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A test of the Modigliani-Miller theorem, dividend

policy and algorithmic arbitrage in experimental

asset markets

Tibor Neugebauer∗, Jason Shachat†and Wiebke Szymczak‡
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Abstract

Modigliani and Miller showed that the market value of the company is in-

dependent of its capital structure, and suggested that dividend policy makes

no difference to this law of one price. We experimentally test the MM theorem

in a complete market with two simultaneously traded assets, employing two

experimental treatment variations. The first variation involves the dividend

stream. According to this variation the dividend payout order is either identi-

cal or independent. The second variation involves the market participation, or

not, of an algorithmic arbitrageur. We find that Modigliani-Miller’s law of one

price can be supported on average with or without arbitrageur when dividends

are identical. The law of one price breaks down when dividend payout order

is independent unless the arbitrageur keeps the asset prices in balance.
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1 Introduction

We report an experimental test of the Modigliani-Miller value-invariance theorem of

capital structure and the sensitivity of the value-invariance proposition to dividend

payout variations. Modigliani and Miller (1958) showed by arbitrage proof with

perfectly correlated cash flows that the capital structure is irrelevant for the market

value of the firm. An early criticism of this law of one price was the challenging

question of market response to dividend payout decisions (Durand 1959, Modigliani

and Miller 1959). Real-world dividends are declared by the board of directors. A

remaining question is whether the Modigliani-Miller theorem holds if “man-made”

dividend policies are not perfectly correlated along with the underlying cash flows.

If value invariance breaks down with variations in dividend policies, the empirical

relevance of “the value-invariance proposition would seem to be narrow” (see Miller

1988, p. 103f).

The second Modigliani-Miller theorem, the dividend irrelevance theorem (Miller

and Modigliani 1961), was developed to address this question. The market valuation

depends on the firm’s dividends in the following way. The more the investor gets

in dividend payments, the less she gets in capital appreciation and vice versa. An

investor should be indifferent between dividend payouts and price appreciation, and

thus the value of the firm is independent of the dividend policy. Different from

the earlier contribution where arbitrage implies value-invariance, however, Miller

and Modigliani (1961) left open the question of how the market would approach

equilibration in the dividend irrelevance theorem. Empirical analyses of dividend-

payout policies suggest that dividend payouts are not independent of the market

value of the firm (Angelo and Angelo 2006; Asparouhova, Besliu and Lemmon 2016).

In this paper we propose another empirical test of the dividend irrelevance hy-

pothesis under controlled laboratory conditions. We test the law of one price in

the laboratory with two simultaneously traded assets, the cash flows of which are

perfectly correlated. The two assets pay four regular dividend amounts which are

known from the beginning, but the order of the dividend payouts is random. After

the last regular dividend payment each asset pays a random liquidation dividend.

It is a complete market setting. The liquidation dividends of the assets differ by a

constant amount; thus, the sum of cash flows are perfectly correlated.

We investigate two experimental treatment variations in a two-by-two design.

The first treatment condition varies the regular dividend streams prior to the liq-

uidation dividend. According to this variation the dividend order of the two assets

is identical or independent. When the order of dividends is identical, we have one

regular dividend draw without replacement for both assets in every period. When
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the order of dividends is independent, the regular dividends of the assets are inde-

pendent draws without replacement. We test the question whether the law of one

price holds with identical and with different dividend policies. The identical dividend

payout order implies a narrow test of the Modigliani-Miller (1958) value-invariance

theorem of the law of one price, whereas the independent dividend order implies a

test of the broader implication including the irrelevance of dividend payouts. Since

the difference between liquidation dividends is known with certainty and the sum of

remaining dividend payments is also known with certainty, any price discrepancies

offers an arbitrage opportunity. The second treatment condition varies the market

participation of an algorithmic arbitrageur. In one variation there is no algorithm,

and there is one in the other. Based on the potential price discrepancies in the

market we test the MM law of one price with and without arbitrageur.

According to our data, differences in dividend payouts impact market prices of

equivalent assets. Our data suggest that with an identical order of dividend payouts,

value-invariance can be supported on average. When the orders of dividend payouts

are independent, however, value-invariance seems to break down in absence of the

algorithmic arbitrageur. Only in presence of the algorithmic arbitrageur we can

support the MM law of one price on average if dividend payouts are independent.

Arbitrageurs help the market to reinstate the law of one price on average in our data.

That said, the result is on the average only. Throughout the experiment, arbitrage

opportunities do not completely disappear and, thus, pricing discrepancies between

the two assets remain. Hence, our data do not support the law of one price in real

time or on the level of average price in a period. This result occurs in all treatments

if the algorithmic arbitrageur is present or not. In this study we also look at the

pricing of assets relative to fundamental value. We find substantial deviations from

fundamental dividend values. The algorithmic arbitrageur seems to have no impact

on these deviations.

Our study contributes to the growing body of experimental work on financial

markets, in particular to the line of research that investigates the effects of algorith-

mic trading in markets and, on the other hand, to the research contributing to the

understanding of the Modigliani-Miller theorem and arbitrage. The experimental

finance literature on algorithmic trading includes approaches to randomized algo-

rithms (“zero intelligence traders” of Gode and Sunder 1993), behavioral aversion ef-

fects to trading with algorithms (Farjam and Kirchkamp 2017; Leal and Hanaki 2018;

Angerer, Neugebauer and Shachat 2019), efficiency of market institution and high

frequency trading (Aldrich and López Vargas forthcoming), competitions of subject-

chosen algorithms (Asparouhova, Bossaerts, Rotaru, Wang, Yadav and Yang 2019),
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and, finally, arbitrage algorithms (Rietz 2005; Angerer et al 2019).1 The experimen-

tal literature on the Modigliani-Miller theorem of the law of one price includes studies

of single-asset pricing (Levati, Qiu and Mahganokar 2012) and pricing of perfectly

correlated twin assets (Asparouhova et al. 2016; Charness and Neugebauer 2019,

Angerer, Neugebauer and Shachat 2019). The latter studies are closely related to

ours.

Charness and Neugebauer (2019) show that Modigliani-Miller’s law of one price

holds on average in repeated experimental asset markets with a declining fundamen-

tal value when cash flows are perfectly correlated. Charness and Neugebauer study

an experimental asset market in which the dividends of the two shares are always

identical modulo a shift. The study confirms the law of one price on average despite

the fact that subjects do not exploit arbitrage opportunities as suggested in the un-

derlying theory (Modigliani and Miller 1958). On a more detailed level of analysis,

similar to our results, Charness and Neugebauer reject the law of one price on the

period level as they find that pricing discrepancies never disappear even in the re-

peated market setting. Angerer et al. (2019) study different arbitrageur strategies

with algorithms in the experimental design of Charness and Neugebauer. The study

shows that market quality vis-à-vis the law of one price is clearly enhanced when an

arbitrageur acts in the market. On the period level, yet, the data in Angerer et al.

still suggest failure of the law of one price even when the arbitrageur is present, since

average prices deviate from parity.

