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A method was recently proposed and experimentally realized for characterizing a quantum state by
directly measuring its complex probability amplitudes in a particular basis using so-called weak values.
Recently, Vallone and Dequal [Phys. Rev. Lett. 116, 040502 (2016)] showed theoretically that weak
measurements are not a necessary condition to determine the weak value. Here, we report a measurement
scheme used in a matter-wave interferometric experiment in which the neutron path system’s quantum state
was characterized via direct measurements, using both strong and weak interactions. Experimental
evidence is given that strong interactions outperform weak ones for tomographic accuracy. Our results are
not limited to neutron interferometry, but can be used in a wide range of quantum systems.

DOI: 10.1103/PhysRevLett.118.010402

Ever since Aharonov, Albert, and Vaidman (AAV)
introduced the weak value as “a new kind of value for a
quantum variable” [1], it has been a topic of intense debate
[2,3]. As a generalized form of conditioned observable
average [4], it has offered new insights into quantum
paradoxes, such as Hardy’s paradox [5–7], the three-box
paradox [8,9], and the quantum Cheshire cat [10,11], which
in turn have fueled ongoing discussions about its physical
interpretation [12–16]. Independent of interpretation, how-
ever, the weak value is experimentally pragmatic [17],
finding uses in high precision metrology [18–22] and state
characterization [23–26].
This latter state characterization constructs complex

quantum state amplitudes in a particular basis directly
from ratios of averaged detector outputs. The simplicity of
this protocol is well-suited for high-dimensional state
reconstructions, such as for the 19200-dimensional state,
sampled using compressive sensing in Ref. [26]. The weak
value is an experimentally accessible complex number,

hÂiw ¼ hψfjÂjψ ii
hψfjψ ii

; ð1Þ

where Â is an observable of interest, while jψ ii and jψfi are
initial (preselected) and final (postselected) system states,
respectively. To measure such weak values, an ancillary
probe must be coupled to the system of interest.
Traditionally, this coupling has been kept minimally
disturbing (weak); however, several theory works have
recently noted that the weakness of the interaction is not
necessary [27–29] and may even be a detriment to the
accuracy of the state reconstruction [30]. We investigate
these claims in this Letter, and experimentally confirm that

stronger interaction strengths improve the accuracy of
direct state characterization, using weak values.
Originally, AAV constructed the weak value formalism in

a nonrelativistic quantum framework and hence, it should be
first and foremost applicable to massive quantum systems
[1]. In general, optical experiments with matter waves
provide excellent conditions to demonstrate the peculiarities
of quantum mechanics [31–33]. However, because of the
small coherence volume of massive particle beams, an
experimental demonstration of a weak value’s measurement
in a simple massive-particle system proved to be difficult; the
first experimental determination of a weak valuewas realized
in a purely optical setup [34]. Significant improvements in
the technique of neutron interferometry [35] made it possible
to fully determine theweak value of a neutron’s spin operator
with high precision [36,37]. Neutron interferometry has been
established as a powerful experimental method to investigate
the foundations of quantum mechanics [38–43]. In combi-
nation with the weak value measurement scheme, it offers an
experimental window into previously inaccessible parts of
massive quantum systems.
Here, we present an experiment in which the neutron’s

path degree of freedom’s (DOF) [44] state vector is
characterized using weak values. The observable of interest
is the Pauli operator σ̂pz , and the neutron’s spin DOF serves
as a meter system. The measurement of hσ̂pz iw makes it
possible to directly characterize the preselected path state.
The weak values are obtained through weak and strong
interactions, and the precision (as well as the accuracy) of
both experimental approaches are quantified. The exper-
imental results support the statements made in [28,30] that
stronger measurements indeed outperform weak ones.
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The measurement scheme starts with the initial state

