is no lockdown.

Here, the contagion process in a period is governed by the matrix product QR.

This product accounts for the trading and recovery processes described in Fig. 2.

The product QR is a stochastic matrix. It represents the Markov process that

governs the law of motion of the number of infected individuals in the economy in

any period t in which the market is open. For any given number k = 0, 1, . . . , N of

individuals that result infected at the start of period t, it gives us the probabilities

that we will have k′ = 0, 1, . . . , N infected individuals at the start of period t+ 1.

This product accounts for two components affecting the transition probabilities:

Q determines the new infections that can emerge as a consequence of trading

activity in period t; this is an intermediate state reached in period t. The final
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state is determined byR, which gives us the probabilities that—after trading takes

place—some infected individuals will recover by the start of t+ 1.

Because the product QR is a stochastic matrix of the Markov type, we can

iterate on it to calculate the number of new infections expected after any given

number j ≥ 1 of consecutive trading periods. In this case (QR)j governs the law

of motion of the number of infected individuals in the economy between the start

of period t and the start of period t+ j.

Based on the above, let us now consider an economy of size N where there are

k = 0, 1, . . . , N infected individuals at the start of a period. The expected number

of infected individuals after j ≥ 1 consecutive trading periods is

µk(j) := e>k (QR)j κ.

Here, κ = (0, 1, . . . , N) is a column vector that contains all possible numbers of

infected individuals in the economy (including the 0 absorbing state, when the

disease is eradicated). The vector ek is the (N + 1)-dimensional column vector

with 1 in the (1 + k)th position and 0 everywhere else. The transpose of this

vector, denoted e>k , selects the (1 + k)th row of matrix (QR)j, i.e., the state of

the economy corresponding to k ≥ 0 infected individuals. The non-zero elements

of that row are the probabilities to transition from k to k′ = 0, 1, . . . ,min(2k,N)

infected people by the end of j consecutive trading periods.

Now consider the case when T ≥ 1, i.e., when trading activity restarts after

T periods of complete isolation of all traders. During the lockdown phase there

cannot be further contagion and there can be some recoveries. Hence, RT deter-

mines the decline in the number of infections that we can expect from T rounds

of lockdown, which is simply calculated by iterating T times transition matrix R.

When the lockdown is lifted the matrix product QR determines the spread of the

infection in each trading period. Hence, we use (QR)j to determine the evolution

of the infections if the market remains open for j periods, calculated by iterating

j times transition matrix QR.

With this machinery we can easily determine not only how a lockdown can

19



slow down the evolution of infections, but also how reopening markets can speed

up contagion. To explain, the number of infections at the end of a T -period

lockdown phase that is imposed after j periods of consecutive market activity

is calculated using the transition matrix (QR)jRT . Conversely, the transition

matrix RT (QR)j allows us to determine the number of infections at the end of

j consecutive periods of market activity after T periods of lockdown have been

imposed. If we study policies by considering the end of market activity phase as

the time reference, we thus have the following:

Lemma 3. Consider a lockdown policy (T, j). If we start with k = 0, 1, . . . , N
infected individuals, the expected number of infected individuals at the end of the
reopening phase following T periods of lockdown, is

µk(T, j) = e>kRT (QR)j κ.

The Lemma immediately follows from direct calculation. To see how lockdowns

affect the spread of the infection an example may be helpful.

Example: no lockdown vs. 1-period lockdown. Suppose that k = 2 per-

sons are infected by the end of a period. Let p = 0.1, a = 1/4, and N = 1000.

We wish to calculate the number of infected individuals after the first period of

market activity for two cases: (i) no lockdown, in which case the market is open in

the following period, and (ii) lockdown, in which case the market is closed for one

period and reopens the period after the next. In each case we have five possible

outcomes: the contagion completely stops by the end of the following period, or

the number of infections declines to 1, remains at 2, increases to 3, increases to 4.

Each of these events has an associated probability. Since

R20 = a2 = 0.0625, R21 = 2a(1− a) = 0.375, R22 = (1− a)2 = 0.5625,

then, contagion stops with probability R20 ≈ 0.063 (no lockdown) and R20R00 +

R21R10 +R22R20 ≈ 0.191 (1-period lockdown). The number of infections declines

to 1 with probability R21Q11 ≈ 0.337 (no lockdown) and R21R11Q11+R22R21Q11 ≈
0.443 (1-period lockdown). The number of infections remains at 2 with probability

R21Q12 + R22Q22 ≈ 0.493 (no lockdown) and R21R11Q12 + (R22)2Q22 ≈ 0.306 (1-
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period lockdown). The number of infections grows to 3 with probability R22Q23 ≈
0.101 (no lockdown) and (R22)2Q23 ≈ 0.057 (1-period lockdown). Finally, the

number of infections grows to 4 with probability R22Q24 ≈ 0.006 (no lockdown)

and (R22)2Q24 ≈ 0.003 (1-period lockdown).

As a result, the expected number of infections after the first period of market

activity is 1.650, if the market is open tomorrow because there is no lockdown,

and 1.238 if the market is closed tomorrow and reopens the period after.

4.3 How lockdowns affect the spread of the epidemic

We have now all the needed machinery in place to show how the duration of

the lockdown, T , influences the spread of the epidemic in the basic model. In

particular, we wish to determine the effectiveness of lockdowns in speeding up the

attainment of a zero-prevalence state by leveraging the process of natural recoveries

while preventing further contagion. In a follow-up section (Section 4.4), we extend

this analysis to a richer model, in which the zero-prevalence state can be attained

also via naturally acquired immunity or experimental medical procedures.

Numerical illustration. We start by showing that the probability of transmis-

sion is central to determine whether or not lockdowns are needed to bring contagion

under quick control. To illustrate this point, consider Fig. 4, which shows three

different scenarios for the transmissibility of the disease: low, medium, and high.