Asparouhova et al. (2016) study a two-period design in which two assets pay the

same sum of dividends but in different timely orders. In their setting, and in contrast

to our design, they induce different preferences for cash and cash dividends between

investor subjects. Their data suggest that, possibly as a consequence of subjects’ cash

preferences, the asset that pays the early dividend is priced at a premium relative to

the asset that pays the late dividend. Thus, Asparouhova et al. reject the Modigliani-

Miller theorem. Similarly to Asparouhova et al. and different from Charness and

Neugebauer, and Angerer et al., the assets in our experimental design pay a fixed

sum of dividends plus a random liquidation payment. Similarly to Angerer et al.,

the presence of an arbitrageur algorithm is varied in one treatment condition of our

study. Different from these three studies, our second treatment condition varies

1Hence, we also contribute to the small body of experimental literature on arbitrage in markets

(O’Brien and Srivastava 1991; Abbink and Rockenbach 2006; Bossaerts, Shachat and Xie 2018).

Bossaerts et al. (2018) is an important reference for us, because our experimental design implements

a two-asset variation of their design. Their design involves a single asset that is traded for 5 periods

and that pays a dividend at the end of each period which is drawn without replacement from a set

of five known dividends.
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the complexity of dividend streams across the two assets. We find that Modigliani-

Miller’s law of one price can be supported on average with or without arbitrageur

when the same dividend policy is induced. When the dividend policy varies between

assets, however, the law of one price breaks down unless an algorithmic arbitrageur

helps to keep prices in balance.

The paper is organized as follows. We start by presenting the experimental design

in the Section 2, before we briefly discuss the theory and the testable hypotheses in

Section 3. Section 4 reports the data, and Section 5 concludes.

2 Experimental design

The experimental session is organized in six market sequences. Each market sequence

lasts for four periods involving one cohort of eight subjects; see the timeline of a

market sequence in Figure 1. At the beginning of the sequence, subjects are endowed

with 4,000 cash units and five shares of two assets from the same risk class. We refer

to these assets as “the L-share” and “the U-share”, respectively.2 At the end of the

period, each asset pays a cash dividend from the set of -50, -50, +50, +50 cash units.

The cash dividends are drawn without replacement, so that exactly two dividend

payments are positive and the other two are negative. Dividend payments are added

to the subject’s cash balance, and shares and cash carry over to the next period.

At the end of period 4, after four dividend payments, subjects receive a liquidation

payment for each share. The liquidation payment of the L-share is either 100 or

300 cash units, both outcomes being equally likely. The liquidation payments are

perfectly correlated; the liquidation payment of the U-share is 200 cash units higher

than the one of the A-share. Following the liquidation payment, the subject’s final

cash balance is determined, and shares are cancelled. One of the six sequences is

decisive for payment. Subjects are informed at the end of the session about the

decisive sequence. Their final payment is equivalent to the final cash balance in the

decisive sequence plus a lump-sum for participation.

It is crucial to note that the sum of regular dividends for each share is zero,

and the sum of remaining dividends, which varies from period to period, is known

with certainty for each asset always. The expected liquidation payment of the two

shares differs by a constant, i.e., 200 cash units. Accounting for differences in the

sum of remaining dividends and the liquidation payment differential, thus, any price

discrepancies offer arbitrage opportunities, i.e., immediate riskless profits by selling

2With the L, U notation we refer to “levered” and “unlevered” equity. In the experiment,

however, we refer to the A-share and the B-share, respectively.
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Figure 1: Timeline of experimental market sequence

high and buying low.

In each period, the market opens where the two assets can be traded in a con-

tinuous double auction. Subjects submit limit orders (i.e., bids and asks) or accept

outstanding limit orders to close a transaction. Limit orders can be cancelled. Short

sales and purchases on loan are enabled; the minimum cash balance is -3,000 cash

units and the minimum holding of L-share and U-share is -5 each. Trading is free of

submission and transaction fees and interest rate and short sale fees are zero. The

trading time per period is three minutes in the first two market sequences and two

minutes per period thereafter. During the market period subjects observe in real

time the bids and asks in open order books and the market prices, including high,

low, average and opening prices. The received dividends and the remaining dividends

are announced throughout the sequence. Subjects see their cash balance, their share

holdings, they have a record of all their transactions, dividend incomes during the

market sequence.

Table 1: Treatment conditions and treatment names

Algorithm participation

Dividend streams No algorithm Arbitrage algorithm

Identical dividends OneUrn/NoBot OneUrn/Bot

Independent dividends TwoUrn/NoBot TwoUrn/Bot

The experiment varies two treatment conditions in a 2x2 design; see Table 1. The

treatments differ with respect to the dividend sequence (one-urn or two-urn variation)

and the participation of the algorithm in the market (no-bot or bot variation). If

the dividend sequence of the two assets is identical (i.e., the one-urn condition), the

dividends of the A-share and the B-share are the same in each period. If the sequences

are independent (i.e., the two-urn condition), the sequence of dividends are drawn

independently for the L-share and U-share. When the algorithm participates (i.e.,
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the bot condition), every arbitrage opportunity is instantaneously and automatically

exploited in real-time upon submission (equivalent to the fast bot in Angerer et al.

2019). In all treatments we announce the possible participation of the algorithm,

but we provide no information on the actual participation and on the the strategy

of the algorithm to the experimental subjects.

Upon arrival at the laboratory, subjects were randomly seated in the laboratory.

In each session, some cohorts were exposed to the arbitrage algorithm while other co-

horts were not. The written instructions, which were tape recorded and played back,

referred to the potential participation of the algorithm.3 Each subject participated

in exactly one cohort of eight in exactly one experimental treatment. After having

read the instructions, subjects interacted within their cohort in a practice session of

three minutes. During the practice session, which never involved the participation of

the algorithm, no interaction had any payoff consequence. The dividend sequences,

liquidation values and payment decisive sequence were pre-drawn at once for all 32

cohorts on an spread-sheet and introduced into the software. The pre-drawing pro-

cedure was explained to subjects in the instructions. The pre-drawn random values

were recorded on paper, put into an envelope placed at the wall of the laboratory.

After the last sequence of the experiment, the envelope was opened and the pre-

recorded values were announced to subjects. Subjects could compare these values

with the once of their experiment which were recorded on their computer screen.

Thus, subjects were able to see that the instructor could not influence their personal

payments. At the end of the experiment we debriefed subjects in a questionnaire, in

which we collected socio-demographic data.

The experiment was computerized using zTree (Fischbacher 2007). For the re-

cruitment of subjects we used ORSEE (Greiner 2015). The experimental sessions

were conducted in the laboratory LEE at the University of Castellon in Spain. Our

experiment consisted of thirty-two cohorts of eight subjects each. Exactly eight co-

horts were randomly assigned to each of our four experimental treatment conditions.

3Farjam and Kirchkamp (2017) suggest that such announcement alone can lead to more effi-

cient market prices. The potential participation of an algorithm could thus bias our data towards

efficiency. However, one should note that Leal and Hanaki (2018) and Angerer, Neugebauer and

Shachat (2019) found no announcement effect in market prices.
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3 Theoretical consideration, measures and testable

hypotheses

3.1 Theoretical considerations

Modigliani and Miller (1958) showed that the market value of the corporation is

invariant to its capital structure. Let VU ≡ SU denote the market value of unlevered

equity of the company. Let VL denote the market value of the levered company

including the value of levered equity, SL, and the (constant) market value of bonds,

B. According to the Modigliani-Miller value-invariance theorem (without taxes), the

market value of the company with or without debt is the same.