jΨii ¼ jPiijSii ¼ ðcþjPz;þi þ c−jPz;−iÞjSx;þi; ð2Þ
where jPii is the initial path and jSii, the initial spin state.
jPz;þi and jPz;−i are the eigenstates of path I and II,
respectively, with the corresponding probability amplitudes
cþ and c−. jSx;þi denotes a spin state that is aligned along
the positive x axis. A general form for a preselected path
state is given by

jPii ¼ cos

�
θ

2

�
jPz;þi þ exp ðiϕÞ sin

�
θ

2

�
jPz;−i; ð3Þ

where ϕ represents the relative phase and θ, the weight of
the two eigenstates. The probability amplitudes cþ and c−
are linked to the general state by ϕ ¼ argðcþÞ − argðc−Þ
and cos θ ¼ jcþj2 − jc−j2.
Equation (2) describes a completely separable state.

There is no coupling between the spin and path DOF.
As a next step, a coupling is created by a unitary evolution
consisting of path-dependent spin rotations. More pre-
cisely, the spin is rotated by a certain angle α around the
z axis in the xy plane, with positive (clockwise) rotations in
path I and negative (counter clockwise) ones in path II. The
interaction Hamiltonian for such a measurement is
Ĥint ¼ −~μ · ~BΠ̂p

zþ þ ~μ · ~BΠ̂p
z−, where Π̂p

z� are the projec-
tion operators on the path eigenstates jPz;þi and jPz;−i, ~μ
is the neutron’s magnetic moment, and ~B ¼ ð0; 0; BzÞ, an
applied magnetic field.
The action of Ĥint on the composite system jΨii is

described by an evolution operator jΨ0i¼e−i=ℏ
R
ĤintdtjΨii¼

e−iασ̂
s
z σ̂

p
z =2jΨii. The angle of rotation α is given by

−2μBzτ=ℏ, where τ is the neutron’s transit time in the
magnetic field region. α is the relevant parameter for the
interaction strength of the measurement. σ̂sz is the generator
of spin rotations around the z axis. The Pauli operator σ̂pz is
given by σ̂pz ¼jPz;þihPz;þj−jPz;−ihPz;−j.
In the standard weak measurement procedure [36], the

evolution operator expð−iασ̂szσ̂pz =2Þ is series expanded
around α and by neglecting higher orders of α, an
approximation for α ≪ 1 is made. Here, however,
the analytical relation expð−iασ̂szσ̂pz =2Þ ¼ cos ðα=2Þ −
iσ̂szσ̂

p
z sin ðα=2Þ is used [28]. No approximation is made.

Therefore, the calculations hold for arbitrary interaction
strengths. The analytic form of the state after the interaction
is given by

jΨ0i ¼ cos

�
α

2

�
jPiijSx;þi − iσ̂pz sin

�
α

2

�
jPiijSx;−i: ð4Þ

The final step of the measurement scheme is the post-
selection. The path is postselected on the final state

jPfi ¼ jPx;þi ¼ 1ffiffiffi
2

p ðjPz;þi þ jPz;−iÞ: ð5Þ

The action of the path postselection is equivalent to a
projection onto jPfihPfj. It leads to final state jΨfi, which
has the form

jΨfi ¼ hPfjPii
�
cos

�
α

2

�
jSx;þi

−i sin
�
α

2

�
hσ̂pz iwjSx;−i

�
jPfi: ð6Þ

Finally, the weak value of σ̂pz is determined by evaluating
the pointer system. Projective measurements along the six
spin directions �x, �y, and �z, yield six intensities Ij� ¼
jhSj;�jΨfij2 with (j ¼ x, y, z), which allow us to extract
the imaginary and real parts, as well as the modulus of the
path operator’s weak value. It is straightforward to derive
the relations