The illustration considers the baseline case when herd immunity is impossible,

N = 1000, a recovery rate of a = 1/4 and s = 0.2. We vary the transmissibility

of the disease in a trade meeting by varying η.14 For illustrative convenience, we

trace the policy over a horizon of 100 periods. If we think of a period as a week,

then we have approximately a two-year horizon, which allows us to contrast the
14According to WHO (2020), 80% of COVID-19 infections are mild or asymptomatic, which

motivates s = 0.2. A recovery rate of 1/4 pins down a duration of infection of about four
weeks (the inverse of a). There is no definitive way to pin down η, as the number of secondary
infections generated from one infected individual varies greatly according to context and time
(WHO, 2020). The value 1/η pins down the expected number of meetings it takes an infected
individuals to spread contagion to one healthy trade partner.
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short run and long run impact of policy implementation.15

In the figure, the share of infected individuals progresses according to the pro-

cess of market interactions. For low and medium transmission rates, the natural

recovery process prevents an increase in infections. That is to say, if the natural

process of recovery is robust and the transmission rate is sufficiently low, then the

infection rate does not get out of control and, even if markets remain fully open,

it falls over time. Instead, the disease rapidly spreads in the population if the

transmission rate is sufficiently high and does not decline. This brief illustration

suggests that lockdowns play the most significant role as possible tools to curb

contagion when the infection is highly transmissible, which is the case we focus

on in studying how lockdowns affect the spread of the disease.

Figure 4: Infection Progression without Intervention (Herd Immunity Impossible).
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Notes: The population size is N = 1000, a = 0.25, s = 0.2 and there is no possibility of herd
immunity. The three solid lines consider and initial infection rate of 1%, the three dashed line
an infection rate of 10%. For each initial infection rate, the three curves are drawn for “low,”
“medium” and “high” transmissibility of the disease corresponding to η = 1/8, 3/8, 2/3.

15A period does not have an absolute interpretation in our model (day, week, month) unless one
specifies a discount factor. A discount factor that pins down the length of time encompassed
by a period: the higher the value the smaller the length of time. This factor will become
important when we calculate the welfare consequences of a lockdown policy in a later section.
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Consider a lockdown policy (T, j) that has two phases: a lockdown phase lasting

T periods, when markets are closed and there is no contagion (only recoveries); and

a reopening phase lasting j periods, when markets reopen and contagion restarts.

We juxtapose a moderate to severe policy, which are differentiated by the length of

the lockdown phase T = 10, 20, respectively. As T increases, the recovery process

lasts longer, causing a greater reduction in the number of infected individuals

before markets reopen. For each of these T values, we consider two alternatives

durations j of the reopening phase: predetermined and state-dependent. In the

predetermined case, after the lockdown ends markets remain open for j periods.

In the state-dependent case, when markets reopen a lockdown is immediately re-

imposed if the infection rate climbs above a pre-specified trigger level—hence j

varies depending on the progression of the infection.

In the numerical experiments, we consider the case of a highly transmissible

disease. The economy starts in period 0 with open markets and two initial infection

rates, 1% and 10% (k = 10, 100 respectively, given N = 1000). Two different

kinds of responses are considered: quick and delayed. Under a quick response,

there is a short, 4-period interval before the start of the lockdown phase. Under a

delayed response, the delay grows to 12 periods. We report the expected number of

infections for moderate and severe lockdowns, in the top and bottom panels of Fig.

5, respectively. The dots pin down the period when lockdowns are imposed and the

squares the period when markets are reopened, after which the reopening phase

continues uninterrupted. The horizontal lines correspond to the initial infection

rate; they also allow us to illustrate state-dependent policies according to which

a new lockdown is imposed based on, alternatively, a high and a low infection

trigger (10% and 1%). There are three main observations about these economies

where herd immunity is assumed impossible.

Observation 1. If the infection can be transmitted through economic activity,
then a lockdown slows down the progression of the infection in proportion to its
duration.
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Figure 5: Infection Progression with Intervention (Herd Immunity Impossible).
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Notes: The population size is N = 1000, a = 0.25, s = 0.2 and there is no possibility of
herd immunity. The top (bottom) panel considers a lockdown T = 10 (T = 20); these policies
correspond to “moderate” and “severe” interventions. Each panel considers two possible initial
infection rates, 1% and 10%, identified by the horizontal lines. The solid curves correspond to a
“quick response” (the lockdown policy is implemented after 4 periods), while the dashed curves
identify a “delayed response” (12 periods delay). Circles identify periods when the lockdown
starts, the squares identify the start of the reopening phase.
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Consider the top panel. For any initial infection rate, high or low, a moderate

lockdown lowers the number of infections in the short run, but not in the long run.

The expected share of infected individuals rapidly falls as soon as the lockdown

is imposed, due to natural recoveries and the absence of additional contagion.

This beneficial effect of the lockdown intervention is of short-duration. Infections

quickly climb back up as soon as markets reopen, quickly surpassing the initial

infection levels. By contrast, in the bottom panel the lockdown lasts twice as long.

This lowers the long-run expected infection rate well below the initial levels, even

for the high 10% initial rate. Intuitively, the longer duration of the intervention

greatly reduces the number of infected individuals so the progression of the con-

tagion is slow when markets reopen. Seen this way, more severe lockdowns more

effectively reduce the expected number of infections in the long-run. However,

even in this case infection rates eventually climb back up. This last consideration

leads to our second observation.

Observation 2. If herd immunity is impossible, then lockdowns are ineffective at
containing the epidemic in the long-run, unless they are repeated and persistently
restrictive.