VU ≡ SU = SL +B ≡ VL (1)

The crucial point of the arbitrage proof of the MM invariance theorem is that if

the value of levered equity and the value of unlevered equity differ by more or less

than the debt, the arbitrageur will sell the high-priced and buy the low-priced share

of equity and make an arbitrage gain. In the (no-arbitrage) equilibrium, thus, the

market value of levered equity and the market value of unlevered equity must differ

by the value of bonds, i.e., SU − SL = B.

How does our experimental design map into the Modigliani-Miller world? In the

experiment we assume a constant “synthetic value of debt” which can be thought of

as being represented by the constant difference in liquidation payments of the L-share

and U-share. In our setting, possible differences in the sum of remaining dividends

add to or subtract from the differences in liquidation payments. We denote the sum

of remaining dividend payments of L-share and U-share explicitly by DL and DU , and

RL and RU are the market values of the liquidation payments, where SL ≡ RL +DL

and SU ≡ RU +DU . Thus, value invariance in our experiment implies the following

equation.

VU ≡ RU +DU = RU +DU +B ≡ VL (2)

Equation (2) must be fulfilled in the no-arbitrage equilibrium, even with varying,

independent dividend payouts. This equation is the starting point for our experi-

mental tests.

3.2 Measures

In our analysis we apply (besides the measure of arbitrage value in real time) also the

measures proposed in Charness and Neugebauer (2019). So, we measure deviations
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from the law of one price between the L-share and the U-share by the deviations from

parity pricing (DPP). The measure is similar to the one formulated in Charness and

Neugebauer (2019), where the time index indicates the period t = 1, 2, 3, 4, i.e.,

DPPt =
SU,t

SL,t +B
− 1 =

(SU,t − SL,t)−∆FVt
SL,t + ∆FVt

(3)

∆FVt ≡ FVU,t − FVL,t is the difference in remaining payouts between shares,

where FVL,t and FVU,t denote the sum of remaining dividends plus expected liquida-

tion payment of L-share and U-share, respectively. We measure the average deviation

from parity pricing per period over the course of one market sequence as follows.

DPP =
1

T

T∑
t=1

DPPt (4)

Deviations from parity pricing can average zero, although deviations from parity

pricing always exist. Therefore, we measure the average absolute deviation from

parity pricing (ADPP) between the L-share and U-share as follows.

ADPP =
1

T

∑
|DPPt| (5)

ADPP denotes the average absolute deviation from parity pricing during the

course of a market sequence. If average prices in a period equal dividend value, or if

the average prices differ by dividend value the ADPP measure is zero. Indeed even

with zero ADPP measure, average prices can deviate from fundamental dividend

values.

Even if ADPP = 0, it can be that many arbitrage opportunities arise in the

course of trading. Therefore, we measure (potential) arbitrage opportunities in two

ways. First, we count the number of limit orders that lead to arbitrage opportunities

(discrepant limit order flow, DLOF) as well as the total number of limit orders (limit

order flow, LOF) in each market sequence. Thus, the ratio DLOF/LOF measures

the proportion of limit orders that generate arbitrage opportunities (Charness and

Neugebauer 2019). As second measure we compute the size of the (potential) ar-

bitrage gains in real time, π. When the arbitrage algorithm is (not) present, the

arbitrage values equal the (potential) gains of the arbitrageur.

πt =
∑
τ

max(0, bL,τ − oU,τ + ∆FVt) +max(0, bU,τ − oL,τ −∆FVt), (6)

where τ denotes time within period t, b·,τ and o·,τ denote the best outstanding limit

order bid and offer at time τ in the L-share and the U-share, respectively.

9



We measure the deviations from fundamental dividend values in two ways. First,

we measure the expected excess return of buying and selling off the fundamental

dividend value including the expected liquidation payment at the end of market

sequence (j = 1, 2 indicates L-share and U-share, J = 2):

DFj,t =
Sj,t
FVj,t

− 1; (7)

DF is the relative deviation from fundamentals and ADF is the absolute relative

deviation from fundamentals over the course of the market sequence:

DFt =
1

J

J∑
j=1

DFj,t; DF =
1

T

T∑
t=1

DFt (8)

ADFt =
1

J

J∑
j=1

|DFj,t|; ADF =
1

T

T∑
t=1

ADFt (9)

ADF can be compared to ADPP. If ADF exceeds ADPP then we have that the

price trajectories converge on parity rather than on fundamental payout values, and

vice versa. As second set of measure we use the relative deviation, RD, and the

relative absolute deviation, RAD, which has been applied as mispricing measure vis-

à-vis fundamentals in single-asset market experiments (e.g., Stöckl, Huber, Kirchler

2010).

RDj =
1

TFVj

T∑
t=1

Sj,t − FVj,t (10)

RADj =
1

TFVj

T∑
t=1

|Sj,t − FVj,t| (11)

Since L-share and U-share trade at the same time, we define the average of the

individual asset measures as the relative deviation RD = 0.5(RDL + RDU) and

relative absolute deviation, RAD = 0.5(RADL +RADU).

3.3 Testable research questions

The Modigliani-Miller theorem implies the following testable hypotheses: DPP = 0,

ADPP = 0, π = 0. In fact, it would also be sufficient for the confirmation of the MM

theorem, if asset prices would always confirm fundamentals, that is, ADF = 0 and

RADL = 0 = RADU . The test of the MM theorem in our experimental environment

is our main research question. More detailed testable research questions follow:
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1. Are relative prices in equilibrium when dividends are identical?

2. Are relative prices in equilibrium when dividends are different?

3. Does our algorithmic arbitrageur help to establish the law of one price when

dividends are different or identical?

4. Do we observe mispricing vis-a-vis the fundamental value? Does it get worse

when dividends are different rather than when they are identical?

5. Does mispricing seize with experience of subjects?

6. Does our algorithmic arbitrageur help to eliminate mispricing?

7. Does our algorithmic arbitrageur affect market liquidity, volume and volatility?

8. Does our algorithmic arbitrageur impact a price movement towards fundamen-

tals?

4 Results

The data of one cohort represent one independent observation, such that we have 32

independent observations in total. Overall, 256 subjects participated in the study,

of which 47 percent were female. On average, subjects stated risk aversion on a

7-point Likert scale was 3.59 (indicating risk neutrality). An overview of our data

preliminaries is presented by Table 2. We have organized this section in three sub-

sections. In each subsection we present our observations including the supportive

data analysis.

4.1 Law of one price

Our first test of the Modigliani-Miller theorem of the law of one price is based on

the deviations from parity pricing, DPP (Equation 4). The measured average devi-

ations from parity are reported in Table 3, organized chronologically by market and

treatment. The test results are indicated.

