Spring 2019

Romantic Resilience: Fractal Conflict Dynamics and Dating Satisfaction

Melanie Reilly
Chapman University, reill126@mail.chapman.edu

David Pincus
Chapman University, pincus@chapman.edu

Follow this and additional works at: https://digitalcommons.chapman.edu/cusrd_abstracts
Part of the [Psychology Commons](https://digitalcommons.chapman.edu/cusrd_abstracts)

Recommended Citation
https://digitalcommons.chapman.edu/cusrd_abstracts/331
Romantic Resilience: Fractal Conflict Dynamics and Dating Satisfaction
Melanie Reilly and David Pincus, PhD
Crean College of Health and Behavioral Sciences, Chapman University, Orange, CA

Introduction
The present study looks into how fractal structures provide resilience in romantic relationships. Fractal structures are branchlike patterns that are self-similar and have exponentially more small events than large. Fractal dynamics allow systems to adjust on both a large or small scale without becoming stuck or falling apart. The present study aims to extend this line of research to examine conflict dynamics over time in dating relationships.

Hypothesis
1. Conflict dynamics will fit Inverse Power Law (IPL) distributions.
2. Reactivity (i.e., bivariate correlations) among conflict, satisfaction, and commitment will predict: a) mean dating satisfaction, b) mean conflict, and c) IPL fit (R^2)^*.
3. IPL fit (i.e., R^2) will predict dating resilience: a) mean satisfaction, and b) interaction effect with conflict on mean satisfaction.

Experimental Method
Participants: Undergraduates in committed dating relationships (N = 27 so far).
Design: Experience Sampling items: Conflict, Satisfaction and Commitment (1-5) 3 x per day for 30 days (n = 90).
Analyses: Group and individual regression analysis (in SPSS) to test fit and shape of distribution of ratings for each variable. Fit and shape used as predictors of satisfaction. Correlations among 3 variable combinations for each individual used as predictors of fit, mean conflict, and mean satisfaction.

Results: Overall, the frequency distribution of 1-5 ratings across all participants are fractal.

Means:
Conflict = 1.61 (0.96)
Satisfaction = 4.20 (1.02)
Commitment = 4.45 (0.88)

Bivariate Correlations

<table>
<thead>
<tr>
<th>Variable</th>
<th>Conflict</th>
<th>Satisfaction</th>
<th>Commitment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conflict</td>
<td>-1.00</td>
<td>-0.50</td>
<td>-0.45</td>
</tr>
<tr>
<td>Satisfaction</td>
<td>-0.50</td>
<td>-1.00</td>
<td>-0.40</td>
</tr>
<tr>
<td>Commitment</td>
<td>-0.45</td>
<td>-0.40</td>
<td>-1.00</td>
</tr>
</tbody>
</table>

IPL fit x Conflict Interaction on Mean Satisfaction

Conclusions: Structure Matters
- Conflict dynamics in dating are generally “fractal” (also other relationship parameters)
- Reactivity among conflict, satisfaction and commitment predicts: a) IPL fit; b) mean conflict and perhaps c) mean satisfaction
- Structure is a complete moderator (i.e., buffer) of conflict on satisfaction (e.g., provides resilience)

Limitations and Future Research
- Currently have data for 47 participants
- Plan to repeat the analysis with this final number
- Also planning on extending these results to married couples in a clinical setting

References