To illustrate this, consider the top panel of Fig. 5. Infections climb back

up very quickly when markets reopen, and rapidly exceed the initial infection

rate. In this sense, a one-time moderate lockdown is ineffective at containing the

epidemic in the long-run. To ensure low infection rates, the lockdown phase must

be repeated. To illustrate this suppose a new round of lockdowns is triggered

whenever the infection rate climbs up to a pre-determine threshold, either high

(10%) or low (1%). For a low threshold, this occurs soon after markets reopen.

For a high threshold the delay between the end of a lockdown phase and a new

round of lockdowns is longer.

Now consider the bottom panel of Fig. 5. The severe lockdown more greatly

reduces infections. Hence, if policymakers quickly impose a lockdown and intend

to maintain the infection rate below, say, 10%, then there is no need to impose

another round of lockdowns. However, lockdowns must be re-imposed if the target

infection rate is lower (say, 1%) or if lockdowns are imposed with delay. This
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suggests one more observation.

Observation 3. Delays in policy implementation affect the long-run path and the
need for repeated interventions.

In each panel of Fig. 5, infections quickly decline when lockdowns are im-

plemented. The faster markets are shut down the sooner infection rates drop.

However, implementation delays may also have an impact in the long run as the

infections expected after a quick and a delayed response take two different paths

in the long run. The speed of policy response is clearly relevant for short-run

management of the disease, which may be critical if there are tight constraints

on healthcare resources in the short run. In addition, the illustration suggests

that the speed of the response may also be relevant in the long-run, especially for

determining if lockdowns must be repeatedly applied to contain the disease.

Overall, these numerical illustrations suggest that—presuming that herd im-

munity is impossible—imposing a one-time lockdown cannot adequately curb the

infection, even if the duration of the lockdown is quite long. This brings into

question the emphasis on imposing one-time extreme lockdowns to contain the

epidemic—the “flattening the curve” notion made popular in the media at the

onset of the COVID-19 epidemic. The reason is that, since immunity is assumed

impossible, as soon as markets reopen the diseases starts to spread again. In this

case, markets must be shut down as long as necessary for the process of natural

recoveries to bring down the number of infections to zero. At that point, markets

can be reopened. The alternative to such and extreme intervention is to repeat the

lockdown to maintain infection rates at a manageable level. The open question is

whether these conclusions change when herd immunity is possible, which is what

we study next.

4.4 Generalization: herd immunity

In this section we extend the model to include the possibility of achieving herd

immunity. For convenience, assume that in each period there is a time-invariant

probability h that contagion stops. When this occurs, the number of new infections
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becomes zero forever. This can be thought of as the consequence of the mass-

vaccination campaigns currently implemented in many countries (White House,

2021), or scientific discovery leading to the emergence of effective pharmacological

interventions (e.g., the repurposing of ivermectin as recently reported in Kory et

al., 2021). It can be also seen as a way of modeling naturally acquired immunity

in reduced-form, i.e., without making explicit a process of gradual pathogenic

exposure that subsequently gives rise to natural immunity.

The probabilistic herd-immunity assumption implies that we expect the disease

will be eradicated 1/h periods in the future, since

h+ 2(1− h)h+ 3(1− h)2h+ . . . = 1/h.

Hence, 1 − (1 − h)n is the probability that herd immunity is achieved after n

periods. Since this probability is independent of other model parameters, we

can calculate an expression equivalent to µk(T, j), i.e., the number of infected

individuals expected when a lockdown phase of T periods is followed by a reopening

phase of j periods.
Lemma 4. Let there be k = 0, 1, . . . , N infected individuals the period before a
lockdown policy (T, j) is imposed. Let h > 0. The expected number of infected
individuals at the end of the first lockdown policy is

µ̂k(T, j) = (1− h)T+jµk(T, j).

The expected number of infected individuals after j consecutive rounds of trading
is thus µ̂k(0, j) = (1− h)jµk(0, j).

Proof of Lemma 4. To prove the Lemma, consider a policy consisting of T
rounds of lockdown followed by j trading rounds. At that point the policy expires
and a (possibly) new policy comes into effect. The probability that herd immunity
is achieved at any point during these T + j periods is thus:

h+ (1− h)h+ (1− h)2h+ . . .+ (1− h)T+j−1h ≡ 1− (1− h)T+j.

With the complementary probability (1 − h)T+j, herd immunity is not achieved.
Given that this probability is independent of other factors in the model, the
Lemma is easily obtained by construction, using the result in Lemma 3.

Numerical illustration. Fig. 6 illustrates the expected progression of the in-

fection without any kind of intervention. Here, h = 0.01 so if we interpret a period
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as a week, herd immunity is anticipated to be achieved in about two years.

Figure 6: Infection Progression without Intervention (Herd Immunity Possible).
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Notes: The population size is N = 1000, a = 0.25, s = 0.2 and h = 0.01. For other details see
notes to Fig. 4.

For low and medium transmission rates, the expected path of the infection is

similar to the case illustrated in Fig. 4. Intuitively, in those cases the natural

recovery process is enough to curb contagion so adding the possibility of herd im-

munity does not change the overall picture. Instead, the possibility of attaining

herd immunity is of primary importance when the disease is highly transmissible.

In that case the progression of the disease is much more contained as compared

to the case illustrated in Fig. 4. Compared to the no-herd-immunity case, the

infection is expected to peak in the short run, and to reach a lower rate (about 10

percentage points less in the illustration). The problem is that the infection rate

declines slowly after it reaches the peak. This suggests that one-time lockdowns

may be helpful to manage the disease in the high-transmissibility scenario, because

now they can complement the process underlying the development of herd immu-

nity. This is illustrated in Fig. 7, which considers the same interventions studied
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earlier for the case h = 0.01 and high-transmissibility. Two main observations can

be made.