Observation I (Parity pricing): Parity pricing cannot be rejected in three

out of four treatments. Only in the TwoUrn/NoBot treatment with no participation

of the algorithmic arbitrageur, the law of one price must be rejected.
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Table 2: Descriptive statistics Average values of relative deviations from price

parity, DPP, absolute deviations from price parity, ADPP, relative deviations from

fundamental values, DF, absolute deviations from fundamental values, ADF, (po-

tential) arbitrage gains, π, and average-subject characteristics stated in the ques-

tionnaire, organized by treatment condition. (Standard deviations are reported in

parentheses).

OneUrn TwoUrn

Bot (n=8) NoBot (n=8) Bot (n=8) NoBot (n=8)

DPP 0.015 0.112 -0.013 -0.037

(0.165) (0.375) (0.168) (0.197)

ADPP 0.123 0.204 0.128 0.149

(0.081) (0.220) (0.079) (0.083)

DF -0.130 -0.027 -0.105 0.002

(0.159) (0.239) (0.230) (0.174)

ADF 0.223 0.242 0.250 0.202

(0.096) (0.139) (0.131) (0.108)

π 125 362 135 364

(198) (844) (211) (554)

Average CRT score 1.16a 0.75a 0.875 0.656

(0.420)a (0.199)a (0.381) (0.353)

Average risk seeking 3.31 3.75 3.64 3.67

(0.456) (0.678) (0.572) (0.623)

Average female ratio 0.453 0.453 0.531 0.438

(0.234) (0.107) (0.241) (0.166)

aThese values are based on 4 instead of 8 cohorts.
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Table 3: Deviations from parity pricing - descriptive statistics. Average

relative deviation from parity pricing, DPP, by market and treatment condition in

columns (1)-(2), and (4)-(5). Columns (3) and (6) report p-values for Wilcoxon-

Mann-Whitney tests; (z-statistics for one-sample and two-sample tests are reported

in parentheses).

OneUrn TwoUrn

Run Bot NoBot Bot vs. NoBot Bot NoBot Bot vs. NoBot

(1) (2) (3) (4) (5) (6)

Market 1 -0.01 0.12 0.74 -0.04 -0.06∗∗ 0.46

(-0.69) (-0.17) (-0.33) (-1.35) (-2.17) (0.73)

Market 2 0.02 0.14 0.48 -0.02 -0.06 0.76

(0.36) (1.48) (-0.71) (-1.09) (-1.39) (0.31)

Market 3 0.04 0.11 0.77 -0.03 -0.07∗∗∗ 0.14

(1.02) (1.31) (-0.30) (-0.81) (-2.71) (1.47)

Market 4 0.01 0.08 0.28 0.01 0.01 0.58

(0.77) (1.75) (-1.09) (-0.37) (0.48) (-0.55)

Market 5 0.02 0.12∗∗∗ 0.06∗ -0.03 -0.05∗∗ 0.34

(1.23) (3.26) (-1.89) (-1.31) (-1.98) (0.96)

Market 6 0.00 0.10∗∗∗ 0.07∗ 0.04 0.02 0.83

(0.33) (2.63) (-1.82) (0.89) (0.57) (0.21)

Average 0.02 0.11 0.39 -0.01 -0.04∗∗ 0.39

(0.00) (0.00) (0.86) (-1.00) (-2.00) (0.86)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Support: Table 3 reports average relative deviations from parity pricing, DPP,

by Market, sequence 1 to 6, for all treatments. Values for DPP are derived as

formulated in Equation 3. The average results are shown in the bottom line of the

table, see also Table 2. Table 3 indicates that average pricing in the TwoUrn/NoBot

treatment, see column (5) of the table, differs from parity significantly. As indicated

in the table, some deviations from parity pricing are also indicated in some markets

of the OneUrn/NoBot treatment without algorithmic arbitrageur participation. We

find no significant deviation from parity pricing in any market where the algorithmic

arbitrageur participates.

Observation 1 adds to the supportive evidence of the Modigliani-Miller theorem,

but also shows its limitations. Charness and Neugebauer (2019) found that the dif-

ferences from parity pricing are not significantly different from zero, when dividends

are equal modulo a shift. It seems that we have been able to reproduce this effect in

the OneUrn treatment condition, where dividend streams for L-shares and U-shares
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Figure 2: Average relative deviation from parity pricing (DPP) by treatment

are identical and the differences in the liquidation payments are constant. This result

is perhaps not so surprising. For the TwoUrn treatment condition, where dividend

streams for L-shares and U-shares are independent, differences from parity pricing

are significant on average, unless the algorithmic arbitrageur is present. So what does

that tell us about the claim of Miller and Modigliani (1961) that the market value

of the firm is independent of its payout policy? Apparently, the Modigliani-Miller

law of one price is impacted by differences in the payout policy. This observation,

maybe for different reasons or not, underlines the empirical evidence on the relevance

of dividend payout policy (DeAngelo and DeAngelo 2006, Asparouhova et al. 2016).

To support the law of one price with different dividends, we need an algorithmic

arbitrageur in the market. In the TwoUrn/Bot treatment, differences from parity

are not significant. The impact of the algorithm on parity pricing is also shown in

Figure 2 by period, aggregated over all six markets.

Figure 2 shows the differences from parity pricing, DPPt, by period and treat-

ment. (See also Figure 5 in the appendix where the average differences from parity

are shown for each dividend pattern of the L-share). The Figure shows that markets

in the OneUrn treatment condition, i.e., with identical dividend streams for L-shares

and U-shares, appear to reach parity pricing (y=0, dotted line) when the algorithmic

arbitrageur is present (solid black line) but deviate from parity pricing where no al-

gorithm is present (dashed black line). Similarly in the TwoUrn treatment condition,

the average prices are closer to parity pricing in the presence of the algorithm. In

the NoBot treatment condition (dashed red line), prices are further away from parity

pricing than in the Bot markets (solid red line). We now turn to a more demanding

test of the Modigliani-Miller law of one price, via the absolute deviations from parity

pricing, ADPP.
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Table 4: Deviations from parity pricing - regression results. Results from

OLS regressions with robust standard errors. Average relative deviation from price

parity, DPP, and average absolute deviation from price parity, ADPP, are derived

as defined in Equations 4 and 5. Bot and TwoUrn are treatment dummies. Market

indicates the market sequence, ranging from 1 to 6. avRisk is the average self-

reported willingness to take risks on a 7-point Likert scale for each cohort. avFemale

is the proportion of female participants within a respective cohort. avCRT is the

average score in a standard CRT test for each cohort, CRT-scores range from 0 to 3

according to the number of correct answers. The mean has been subtracted from the

last three measures to allow for a more meaningful interpretation of the intercept.