Reðhσ̂pz iwÞ ¼
1

2
cot

�
α

2

�
Iyþ − Iy−

Ixþ
ð7aÞ

Imðhσ̂pz iwÞ ¼
1

2
cot

�
α

2

�
Izþ − Iz−

Ixþ
ð7bÞ

jhσ̂pz iwj ¼ cot

�
α

2

� ffiffiffiffiffiffiffi
Ix−
Ixþ

s
; ð7cÞ

which connect the intensities Ij� to all components of
hσ̂pz iw. It has to be stressed that no approximations are made
to derive this result: relations (7a) to (7c) hold for any value
of α, i.e., for arbitrary measurement strengths. The above
argument is not limited to the neutron’s spin and path DOF,
but it can be applied to any coupling between two two-level
quantum systems.
Since hΠ̂p

z�iw ¼ 1� hσ̂pz iw=2, the complete determina-
tion of the weak value of the Pauli operator σ̂pz also gives
the weak values of the projection operators on each path
eigenstate. These, in turn, characterize the measured
preselected path state [24]

jPm
i i ¼

hΠ̂p
zþiwjPz;þi þ hΠ̂p

z−iwjPz;−iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhΠ̂p

zþiwj2 þ jhΠ̂p
z−iwj2

q : ð8Þ

By denoting the normalization factor as ν≡
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhΠ̂p

zþiwj2 þ jhΠ̂p
z−iwj2

q
, the probability amplitudes of

jPm
i i are given by cþ ¼ νhΠ̂p

zþiw and c− ¼ νhΠ̂p
z−iw. They

are directly proportional to quantities that are determined
experimentally, namely to the path projection operators’
weak values. Using the weak value’s definition given by
Eq. (1), as well as the pre- and postselected path states of
Eqs. (3) and (5), respectively, one expects hΠ̂p

z�iw to be

hΠ̂p
z�iw ¼ hPfjΠ̂p

z�jPii
hPfjPii

¼ 1

2
∓ i

2
tan

�
ϕ

2

�
; ð9Þ

if one assumes that θ ¼ π=2 in Eq. (3), as is the case for a
50∶50 beam splitter of a Mach-Zehnder type interferometer.
A neutron interferometric experiment was performed at

the beam line S18 at the high-flux research reactor at the
Institut Laue-Langevin (ILL) in Grenoble, France. A
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schematic drawing of the interferometric setup is depicted
in Fig. 1.
From a white neutron, beam particles with a wavelength

λ0 ¼ 1.91 ÅðΔλ=λ0 ∼ 0.02Þ are selected by a triple-bounce
silicon perfect-crystal monochromator and subsequently,
pass magnetic prisms (P). They deflect the spin-down
component out of the Bragg condition of the interferometer
crystal, such that only spin-up neutrons are accepted by the
interferometer [45]. The prisms polarize the neutron beam
along the positive z axis. For our experiment, the degree of
polarization was determined to be over 99%. A DC coil
(ST1) turns the neutron spin by π=2 due to Larmor
precession within the coil, so that the spin is aligned along
the positive x axis. To tune the relative phase χ, a parallel-
sided sapphire slab is inserted between the first and the
second plate of the interferometer as a phase shifter (PS).
After the phase shifter, the initial state jΨii is generated,

and the preselection procedure is complete. Inside the
interferometer, a coil in Helmholtz configuration (HC) in
each beam path enables us to perform path-dependent spin
rotations, coupling the path and spin DOF [35]. In addition
to the external guide field (GF), which points in the þz
direction and is applied around the whole setup, the coils
produce extra magnetic fields in the�z direction that cause
the neutron spins’ Larmor precession frequency ωL to
decrease or increase, depending on the sign of the field. The
strength of the magnetic field determines the magnitude of
the rotation angle α. The experiment is performed with two
different values of α. To test the interaction in a weak
regime, α is set to 15°. For the strong interactions, α is set to
90°, which corresponds to the maximum measurement
strength due to the orthogonality of the spin states after
the interaction.
At the interferometer’s third plate, the beams are recom-