Figure 7: Infection Progression with Intervention (Herd Immunity Possible).

0 20 40 60 80 100
0

10

20

30

40

period

in
fe

ct
io

ns
(e

xp
ec

te
d

sh
ar

e
in

%
)

quick response
delayed response

moderate lockdown

0 20 40 60 80 100
0

10

20

30

40

period

in
fe

ct
io

ns
(e

xp
ec

te
d

sh
ar

e
in

%
)

quick response
delayed response

severe lockdown

Notes: The population size is N = 1000, a = 0.25, s = 0.2 and h = 0.01. For other details see
the note to Fig. 5

Observation 4. If herd immunity can be achieved, then repeated lockdowns may
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be unnecessary to bring the epidemic under control.

The top panel in Fig 7 shows that a one-time moderate intervention signifi-

cantly alters the long-run path of the infection relative to the no-intervention case.

However, the moderate intervention illustrated in the top panel does not succeed

in bringing the long-run infection rate below the initial level. The bottom panel

shows that this can be accomplished by imposing a more severe lockdown. Even

for high initial rates, the one-time severe lockdown is expected to significantly

reduce long-run infection rates, and to eventually bring them to zero.

Note that after reaching its peak, the expected share of the infected population

eventually declines to zero in all cases considered. This decline occurs even if the

lockdown is not repeated, i.e., if markets remain indefinitely open after period

100 in the figure. In this case, the policymaker can select a lockdown length T

to contain the epidemic below a target rate, or to accelerate the convergence to

a no-infection state. A new lockdown can further speed up the convergence to

a no-infection state, and can do so even if this subsequent intervention is more

moderate than the first one (shorter duration).

In this sense, our analysis suggests that the repeated, extreme lockdowns that

we have been experiencing do not appear to be generally necessary to contain

the disease within manageable levels if herd immunity is possible. In this case,

a one-time intervention can be sufficient to “flatten the curve” and contain the

infection rate below a desirable target. We can make one more observation.

Observation 5. If the epidemic is in its initial stages, then severe lockdowns are
unnecessary to contain it, if the intervention is not delayed.

This observation emerges from considering the top panel in Fig. 7 for a starting

infection rate of 1%. Suppose that we want to maintain the infection rate below

10% so that new lockdowns would be imposed only if this level is reached when

markets reopen. A moderate lockdown implemented with a short delay (solid

line) quickly reduces the infection rate and once markets reopen the expected

infection rate remains below 10% and eventually declines. However, implementing

the lockdown with considerable delay (dashed line) fails to keep the infection rate
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below 10% when markets reopen. As the delay affects the long-run path of the

infection, this requires the lockdown to be repeated in order to achieve the desired

target. The top panel also shows that if the infection is not in the initial stages, say

we are at 10% and not 1%, then the moderate lockdown would not help managing

the diseases in the long run, and the 10% target is rapidly overcome even if the

intervention is implemented relatively quickly. In this case, we need a severe

lockdown to bring the disease under control, maintaining the rate of infections

below 10%(bottom panel).

We emphasize that these observations are simply illustrative, given the nature

of the exercise conducted and the constraints imposed on the model. Yet, the

numerical experiments provide some useful insights. The greater the severity

of the lockdown intervention, the lower the share of the population expected to

contract the disease. The impact is non-linear; a severe intervention is helpful to

contain the epidemic, especially when the disease is already quite widespread. In

this case, repetition of the intervention might be unnecessary to maintain control

over the infection. This suggests that severe lockdowns can be useful to quickly

bring a highly transmissible disease under control, but at the same time repeating

the lockdowns does not seem to be generally necessary. The fundamental question

is whether or not society benefits from this.

In order to look into this question, consider that lockdowns destroy income by

precluding business activities. On the other hand, lockdowns prevent the health-

care system form being overwhelmed in the initial stages of an epidemic. They

can also stave-off contagion long enough to ensure that—as the sick recover—

healthcare capacity constraints do not bind in the long-run. These two opposite

economic considerations give rise to a tradeoff that we study in what follows.

5 Are lockdowns socially optimal?

In this section, we offer a measure of social welfare corresponding to per-capita

expected payoffs under a lockdown policy (T, j). The social welfare measure dis-

cussed in this section only considers the trade-off between healthcare costs and lost
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incomes during the periods that encompass the policy duration, which is a limi-

tation introduced to maintain the analysis tractable. Another assumption made

for tractability is that the effects of lockdowns do not linger in the long-run; once

lockdowns are lifted, markets immediately resume their normal operations.

Expected per-capita income from trading. We start by determining the

maximum and minimum per capita income. In a representative period, no income

is produced by those who cannot trade and ȳ > 0 for those who trade. Hence, an

individual that trades in every period has lifetime payoff

v0 := ȳ

1− δ .

Now consider the most extreme lockdown policy: markets do not reopen until

no one is infected. Here, the individual earns nothing until the epidemic is brought

under control, at which point the individual switches to trade forever after, earning

v0. We have:

Lemma 5. Let k = 0, 1, . . . , N denote the number of infected individuals at the
start of the most extreme lockdown policy. The expected payoff to an individual is

vk = eT
k [I − (1− h)δR]−1hv0, v0 := (v0, v0, . . . , v0)T.

Proof of Lemma 5. Suppose there is a number of k = 0, 1, . . . , N infected individ-
uals at the start of the period. Define the (N + 1)-dimensional column vectors

v := (v0, v1, . . . , vN)T and v0 := (v0, v0, . . . , v0)T.