Dependent variable:

DPP ADPP

(1) (2) (3) (4) (5) (6)

Constant 0.068 −0.021 −0.104 0.254∗∗∗ 0.160∗∗∗ 0.233∗∗∗

(0.049) (0.055) (0.068) (0.038) (0.044) (0.042)

Bot −0.039 −0.026 0.022 −0.052∗∗∗ −0.055∗∗∗ 0.021

(0.024) (0.023) (0.021) (0.019) (0.018) (0.014)

TwoUrn −0.089∗∗∗ −0.090∗∗∗ −0.016 −0.025 −0.030 0.0005

(0.024) (0.025) (0.019) (0.019) (0.019) (0.012)

Market 0.005 0.005 0.008 −0.019∗∗∗ −0.019∗∗∗ −0.012∗∗∗

(0.007) (0.007) (0.005) (0.006) (0.006) (0.004)

avRisk 0.037∗∗ 0.033∗∗ 0.012 0.014

(0.016) (0.016) (0.013) (0.011)

avFemale −0.109∗∗∗ −0.154∗∗ 0.121∗∗∗ −0.060

(0.039) (0.063) (0.027) (0.040)

avCRT 0.016 −0.109∗∗∗

(0.035) (0.024)

Observations 192 192 144 192 192 144

R2 0.081 0.103 0.141 0.102 0.141 0.251

Adjusted R2 0.066 0.079 0.103 0.088 0.117 0.218

F Statistic 5.488∗∗∗ 4.279∗∗∗ 3.751∗∗∗ 7.109∗∗∗ 6.085∗∗∗ 7.649∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Observation II (Absolute Deviation from Parity Pricing): ADPP

measures are significantly positive for all markets and treatment conditions. ADPP

measures are significantly smaller in the presence of the algorithmic arbitrageur, and

diminish with experience.
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Support: Table 2 records average ADPP measures by treatment sequence, rang-

ing from 0.123 to 0.204. Table 4 reports regression results with and without control

variables. We estimate the impact of our treatment conditions using OLS regres-

sion with robust standard errors, clustered at cohort level. The regressions show

that ADPP is significantly smaller when the algorithmic arbitrageur is present than

when it is not. The regression results further show that the pricing discrepancies

get smaller with repetition, indicated by Market. Table 4 also suggest that absolute

deviation from parity pricing are smaller in cohorts with higher average CRT-scores.

Observation III (Potential arbitrage gains): The (potential) arbitrage

gains are smaller when the algorithmic arbitrageur is present. Repetition and market

acuity leads to a reduction in discrepant orders.

Support: Table 2 shows the (potential) gains from arbitrage π per market for

each treatment. The regression results in Table 5 show that the potential arbitrage

gains are significantly smaller in treatments with algorithmic arbitrageur than with-

out. The main reason is probably that discrepant limit orders remain outstanding

in the market for longer and thus trigger more discrepant limit orders subsequently

through competition. Interestingly, the (potential) arbitrage gains seem independent

of the treatment condition; it only matters if an arbitrageur is present or not. The

regression in Table 5 shows that the repetition, Market, and the CRT-score of the

market have a negative impact on (potential) arbitrage gains. The regression results

of the number of discrepant limit orders do not suggest that the relative frequency

of discrepant limit orders diminishes. Apparently, arbitrage opportunities diminish

in size but not its relative frequency.

4.2 Expected dividend value

We are also interested in the determinants of market prices, in particular, in the

impact of the algorithmic arbitrageur on asset prices relative to fundamentals. The

traditional view on Wall Street is that the activity of well-paid professions who en-

gage in arbitrage pushes prices towards fundamentals. As described in section 3,

we have different measures of mispricing vis-à-vis fundamentals; DF, ADF, RD and

RAD.

Observation IV (Deviation from fundamentals) The presence of the al-

gorithmic arbitrageur does not facilitate convergence of market prices towards fun-
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Table 5: Arbitrage opportunities. Results from OLS regressions with robust

standard errors. The cumulative value of potential arbitrage gains π per market

sequence and the proportion of discrepant limit orders (DLOF ) of total limit orders

(LOF ) in percent are measured as defined in Equation 6. Bot and TwoUrn are

treatment dummies. Market indicates the market sequence, ranging from 1 to 6.

avRisk is the average self-reported willingness to take risks on a 7-point Likert scale

for each cohort. avFemale is the proportion of female participants within a cohort.

avCRT is the average score in a standard CRT test within a cohort. The mean

has been subtracted from the last three measures to allow for a more meaningful

interpretation of the intercept.

Dependent variable:∑
πt DLOF/LOF (in %)

(1) (2) (3) (4) (5) (6)

Constant 627.748∗∗∗ 660.789∗∗∗ 924.434∗∗ 4.056∗∗∗ 4.685∗∗ 5.568∗

(177.973) (247.986) (363.267) (0.705) (1.998) (2.847)

Bot −233.177∗∗∗ −261.482∗∗∗ −96.071 −2.088∗∗∗ −2.096∗∗∗ −1.902∗∗∗

(73.968) (77.694) (60.923) (0.480) (0.478) (0.612)

TwoUrn 6.281 1.603 58.100 0.732 0.761 0.802

(73.968) (78.029) (55.304) (0.480) (0.505) (0.671)

Market −76.563∗∗∗ −76.563∗∗∗ −50.545∗∗∗ −0.193 −0.193 −0.157

(27.640) (27.433) (18.472) (0.138) (0.138) (0.169)

avRisk −50.458 −34.406 −0.120 0.125

(70.936) (65.282) (0.637) (0.691)

avFemale 351.539∗∗ −230.079 −0.440 −2.807

(147.937) (232.353) (1.390) (2.373)

avCRT −353.804∗∗∗ −1.174

(133.985) (1.219)

Observations 192 192 144 192 192 144

R2 0.107 0.122 0.200 0.110 0.111 0.133

Adjusted R2 0.092 0.099 0.165 0.096 0.087 0.095

F Statistic 7.482∗∗∗ 5.179∗∗∗ 5.708∗∗∗ 7.724∗∗∗ 4.647∗∗∗ 3.497∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 6: Deviation from fundamental values Results from OLS regressions with

clustered standard errors. Standard errors are reported in parentheses. Absolute

and relative deviation from fundamental dividend values per period, ADFt and DFt,

as defined in Equations 8 and 9. Bot and TwoUrn are treatment dummies. Market

indicates the market sequence, ranging from 1 to 6. The cash/asset ratio is defined

as the ratio between all available cash and the fundamental value of all outstanding

shares. avRisk is the average self-reported willingness to take risks on a 7-point

Likert scale for each cohort. avFemale is the proportion of female participants within

a cohort. avCRT is the average score in a standard CRT test within a cohort. The

mean has been subtracted from the last four measures to allow for a more meaningful

interpretation of the intercept.