bined and the path postselection is carried out. Only
neutrons leaving the interferometer in the forward direction
(O-Det.) are spin analyzed. The spin analysis is performed
by a second DC coil (ST2), mounted on a translation stage
in combination with a CoTi supermirror analyzer (A),
which acts as a filter that lets only the jSz;þi spin state
pass. The second DC coil can be moved in the�x direction.
Finally, the neutrons are detected by a 3He counter.
The intensity modulations Ij� of both experimental runs

are depicted in Fig. 2. The three left panels show the

interferograms of the weak interaction (α ¼ 15°). For Iwxþ,
both the pre- and postselected spin state are jSx;þi, leading
to a large count rate. In contrast, the count rate of Iwx− is very
low due to the orthogonality of initial and final spin states.
Iwy� are identical and have on average, half of the maximal
count rate. Iwz� are phase shifted to each other by two times α,
and they show the same average count rate. In the three right
panels, the interferograms for the strong interaction are
shown. Because of the large spin rotation of α ¼ �90° in
each beam path, Istx� now show the same average count rate,
while being phase shifted by π:Isty� show only negligibly
little contrast. The phase shift between Istzþ and Istz− is
now also expected to be π and easy to resolve. The data
are fitted with a cosine function of the form gðχÞ ¼ aþ
b cos ðc̄χ þ dÞ, where the free fit parameters a, b, and d are
the average, the amplitude, and the phase of the interfero-
gram, respectively. The average period c̄ is obtained from the
H-detector data of all interferograms and held fixed.
Some advantages of the strong measurement approach

can already be seen in the differences between the inter-
ference fringes of the weak and the strong interaction
measurements. To extract the imaginary part of hσ̂pz iw, the
intensities Iz� and Ixþ are used. While Ixþ acts as a
normalization factor, resolving the phase shift between Izþ
and Iz− is crucial to determine Imðhσ̂pz iwÞ. Since this phase
shift is expected to be two times α, it is much harder to
resolve in the weak interaction case. Similarly, Reðhσ̂pz iwÞ is
extracted from the intensities Iy� and Ixþ. Because the
weak value’s real part is expected to be zero, Iyþ and Iy− are

P

A

ST1

ST2

x

y

HCs

H
-D

et
.

O-Det.
By

By

GF

PS

FIG. 1. Schematic drawing of the neutron interferometer setup
implementing spin polarization.

FIG. 2. Interference fringes of the weak measurement (α ¼ 15°)
on the left side and those of the strong measurement (α ¼ 90°) on
the right side. The directions of spin analysis �x, �y, and �z are
shown in the top, middle, and bottom rows, respectively. The
solid and dashed lines show the least square fits for the þ and—
analysis directions, respectively. The error bars show one
standard deviation. The background has already been subtracted
from all interferograms.
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very close to equal [36]. Furthermore, Iy� loses contrast for
larger α due to the spin rotation inside the interferometer,
leading to an orthogonal spin state. For α ¼ 90°, the spin
state is completely orthogonal and shows no contrast.
Finally, the modulus of hσ̂pz iw is directly obtained from

the Ix� data. It is proportional to the square root of Ix−=Ixþ.
The advantages of the strong interaction approach are
intuitively understood. Here, the discrimination of the
relevant signal from the background is crucial: For
α ¼ 0°, Ix− is also expected to be zero and the signal
becomes larger with increasing α. If α is kept small, as in
the weak measurement approach, it is very hard to
discriminate the intensity from the background.
The intensities recorded in the experiment, completely

determine hσ̂pz iw. Using hσ̂pz iw, the weak values of the path
projection operators hΠ̂p

zþiw and hΠ̂p
z−iw are calculated.