These vectors define expected payoffs vk given the number k of infected individuals
at the start of the period, for the extreme case when the lockdown is only lifted
when the disease is eradicated. Given h ≥ 0 we have

vk = hv0 + (1− h)δeT
kRv,

where eT
kRv ≡ ∑k

k′=0 Rkk′vk′ . It follows that we can express the vector of expected
payoffs as

v = hv0 + (1− h)δRv ⇒ v = [I − (1− h)δR]−1hv0,

where we used the fact that matrix I − (1−h)δR has full rank, so it is invertible.
Hence, the expected payoff if we have today k infected individuals and there is
the most extreme lockdown policy (until the disease is completely eradicated) is
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vk ∈ v, which satisfies

vk = eT
k [I − (1− h)δR]−1hv0.

Now we define expected per capita payoffs for general (T, j) policies, i.e., T

periods of lockdown followed by j periods of market reopening. Again, let k be the

number of individuals infected the period before the lockdown comes into effect.

The present discounted value of the average income generated until the policy

expires (in period T + j) is defined by:

vk(T, j) =
T+j∑
t=1

δt−1(1− h)t−1h
1− δT+j−t+1

1− δ × ȳ

+ (1− h)T δT−1
j∑
`=1

δ`(1− h)`
(

1− µk(T, `)
N

s

)
ȳ.

For computational convenience, the calculation does not include incomes past

period T + j. The first summation calculates the payoff (in present discounted

terms) if herd immunity is attained at any point in time t = 1, . . . , T +j. This can

happen in the lockdown phase, or during the reopening phase, comprising periods

` = T +1, . . . , T +j. The probability that herd immunity is achieved in period t is

(1−h)t−1h. At that point, which we discount by δt−1, markets reopen. This gives

the representative individual a payoff ȳ in each subsequent period t+ 1, . . . , T + j;

in period t+ 1, the present value of this stream is 1−δT +j−t+1

1−δ × ȳ.

The second summation focuses on the reopening phase, i.e., periods ` = T +

1, . . . , T + j, which is why it is discounted by δT−1. The summation calculates the

payoff if herd immunity is not achieved. In that case, µk(T, `)/N defines the share

of infected individuals in the population in a period `. Since a fraction s of these

individuals is symptomatic and cannot trade, the upper bound on the income

generated in that period is
(

1− µk(T, `)
N

s

)
ȳ.16 We now proceed by modeling the

16It is an upper bound because we are including in the income calculation the income of those
who missed their trade meeting because the matching process assigned them to a symptomatic
individual. It follows that the lower bound on our welfare calculation is obtained by doubling
the loss of income due to the inactivity of symptomatic individuals (i.e., as if no symptomatic
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costs of the disease, current and expected.

Healthcare costs of the epidemic. Our working assumption is that the health-

care cost of the infection depends quadratically on its severity. To measure the

severity of the infection we use the share of the population infected in a period.

For concreteness, think of the cost generated from the necessary healthcare equip-

ment and resources in place to fight the infection (e.g., setting up and staffing

additional medical facilities).

To calculate this expected number, we use Lemma 4. Given that at the end of

last period we have k = 0, 1, . . . , N infected individuals, then the expected number

of infected individuals at the end of the first period of lockdown is µ̂k(1, 0), it is

µ̂k(2, 0), at the end of the second period of lockdown and it is µ̂k(T, t), t periods

after the economy has reopened. We divided this number byN to find the expected

share of the infected population.

Given k, the per-capita healthcare expenditure is the present discounted value

of the cost associated with the policy (T, j) is

ck(T, j) =
T∑
t=1

δt−1(1− h)t
(
µk(t, 0)
N

)2

+ (1− h)T δT−1
j∑
t=1

δt(1− h)t
(
µk(T, t)
N

)2
.

To understand this expression, fix the number k of individuals who are infected

before the lockdown policy comes into effect. For computational convenience, the

expenditure is only calculated up to period T + j, and does not include cost

calculations past period T + j. In the first phase (T periods) there is no market

activity so there is no additional contagion – only recoveries are possible. In

each period the disease can be eradicated with probability h, if herd immunity is

achieved. In this case, the healthcare costs drop to zero. Hence, in the expression

above we only see the terms multiplied by (1 − h)t, i.e., the periods t = 1, . . . , T

in which herd immunity is not yet attained. In this lockdown phase the expected

number of infected individuals is µk(t, 0). This explains the first summation on

was assigned to another symptomatic individuals).
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the RHS of the expression above.

The second summation refers to the reopening phase, i.e., periods t = 1, . . . , j

post-lockdown. By the time the lockdown is lifted, there is probability (1 − h)T

that herd immunity has not been yet achieved. In that case, µk(T, t) defines

the expected number of infected individuals. Since the reopening phase starts T

periods after the beginning of the lockdown, we discount the second summation

by δT−1.

Social welfare. Now that we have both the expected cost and the expected

income during the T+j periods of the lockdown policy horizon, we offer a measure

of average ex-ante welfare:

wk(T, j) := vk(T, j)− ck(T, j).

It is simply the present value of the per-capita income expected in periods 1, . . . , T+

j by the average individual, minus the per-capita cost. We use this expression to

study the dynamics of social welfare based on different policies (T, j). The results

are reported in the following section. We emphasize that these calculations are

meant to offer a numerical illustration, not a carefully calibrated assessment of so-

cial welfare. In particular, we emphasize that the welfare measure only considers

the trade-off between healthcare costs and lost incomes, and focuses only on the

T + j periods that encompass the policy duration. This is done to offer an insight

into the tradeoff, while reducing the complexity of the numerical exercise.

5.1 Optimal policy: numerical illustration

We study the welfare impact of lockdowns by means of numerical simulations.

For computational convenience, we work with N = 100 individuals. All other

parameters are as in the earlier experiments.