Dependent variable:

ADFt DFt

(1) (2) (3) (4) (5) (6)

Constant 0.265∗∗∗ 0.303∗∗∗ 0.350∗∗∗ −0.026 −0.265∗∗∗ −0.372∗∗∗

(0.020) (0.031) (0.046) (0.028) (0.048) (0.071)

Bot 0.017 −0.003 0.025∗ −0.098∗∗∗ −0.073∗∗∗ −0.058∗∗∗

(0.012) (0.011) (0.015) (0.019) (0.017) (0.022)

TwoUrn −0.004 −0.007 −0.014 0.027 0.026 0.094∗∗∗

(0.012) (0.012) (0.014) (0.019) (0.018) (0.021)

Market −0.013∗∗∗ −0.013∗∗∗ −0.009∗∗ −0.002 −0.008 0.001

(0.004) (0.003) (0.003) (0.006) (0.005) (0.006)

Cash/asset ratio 0.027 0.057∗ 0.275∗∗∗ 0.242∗∗∗

(0.024) (0.030) (0.035) (0.045)

avRisk −0.037∗∗∗ −0.050∗∗∗ 0.089∗∗∗ 0.085∗∗∗

(0.009) (0.010) (0.015) (0.015)

avFemale 0.228∗∗∗ 0.209∗∗∗ −0.154∗∗∗ −0.152∗∗

(0.025) (0.044) (0.039) (0.070)

avCRT −0.014 0.020

(0.027) (0.038)

Observations 735 735 549 735 735 549

R2 0.019 0.094 0.140 0.040 0.165 0.169

Adjusted R2 0.015 0.086 0.128 0.036 0.158 0.158

F Statistic 4.788∗∗∗ 12.554∗∗∗ 12.535∗∗∗ 10.171∗∗∗ 23.986∗∗∗ 15.739∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7: Measures of market liquidity - regression results. Results from

OLS regressions with clustered standard errors. Standard errors are reported in

parentheses. volt is the total number of shares traded per period. Spreadt is the

average percentage spread between the median best ask and median best bid per

period. Bot and TwoUrn are treatment dummies. Market indicates the market

sequence, ranging from 1 to 6. The cash/asset ratio is defined as the ratio between

all available cash and the fundamental value of all outstanding shares. avRisk is

the average self-reported willingness to take risks on a 7-point Likert scale for each

cohort. avFemale is the proportion of female participants within a cohort. avCRT

is the average score in a standard CRT test within a cohort. The mean has been

subtracted from the last four measures to allow for a more meaningful interpretation

of the intercept.

Dependent variable:

Volt Spreadt

(1) (2) (3) (4) (5) (6)

Constant 16.777∗∗∗ 6.389∗∗ 13.085∗∗∗ 0.470 0.436∗∗∗ 0.492∗∗∗

(1.018) (2.922) (3.470) (1.018) (0.019) (0.029)

Bot 4.562∗∗∗ 4.815∗∗∗ 7.293∗∗∗ −0.018 −0.020∗∗∗ 0.0002

(0.728) (0.709) (1.276) (0.728) (0.006) (0.009)

TwoUrn −0.021 −0.422 −0.816 −0.022 −0.021∗∗∗ −0.032∗∗∗

(0.728) (0.693) (0.827) (0.728) (0.006) (0.008)

Market −1.341∗∗∗ −1.413∗∗∗ −1.414∗∗∗ 0.004 −0.001 −0.003

(0.232) (0.227) (0.278) (0.232) (0.002) (0.002)

Cash/asset ratio 3.507∗∗∗ 3.864∗∗ 0.271∗∗∗ 0.279∗∗∗

(1.197) (1.534) (0.013) (0.016)

avRisk 2.279∗∗∗ 4.662∗∗∗ 0.011∗∗ 0.009

(0.778) (0.861) (0.005) (0.006)

avFemale 5.387∗∗∗ −10.249∗∗∗ 0.033∗ −0.020

(1.905) (3.183) (0.018) (0.028)

avCRT −11.329∗∗∗ −0.024

(2.045) (0.016)

Observations 768 768 576 768 768 576

R2 0.094 0.133 0.179 0.019 0.450 0.429

Adjusted R2 0.090 0.127 0.169 0.015 0.445 0.422

F Statistic 26.310∗∗∗ 19.528∗∗∗ 17.741∗∗∗ 4.915∗∗∗ 103.621∗∗∗ 60.967∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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damental values.

Support: Table 2 exhibits average measures of DF, ADF, RD and RAD. Note-

worthy, the ADF measures are larger than the ADPP measure in every treatment,

indicating that prices rather converge on parity than on fundamentals. Table 6 shows

regression results with DF, ADF and Table 8 in appendix B shows regression results

with RAD and RD as response variables. Table 6 indicates no treatment effect on the

ADF measure, see columns (1)-(3). A significant determinant of the ADF measure

seems to be repetition; in later market sequences the ADF measure is smaller. The

cohort’s average risk aversion and its female share seem to have an opposing effect.

If the algorithm has an effect on ADF, then it is an increasing effect as suggested in

column (3) of Table 6. It seems that the algorithmic arbitrageur in our design rather

impacts a lower price level than moving towards fundamentals, see columns (4)-(6).

The cohort’s average risk aversion and its female share seem to have an opposing

effect. Similarly, the cohort’s average risk aversion and its female share seem to have

a negative price impact, see columns (5)-(6). Table 8 in appendix B confirms these

effects for the market sequence level on the basis of RD and RAD measures.

4.3 Algorithmic trading and market quality

In this section we summarize and address the effects of the algorithm in our data.

In the above observations, we have seen that the algorithmic arbitrageur amends

deviations from the law of one price. In particular, we found no market with partic-

ipation of the algorithm in which the deviations from parity pricing were significant.

In sharp contrast we found in absence of the algorithm that in the TwoUrn condition

the deviations from the law of one price are significant on average. We have reported

that algorithm participation reduces the price discrepancies in size and quantity,

both in real time and on period averages. Nonetheless, the absolute price deviations

from fundamentals were not impacted. Further impacts on market quality of the

algorithmic arbitrageur are described in the following.

Observation V (Trading Volume): The number of limit orders is not neg-

atively impacted and the number of transactions is significantly larger when the

algorithm is present.

Support: Table 7 exhibits the regression results of the determinants of the num-

ber of transactions in our markets. The average number of limit orders per period

is 56 when the algorithm is present in the market and 51 when it is not. Hence,
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the presence of the algorithm rather increases than decreases the number of limit

orders. As indicated in Table 7, the number of transactions is significantly larger

when the algorithmic arbitrager is present, i.e., by about two units per period. Fi-

nally, repetition has a negative impact on the number of transactions in our markets.

Observation VI (Cash/Asset ratio) Price level and transaction volume pos-

itively correlate with the cash amount in the market.

Support: Table 6 shows the price relative to fundamentals, and Table 7 shows

the number of transactions. In both regressions we report the cash/asset ratio as

explanatory variable. The cash/asset ratio is significant in these regressions. The

higher price level suggests that after a positive dividend payment, when we have a

higher cash/asset ratio and a decrease in fundamental value, prices are high relative

to fundamentals, and vice versa. This effect can be impacted by price inertia, i.e.,

when investors’ price adjustments are too conservative re fundamentals.

5 Conclusion

We have reported experimental data on the question whether the Modigliani-Miller

law of one price is impacted by differences in dividend payouts. On the basis of our

data analysis the following conclusions seem to be justified. We have weakly positive

support for the law of one price, but find important limitations.