They, in turn, are directly related to the preselected path
state, making jPm

i i available. The results of such a direct
state characterization are shown in Fig. 3, where the weak
and the strong interaction approaches are compared to each
other. The upper panels show the normalization factor ν,
which connects the probability amplitudes cþ and c− to
hΠ̂p

z�iw for both the weak and the strong interaction cases.
The middle panels depict the parameter, describing the
relative weighting θ of the general preselected state
described by Eq. (3) again for both measurement
approaches. Finally, the relative phase ϕ is depicted in the
lower panels. The interferograms’ individual points in
Fig. 2 directly map to the points in Fig. 3, when using
Eqs. (7a)–(7c). The lines represent the theoretical prediction
based upon the calibration of the experimental setup. They
take into account the period c̄ obtained from the H-detector

data and the phase d of the Ixþ intensity. In addition, the
contrast of the interferometer has been considered for the
state characterization. In the final results, the advantages of
the strong interaction approach are evident.
While both measurements are in good agreement with

the theoretical predictions, the strong measurement results
are significantly better, in terms of precision σ̄ (a measure
of fluctuation) and accuracy Δ̄ (a measure of deviation from
the theoretical prediction).
For the evaluation of precision of weak and strong

interaction approaches, we use the root mean square
statistical error

σ̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i

jσij2
vuut : ð10Þ

The root mean square deviation

Δ̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i

jti −mij2
vuut ð11Þ

of each measured point mi from the theoretical predictions
ti, in turn, is a measure of accuracy. In Table I, the results of
this quantitative analysis are listed.
The strong interaction scheme surpasses the weak one in

both accuracy and precision for each and every one of the
experimentally determined parameters. For all measured
quantities, σ̄ is roughly twice as large in the weak
interaction case. Also, the mean deviation from the theo-
retical predictions is smaller for the strong interaction
approach. There is another important experimental factor
that has to be taken into account: the measurement time. To
resolve the small phase shifts between Izþ and Iz−, as well
as to discern Ix− from the background, long counting times
were necessary for the weak interaction. If the signal is not
clearly distinguished from the background, nonsensical
results are obtained, making it impossible to quantify the
accuracy of the measurement. Therefore, for each point on
the weak interaction curve, a counting time of 540 seconds
was necessary, while 290 seconds were sufficient for the
strong one. To make the precision values in Table I more
directly comparable, it is possible to scale the error bars of
the weak interaction data. Doing so confirms that the
precision scales with the square root of the measurement;
i.e., the weak interaction results become even worse by a

FIG. 3. Measurement results for the path state vector for both
the weak (α ¼ 15°) and the strong measurement (α ¼ 90°) cases:
The error bars show one standard deviation. The solid lines are
the theoretical predictions.

TABLE I. Quantitative comparison of precision σ̄ and accuracy
Δ̄, as defined in Eqs. (10) and (11), of the weak and the strong
interaction approaches.

Precision σ̄ Accuracy Δ̄

Weak Strong Weak Strong
ν 0.100 0.036 ν 0.152 0.062
θ 0.191 0.065 θ 0.100 0.067
ϕ 0.355 0.159 ϕ 0.860 0.580
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factor of ∼
ffiffiffiffiffiffiffiffiffi
1.86

p
. This is because of the Poissonian

counting statistics of the recorded intensities.
Our weak value determination protocol makes it possible

to obtain weak values of a two-level quantum system with
high accuracy and arbitrary measurement strengths.
Increasing the measurement strength in our scheme provides
a clear discrimination of small signals from the background.
This is particularly significant whenever dealing with low
intensities. Our measurement scheme is not limited to the
neutron spin and path DOF, but is in fact, completely general
and can be used for any coupling between two two-level
quantum systems. Furthermore, as long as the meter system
is two dimensional, our measurement scheme can be slightly
modified and used to determine projection operator’s weak
values of any discrete n-dimensional quantum system.
In summary, we have presented a weak value determi-

nation scheme via arbitrary interaction strengths. We have
applied it to experimentally determine weak values using
both weak and strong interactions. We have directly
characterized the preselected state of the investigated
quantum system, including its normalization factor ν, its
relative phase ϕ, and the weight of its eigenstates θ.
Experimental evidence is given that strong interactions
are superior in terms of accuracy and precision, as well as
required measurement time.
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