Fig. 8 reports the results for the cases of medium and high transmissibility,

which are the ones that matter in considering the usefulness of lockdowns, give

the earlier observations. Three cases are considered, corresponding to three initial

rates of infection, 1%, 3% and 10%. Each line illustrates the gain in ex-ante
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welfare associated with a lockdown lasting T = 0, 1, 2, . . . , 15 periods, as opposing

to no lockdown. Hence, all curves start from zero. For each T , ex-ante welfare

is calculated for the 100 period horizon, so the reopening phase lasts 100 − T

periods. A lockdown lasting T periods that increases (lowers) welfare generates

an observation above (below) zero.

We consider an economy where the infection has not spread out yet and is

confined to a small group in the population (initial infection rate 1%). We also

consider economies where the infection has already spread out more widely, to 3%

and 10% of the population.

Figure 8: Welfare Gains as a Function of Lockdown Duration.
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Notes: Horizontal axis: duration T of the lockdown phase. Vertical axis: welfare gain relative
to a no-lockdown policy. Each point is calculated for a 100 period horizon, with the reopening
phase lasting 100 − T periods. The circle markers identify the intervention that maximizes
welfare. For the medium transmissibility case, imposing no lockdown maximizes the welfare
gain for all initial infection rates considered. For the high transmissibility case, imposing some
lockdown maximizes the welfare gain with the maximum reached for T = 1, 3, 6 as the initial
infection rate increases.

The welfare gain reported on the vertical axis is the change in average ex-ante

welfare for any given intervention T relative to no intervention, wk(T, j)
wk(0, T + j) − 1.
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The length (or, severity) T of the lockdown intervention, from 0 (no intervention)

to 15, is reported on the horizontal axis. The circle markers identify the interven-

tion that maximizes welfare, for each initial infection rate scenario. The results of

our analysis can be organized into two main observations.

Observation 6. The welfare impact of lockdowns depends on the diffusion of the
epidemic. Immediately imposing a lockdown might lower social welfare.

The numerical illustration suggests that lockdowns do not necessarily increase

welfare. Welfare declines in the figure when the infection is not easily transmitted,

which is when the size of lost incomes exceeds the reduction in healthcare costs

from the lockdown. Moreover, lockdowns do not necessarily increase social welfare

even when the disease is highly transmissible. In fact, this depends on the duration

of the lockdown. Imposing a six-period lockdown is optimal when the infection

rate is 10%. The optimal duration declines to 3 and then 1 periods as the initial

infection rate decreases to 3% and 1%. This suggests a threshold infection rate

might exists below which imposing a lockdown is not welfare-improving. In other

words, starting a lockdown immediately upon detection of the infection is not

necessarily the best strategy even if the diseases is highly transmissible.17

In this illustration, welfare gains are non-monotone in the initial infection rate.

Consider that the maximum welfare gain from lockdowns is about 0.28% when the

infection rate is 1%, it climbs to about 0.83% when the infection rate is 3% and

then decreases to about 0.01% for an infection rate of 10%. This non-monotonicity

is interesting because although we see that longer lockdowns are optimal as the

starting infection rate increases, they are not necessarily more socially beneficial.

We can make one more observation.

Observation 7. Prolonged lockdowns can be harmful to social welfare, even for
widespread epidemics. Extreme lock-downs are suboptimal.

Two considerations support this observation. First, Fig. 8 shows that over-

shooting the optimal duration T of a lockdown can be quite harmful, especially if

the disease is highly transmissible but not widespread. In the illustration, welfare
17We thank an anonymous Referee for raising this point.
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gains are rather small and rapidly turn to losses as we move past the optimal du-

ration. For instance, with 1% infection rate, the optimal duration of the lockdown

is T = 1 periods. This welfare gain turns to a loss as soon as the lockdown dura-

tion exceeds three periods. For higher infection rates welfare gains also eventually

turns to losses. All curves monotonically decline beyond T = 15. Consequently,

extreme lockdowns are suboptimal in all cases.

Second, if lockdowns fall short of the optimal lockdown duration this does

not dramatically reduce the welfare gains, because of their nonlinearity when the

infection is no initially widespread. In this case, a large share of the maximum

welfare gain can be attained even if the lockdown falls short of the optimal du-

ration. We also observe that shorter than optimal durations can reduce social

welfare, when the infection is already widespread. This is because in that case

the lockdown does little to rapidly contain the disease and simply reduces current

incomes. This creates a welfare loss. However, notice that the welfare reduce from

a shorter-than-optimal lockdown is also quite smaller than the welfare loss from a

longer-than-optimal lockdown, which again suggests that extreme lockdowns are

not optimal. Seen this way, the insight from these numerical illustrations is that

it may be best to err on the side of caution, implementing a shorter rather than

longer lockdown. On the one hand the risk of overshooting the optimal duration

carries a risk of lowering welfare. On the other, falling short of the optimal target

does not dissipate too much of potential welfare gains.

An additional aspect suggests a further reason to avoid prolonged lockdowns,

or entirely avoid them. The model assumes that the income decline associated

with a lockdown is only temporary and as soon as the lockdown is lifted, mar-

ket activities fully and immediately resume. However, recent experience suggests

that this assumption might be empirically unreasonable: some economic activities

may be permanently damaged and may not recover when the lockdown is lifted.

Below, we enrich the model by introducing the possibility that lockdowns may

permanently damage markets to some extent.
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Permanent Damage to Economic Activity: In this section we augment

the model, by assuming that a fraction α(T ) ∈ [0, 1] of per-capita income ȳ is

permanently lost as a consequence of a lockdown. This fraction is an increasing

function of the duration of the lockdown, T .

wk(T, j) = vk(T, j)− ck(T, j)− α(T )× 1− δT+j

1− δ × ȳ. (5)

In the numerical illustrations we use α(T ) = (T − 1)/(10T ). Consider a lock-

down lasting 5 periods. This induces a permanent loss of a fraction α(T ) = 0.1 of

per-capita income, which in present-value terms amounts to 1−δ100

1−δ × ȳ.