The average prices of our leveraged and unleveraged assets are not significantly

different from another when dividends are identical. When dividends are identical,

we cannot reject parity pricing on the overall data. However, when dividends are

independent, parity pricing can be supported only if an algorithm exploits the ar-

bitrage opportunities in the market and thus pushes prices to parity. This result is

quite interesting. It suggests that when the differences in fundamental values get cog-

nitively more demanding, then the law of one price can break down. It also suggests

that an arbitrageur in the market can help to support the law of one price. That

result appears to us also interesting, because it explains what kind of market forces

are required at a minimum to support this important theoretical result of Miller and

Modigliani (1961) on the irrelevance of dividend policy for market valuation.
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Appendix

A Instructions

Welcome and thank you for participating in our experiment on decision-making in

asset markets. If you read these instructions carefully and make good decisions, you

might earn a considerable amount of money. This money will be paid to you in

cash after the session. Do not use hand phones, laptop computers, or use the lab’s

desktop computer except for the experimental software application. Please refrain

from talking for the duration of the experiment, or looking at others’ computer

monitors. If at some point you have a question, please raise your hand and we will

address it as soon as possible. You must observe these rules, otherwise we will have

to exclude you from this experiment and all associated payments, and ask you to

leave.

A.1 Shares, cash, and earnings

In this experiment, you will participate in a market of 8 participants. The identities

of the other market participants will not be revealed to you. You will interact with

the same participants in 6 successive rounds of 4 periods.

At the beginning of each round we give each participant the following: 4000 units

of cash, 5 “A”-type shares, and 5 “B”-type shares. Every single share generates a

cash payment at the end of each trading period. This payment is called “dividend”.

A dividend will be +50 or -50 cash units. When dividends are paid on shares you hold

the amount is added to, or subtracted, from your cash balance. After 4 dividends

are paid, at the end of the round shareholders receive a liquidation payment on all

shares, and shares are cancelled thereafter. Liquidation payments are added to a

shareholder’s cash balance.

You will end each round with a final cash balance. The final cash balance is the

basis for your final earnings in this experiment. The timeline of the round is shown

in Figure 3.

————————————————————————————————————

—–

Participants in the One Urn Treatment Condition read:

How dividends are determined:

We announce and pay dividends at the conclusion of each period. The A and B

share dividends are always equal.

Within a round, for exactly two periods the dividend will be +50, and for exactly
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Figure 3: Timeline of the round

two periods the dividend will be -50 cash units. However, the order of the four

dividends is random.

The dividend process can be thought of as follows. There is an opaque urn

containing two balls marked with the symbol “+”, representing +50 dividends each,

and two balls marked with the symbol “-”, -50 dividends. After the first trading

period one of the balls is randomly selected to determine the period one dividend.

This ball is discarded, not returned to the urn. This selection is repeated for the

next three periods until all of the balls have been selected after trading period four

and no balls are left in the urn.

——

Participants in the Two Urn Treatment Condition read:

How dividends are determined:

We announce and pay dividends at the conclusion of each period. The A and B

share dividends may differ or be equal for a given period.

For a given share type and within a round, for exactly two periods the dividend

will be +50, and for exactly two periods the dividend will be -50 cash units. However,

the order of the four dividends is random. The order of the A share dividends and

the order of the B share dividends are also independent.

The dividend process can be thought of as follows. There are two opaque urns,

one for A shares and the other for B shares. The two urns both contain two balls

labelled with a “+”, representing +50 dividends, and balls labelled with a “–“, -50

dividends each. After the first trading period one of the balls is randomly selected

from the A share urn to determine the A share dividend of period 1. This ball is

discarded, not returned to the urn. We do the same with the other urn, randomly

select a ball from the B share urn to determine the B share dividend of that period.

These selections are repeated for the next three periods until all of the balls have been

selected from both urns after trading period 4 and no balls are left in the urns. —

————————————————————————————————————–
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How liquidation payments are determined:

The liquidation payment is random. The liquidation payment per A share will be

either 100 or 300 cash units; each having an equal chance of selection. The liquidation

payment per B share will be exactly 200 cash units more than the one per A share.

When the liquidation payment of the A share is 100, then the liquidation payment

of the B share will be 300 cash units. Likewise, when the liquidation payment of the

A share is 300, the liquidation payment of the B share will be 500 cash units.

We have used separate coin tosses to determine the liquidation payments for

the six rounds before the session. Also prior to the session, we have pre-drawn

the dividend series for all trading periods. We have recorded these dividend and

liquidation outcomes on paper and placed them in an envelope taped on the wall of

the room. At the end of the experiment, we will open the relevant envelopes and

project the recorded values for all to see they match those in the experiment. Note

that any actions taken in the experiment can not influence these values.

A.2 How to trade shares?

The experiment is divided into six rounds of 4 consecutive trading Periods. Each

trading period in the first two rounds will last 180 seconds, and 120 seconds in the

later rounds. In each trading period, you will participate in a market where the

Shares can be bought and sold between participants. You pay out of your Cash

when you buy a share, and you get Cash when you sell a share. When a period is

over, your Cash and Shares will carry over to the next period until the round ends.

We are interested in the price you are bidding to pay and the price you are asking

to sell. In order to buy shares, you need cash. If you run out of Cash, you can borrow

cash (with no interest) up to 3000 cash units. The cash you own is shown on the

screen. If you borrow Cash, your Cash holdings will be negative. In order to sell

shares, you need shares. The number of shares you own is indicated at the top of

your screen for “A” shares and “B” shares, respectively. If you do not own (enough)

shares and wish to sell (more) shares, you can borrow to sell up to 5 “A” shares AND

up to 5 “B” shares. If you sell more shares than you own your share holdings will be

negative. For a given negative share count at the end of the period, the dividend on

these negative shares will be subtracted from your cash, i.e., positive dividends will

be subtracted and negative dividends will be added. At the end of the round, the

liquidation payment for a given negative share count will be subtracted from your

cash balance.

During a period, you may buy or sell shares (see Figure 2 on the next page, and

at the end of the Instructions). You can also choose not to trade any shares and
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simply wait and collect dividends. Note that you can only buy or sell one share at a

time.

1. Submit an ASK: An ask is a proposed selling price for one share. You offer

a share from your share holdings for sale by entering the asking price to sell

one share in the space underneath the button ASK: proposed selling price (see

Figure 4). You confirm the ask by a click on the button. The ask is then added

to the list of outstanding asks. The outstanding asks are publicly recorded in

increasing order, i.e. the best outstanding ask (the cheapest proposed selling

price) being placed at the top of the list. All market participants can see this

list.

Note: you can submit as many asks as you like to sell one share. Upon selling

one share, all your outstanding asks (for that share class) are cancelled. To sell

another share of that share class, you then must submit a new ask.

2. Submit a BID: A bid is a proposed buying price for one share. You bid to

purchase a share by entering your bidding price for one share in the space

underneath the button BID: proposed buying price. You confirm your bid by

a click on the button. The bid is then added to the list of outstanding bids.

The outstanding bids are publicly recorded in decreasing order, i.e., the best

outstanding bid (highest proposed purchase price) being placed at the top of

the list. All market participants can see this list.

Note: If two or more orders (bids or asks) are the same, they are listed in the

order of arrival, earlier orders being given priority over later ones. Upon pur-

chasing one share, all your outstanding bids (for that share class) are cancelled.

To buy another share for this share class you then must submit a new bid.

3. Immediate BUY – accept an ask: The best outstanding ask of the other market

participants is marked on your screen. You can accept the asking price (i.e.,

entering in a purchase agreement of a share with the seller) by clicking the

button Immediate BUY, which is placed at the bottom of the list of outstanding

asks.

