Hartree-Fock Implementation for Pedagogical & Research Purposes

Gary Zeri
Chapman University, zeri@chapman.edu

Jerry LaRue
Chapman University, larue@chapman.edu

Follow this and additional works at: https://digitalcommons.chapman.edu/cusrd_abstracts

Part of the Other Computer Sciences Commons, and the Physical Chemistry Commons

Recommended Citation
https://digitalcommons.chapman.edu/cusrd_abstracts/326

This Poster is brought to you for free and open access by the Center for Undergraduate Excellence at Chapman University Digital Commons. It has been accepted for inclusion in Student Scholar Symposium Abstracts and Posters by an authorized administrator of Chapman University Digital Commons. For more information, please contact laughtin@chapman.edu.
Hartree-Fock Implementation for Pedagogical & Research Purposes
Gary Zeri, Jerry LaRue

Computational Chemistry is the use of computers and quantum mechanics to simulate chemical experiments, saving time and money for scientists and researchers. Despite the benefits of computational chemistry, few undergraduate students are exposed to computational chemistry methods. Because of this, there is a need for an easily understandable computational-chemistry code with a focus on pedagogical use, leading to the implementation of the Hartree-Fock method in Python, with a focus on legibility and conceptual understanding for undergraduate students. The overall logic flow of the program is depicted below.

Specify Molecular System
- Atomic Numbers
- Nuclear Coordinates
- Number of Electrons
- Basis Set
- Object-Oriented Structure (Atoms build Molecules)

Evaluate Integrals
- Gaussian Basis Set allows for simplification of integral evaluation
- Evaluate integrals for overlap, electron kinetic energy, electron repulsion, and nuclear-electron attraction values

Prepare for SCF
- Construct Hamiltonian
- Construct Guess Fock Matrix, Assume no Electron-Electron Interactions for Guess
- Create Transformation Matrix

SCF Procedure
- Compute molecular orbitals and energies from transformed Fock matrix

Diagonalize Fock Matrix
- Use molecular orbitals to compute density of electrons

Build Density Matrix
- Use density matrix to build two electron term

Build Two Electron Term
- Use two electron term and Hamiltonian to create a new Fock matrix

Rebuild Fock Matrix
- Determine energy of the molecule from the Fock matrix

Compute Expectation Energy
- Check if difference between expectation energies is less than a certain threshold

Check For Convergence
- Convergence Reached
- Output Computed Energy & Bond Distance

Convergence No Reached
- Pedagogical SCF Method

Simulated Results
Graph of hydrogen atom ground state energies at varying bond lengths. Data was generated from pedagogical Hartree-Fock code.

References