Figure 9: Welfare Impact when Lockdowns Induce Permanent Damage.
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Notes: Welfare is calculated using expression 5. The parameters are the same as in Fig. 9.

Fig. 9 shows that when lockdowns have permanent adverse consequences on

economic activity, their desirability further declines, from a social welfare perspec-

tive. This can be ascertained by comparing Fig. 9 to 8. First, the optimal length

of lockdowns decreases even if the epidemic is widespread and highly transmissi-

ble. While in Fig. 8 the optimal lockdown lengths increased in the infection rate,

39



in Fig. 9 the optimal length does not exceed one period and, in fact, is zero for

10% rate. Second, the welfare gain now rapidly turns into a welfare loss if the

lockdown duration overshoots the optimal target. While in Fig. 8 the welfare gain

turned to a loss after five periods lockdown for an initial infection rate of 3%, now

welfare declines immediately, as we get into the second period of the lockdown.

Overall, this is a further indication supporting Observation 7, i.e., the numerical

illustrations suggest care in implementing strict lockdown policies because pro-

longed lockdowns may end up lowering social welfare, even when the disease is

widespread.

6 Discussion

This study contributes to the debate on how to best address the challenges stem-

ming from contagious diseases, such as COVID-19. It offers a mathematical

framework—based on the theory of random matching—which makes explicit how

economic activity can contribute to the contagion process. The model is used

to assess the welfare consequences of non-pharmaceutical interventions that limit

economic and social activities—the so-called “lockdowns.” In our model, shutting

down all business activity is assumed to be the only way stop the progress of con-

tagion. Lockdowns can thus reduce the burden on the healthcare system, but do

so by shutting down all income streams as well. The optimal policy intervention

must therefore balance these two aspects.

Three insights emerge from the analysis, that seem relevant for policy. First,

there is the question of whether imposing drastic stay-at-home mandates at the

onset of the disease is the best course of action. For example, Sweden was criticized

by the popular press for having kept businesses and schools open. The analysis

suggests that there can be gains from imposing some limits to economic activity at

the onset of the epidemic because this can be helpful to bring the epidemic under

control (Observations 1-4). However, such a policy becomes counterproductive as

restrictions on business activity are prolonged, because long-lasting lockdowns are

unnecessary to contain the epidemic (Observation 5 and 7).
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Second, there is the question of whether all countries should adopt the same

response pattern. Our simple model indicates that lockdowns are not a “one-size-

fits-all” type of policy. The severity of the intervention should depend on the

economic structure in terms of costs imposed on the healthcare system, and the

anticipated evolution of the disease based on the characteristics of the susceptible

population (e.g., the age structure of a country). All else equal, while stricter

interventions might be suitable for countries with more fragile healthcare systems,

this policy is not globally optimal, especially in the initial stages of an epidemic if

the disease is not highly transmissible (Observation 6). In other words, the model

does not lend support to the view that interventions should be necessarily identical

across countries. By means of example, supposing that the extreme intervention

adopted by China was locally optimal, the model does not imply that such an

intervention is optimal for the rest of the world.

In fact, and this is a third insight, extreme and open-ended lockdowns are not

generally socially optimal (Observation 7). The numerical illustrations show that

a nonlinear social welfare response to policy intervention. Tighter restrictions on

business activity based on the number of cases does not necessarily constitute an

optimal intervention. As policymakers tighten the noose on the economy, they at-

tain progressively smaller healthcare benefits while generating progressively larger

income losses. This result clearly depends on the dynamics of healthcare costs,

which are assumed quadratic in the share of the infected population, in the nu-

merical experiments presented here.

The numerical experiments reported in this paper should be taken for what

they are—illustrative of possible outcomes. They should not be taken a statements

having general validity. Indeed, we do not think the model can be practically useful

for policy implementation at this stage of its development, as it is still rather

rudimentary in more than one aspect. We consider it a first, albeit imperfect,

attempt at integrating the contagion process into a richer economic model of the

spread of infectious diseases. The question is thus how robust are the insights from

this rudimentary model to changes in the model assumptions. Does the proposed
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model bias the results in favor of or against restrictive interventions and business

closures?

One the one hand, the model assumes that business shutdowns, no matter how

long, can only induce temporary reductions in income flows. It does not account

for possible negative externalities associated with prolonged economic inactivity,

such as human capital decline, economic inequality, disruption of business and

financial networks, or declines in firm survival rates—phenomena that can depress

economic activity for many years to come. This is an especially important con-

sideration for countries whose economic systems are fragile (e.g., consider Greece

as compared to Germany). When we enrich the model with the possibility that

protracted lockdowns permanently harm economic activity, then even lockdowns

of short duration can reduce welfare. Furthermore, in the model business activity

is assumed to spread the infection, and lockdowns prevent further transmission.

Yet, there is neither conclusive evidence nor consensus on the empirical reduction

in COVID-19 transmission and deaths that can be attributed to lockdowns, or

their overall efficacy in reducing case growth (e.g., Allen, 2021; Atkeson et al.,

2020; Bendavid et al., 2021). Additionally, the model assumes that asymptomatic

individuals are undetectable infection vectors who have no incentive to avoid mar-

ket interaction when in fact this problem is greatly mitigated by wide access to

quick testing procedures. These assumptions suggest a bias in favor of restrictive

lockdowns.

On the other hand, our social welfare calculations consider only a basic trade-

off: that between health costs directly associated with the care needed by infected

individuals, and incomes lost due to business closures. There are additional as-

pects of the COVID-19 disease that are omitted from the model and, hence, bias

welfare results in opposite ways. Consider, for instance, the loss of life directly

caused by the disease, and the long-term negative health consequences suffered

by some COVID-19 patients. Furthermore, we did not account for the beneficial

income-smoothing effect of fiscal policy—many countries swiftly addressed the

lockdown-induced income decline with significant government transfers financed
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by an increase in public debt. These omissions bias the social welfare calculations

against adopting early and possibly longer lockdowns. This being said, we also

ruled out indirect harmful health effects of lockdowns, e.g., increase in mortality

from lack of care for other diseases, mental health problems and increased suicides

(e.g., Bendavid et al., 2021), and the possibility that outpatient treatments exist

that could be effective at reducing death from and COVID-19 hospitalizations

(McCullough et al., 2021). Omitting these aspects biases our welfare calculation

in favor of lockdowns.

Overall, these considerations suggest that our analysis, albeit rudimentary, is

more likely to be biased in favor of finding a beneficial role for lockdowns than

a negative one. Future refinements of the model should relax the assumptions

discussed above to enhance the empirical applicability of the model. Other fea-

tures missing from the current layout should also be included. For instance, our

current formulation of the severity of the intervention is only governed by the du-

ration parameter T . One could consider an additional dimension that accounts for

the proportion of business activity affected by stay-at-home mandates. Another

extension is to consider contagious processes that are affected by the population

density, something that can be implemented by assuming the contagion parameter

p depends on the population size N . Here, we have chosen to keep the framework

nimble in order to lay out as clearly as possible an explicit process of contagion—

our pairwise random matching process, that is—and show how it can be integrated

into economic models of epidemics.
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Camera, G., Gioffré, A., 2014. A tractable analysis of contagious equilibria. Jour-

nal of Mathematical Economics 50, 290-300.

Centers for Disease Control and Prevention. 2020. SARS-CoV-

2 Pandemic Planning Scenarios. Retrieved on Jan 4, 2021 at

https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html.

Diamond, Peter. 1982. Aggregate Demand Management in Search Equilibrium.

Journal of Political Economy 90, 881-94.

Eichenbaum, M., S. Rebelo, and M. Trabandt. 2020. The Macroeconomics of Epi-

demics. NBER Working Paper No. 26882.

Goenka, A. L. Liu, and M-H Nguyen. 2014. Infectious diseases and economic

growth. Journal of Mathematical Economics 50, 34-53.

44



Hall, Robert E. and Charles I. Jones. 2007. The Value of Life and the Rise in

Health Spending. Quarterly Journal of Economics 122(1), 39-72.

John P.A. Ioannidis. 2021. Reconciling estimates of global spread and infection

fatality rates of COVID-19: An overview of systematic evaluations. European

Journal of Clinical Investigation, 51, 1-13. https://doi.org/10.1111/eci.13554

John P.A. Ioannidis. 2021. The infection fatality rate of COVID-19 inferred from

seroprevalence data. Bulletin of the World Health Organization, 99, 19-33F, doi:

http://dx.doi.org/10.2471/BLT.20.265892

Kory, P., G U. Meduri, J. Iglesias, J. Varon, K. Berkowitz, H. Kornfeld, E.

Vinjevoll, S. Mitchell, F. Wagshul, and P. E. Marik. 2021. Review of the

Emerging Evidence Demonstrating the Efficacy of Ivermectin in the Prophy-

laxis and Treatment of COVID-19. Frontiers in Pharmacology. Forthcoming.

doi: 10.3389/fphar.2021.643369.

McCullough, P. A., R. J. Kelly, G. Ruocco, E. Lerma, J. Tumlin, K. R. Wheelan,

N. Katz, N. E. Lepor, K. Vijay, H. Carter, B. Singh, S. P. McCullough, B..

Bhambi, A. Palazzuoli, G. M. De Ferrari, G. P. Milligan, T. Safder, K. M.

Tecson, D. D. Wang, J. E. McKinnon, W. W. O’Neill, M. Zervos, H. A. Risch.

2021. Pathophysiological Basis and Rationale for Early Outpatient Treatment

of SARS-CoV-2 (COVID-19) Infection. American Journal of Medicine, 134(1),

16-22. https://doi.org/10.1016/j.amjmed.2020.07.003

Mortensen, D., and C. Pissarides. 1994. Job Creation and Job Destruction in the

Theory of Unemployment. Review of Economic Studies, 61(3), 397-415.

Wall Street Journal. 2021. Germany and Israel Tighten Lock-

downs to Buy Time for Vaccinations. By James Hookway,

Jan 6, 2021. https://www.wsj.com/livecoverage/covid-2021-01-

06/card/t2ez497yO5x5MauXUf65, accessed on 13 May 2021.

The White House. 2021. Remarks by President Biden on the COVID-19 Re-

sponse and the Vaccination Program. Briefing Room, Speeches and remarks,

45



May 04. Accessed on May 15, 2021. https://www.whitehouse.gov/briefing-

room/speeches-remarks/2021/05/04/remarks-by-president-biden-on-the-covid-

19-response-and-the-vaccination-program/

World Health Organization. 2020. Coronavirus disease

(COVID-19): Similarities and differences with influenza.

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-

and-answers-hub/q-a-detail/coronavirus-disease-covid-19-similarities-and-

differences-with-influenza, accessed on 24 Jan 2021.

World Health Organization. 2020. Coronavirus disease (COVID-19): Herd

immunity, lockdowns and COVID-19. https://www.who.int/news-room/q-a-

detail/herd-immunity-lockdowns-and-covid-19, accessed on 13 May 2021.

46


	The Economic Impact of Lockdowns: A Theoretical Assessment
	Recommended Citation

	The Economic Impact of Lockdowns: A Theoretical Assessment
	Comments

	tmp.1625867297.pdf.rGHE4