4. Immediate SELL – accept a bid: The best outstanding bid of the other market

participants is marked. You can accept the bid (i.e., entering in a sale agree-

ment of a share with the buyer) by clicking on the button Immediate SELL,

which is placed at the bottom of the list of outstanding bids.
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Figure 4: Trading screen

5. Delete – you can delete your outstanding bids and asks. To do so, select your

outstanding bid or ask, which are displayed in the list in blue colour and click

the button Delete.

Note: Your own orders are displayed in blue, while the other orders are visible

to you in black. You cannot accept your own orders. You cannot delete orders

of others. You cannot purchase shares if the ask exceeds your cash plus credit

line. If your holding of “A” shares is -5, you cannot sell any further “A” shares.

If your holding of “B” shares is -5, you cannot sell any further “B” shares.

A.3 Transaction and price announcement

Upon acceptance of a bid or ask, via Immediate BUY or Immediate SELL, a trans-

action is completed. The accepted order is the transaction price. The transaction

price is recorded on your screen in between the lists of bids and asks. Next to the

price you are informed if you participated as buyer or seller in the transaction. The

more recent prices are listed first. The most recent prices are also recorded for each

share class in the middle of the screen below the cash amount.

Upon transacting, the price is debited from the buyer’s cash balance and credited

to the seller’s cash balance. The purchased share is added to the buyer’s share

holdings and subtracted from the seller’s share holding.

Note: Immediately after these instructions, you are going to participate in a

Practice Session of trading to familiarize yourself with the trading environment. You

trade for 3 minutes on your screen with the other participants. There are NO payoff
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consequences linked to trading in the Practice Session. During the Practice Session

please practice submissions of bids and asks, immediate selling and buying, and

deleting of your outstanding bids and asks. You may want to practice selling more

shares than you own to end up with a negative share count. You may also want to

practice buying more shares than you can pay with your own money to end up with

a negative cash balance. During the Practice Session none of your actions will have

any payoff consequences. The payoff-relevant trading periods begin only after the

Practice Session.

A.4 Information

You will receive real-time updates on bids, asks and prices for both share classes

“A” and “B”. Information regarding the two share classes are given on the screen

on the left-hand and on the right-hand side, respectively. You will receive summary

information about the prices at opening of the period, the high, the low and the

average price during the period.

In each period, you will be reminded on screen about the remaining future div-

idends, and the possible liquidation payments at the end of the round. Finally, the

realized past dividends are shown. The latest paid out dividend of the prior period

is highlighted.

The experimenter recorded the order of the 4 dividends on sheets of paper. Then,

the experimenter put the paper into an envelope, which was placed on the wall. At

the conclusion of the experiment, the experimenter will show the list of predetermined

dividends to confirm they match the dividends observed during the market. You will

have a record of your dividend sequence at the final screen. You will be able to

compare the dividend sequence on your screen with the predetermined dividends at

that time.

The past prices are shown in a table on the bottom of the screen, including

the prices at opening, closing, the high, low and average of each past period. Al-

ternatively to the past prices, you receive past information on your share and cash

holdings at the end of the period, buys and sells during a period, and the past period

dividends. You can alternate the past information with the past prices by clicking

on the button.

A.5 Endowment and earnings

Your earnings in this experiment will be based on your final cash balances which

include Cash holdings as well as liquidation payments for A and B shares at the end
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of a round.

Note: If you have negative Cash holdings after the final period of a round, the

amount you borrowed will be subtracted from the total liquidation payment of your

shares. If you have negative share holdings, the liquidation payment of the shares

you borrowed will be subtracted from your Cash holdings.

The final cash balance of one of the six rounds will be paid out to you at the

end of the experiment. The round to be paid out is chosen randomly. The result

of this random draw has been determined before the session, and has been recorded

on a sheet of paper in the envelope on the wall, which will be revealed to you after

the final round. You will also be informed about the decisive round on the screen to

confirm that the two numbers match.

At the end of the experiment, cash units (CU) will be converted to Euro, at an

exchange rate of 1 = 300 CU. Your final payment will be equal to your final cash

balance at the end of the decisive round plus a 5 payment for your participation. The

final payment will be made to you in private; you will receive an envelope delivered

to your seat in exchange for your signed receipt.

A.6 Trading algorithm

Besides the participants in the room, a computerized trading algorithm may partic-

ipate in the market. The computerized algorithm can take the same actions as you,

that is, it can buy and sell in the market. The details of the strategy followed by

the algorithm are not revealed to you, and you will not be informed whether the

computerized trading algorithm actually acts in the market or not.

A.7 Summary

1. You will be given an initial 4000 units of cash, 5 “A” shares, and 5 “B” shares

at the beginning of each round. Over the course of a round, each A-share

and each “B” share pays the owner a dividend of either +50, or -50. Exactly

two dividend payments of each share are positive (+50) and two dividends are

negative (-50).

2. At the end of the round, each share pays a liquidation payment. The liquidation

payment per A-share is either 100 (if the flip of the coin is heads) or 300 cash

units (if the flip of the coin is tails). The liquidation payment per B share is

200 cash units more; that is: 300 (if the flip of the coin is heads) or 500 cash

units (if the flip of the coin is tails).
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3. In each period the market will be open for trading, 180 seconds in the first two

rounds and 120 seconds in later rounds. You can submit offers to BUY shares

and offers to SELL shares. You can make immediate transactions by buying

at the lowest ask (offer to sell) or selling at the highest bid (offer to buy). You

can delete your offers while outstanding.

4. You will participate in 6 rounds of 4 periods. At the end of the experiment, one

round of four periods is selected for payment. The decisive round is determined

randomly and is recorded on a sheet of paper in an envelope on taped to the

wall, which will be revealed to you after the final round. The decisive round is

the same for all participants in a market of eight.

5. Note that if you borrow cash or shares you may end a round with a negative

cash balance. If a round is chosen for payment in which you incur losses, you

will earn nothing.

6. A computerized trading algorithm may participate in the market. However,

you will never be told whether the algorithm acts in the market and, if it does,

what it is programmed to do.

7. The instructions are over. If you have any question, raise your hand and consult

the monitor. Otherwise, please wait for the following Practice Session of three

minutes.
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B Additional figures and tables
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Figure 5: DPPt by L sequence

The different sequences of dividends were as follows. Sequence 1: -50,-50,50,50,

Sequence 2: -50,50,-50,50, Sequence 3: -50,50,50,-50, Sequence 4: 50,-50,-50,50, Se-

quence 5: 50,-50,50,-50, Sequence 6: 50,50,-50,-50. The dotted line ”0” indicates

parity pricing.
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Table 8: Relative and absolute mispricing. OLS regressions for relative and rel-

ative absolute period-level deviations from fundamental values with robust standard

errors. RADU,L,t and RDU,L,t are averages of values for L-shares and U-shares.

Dependent variable:

RADU,L,t RDU,L,t

(1) (2) (3) (4) (5) (6)

Constant 0.294∗∗∗ 0.298∗∗∗ 0.358∗∗∗ −0.066 −0.228∗∗∗ −0.345∗∗∗

(0.028) (0.051) (0.066) (0.043) (0.079) (0.105)

Bot 0.010 −0.009 0.020 −0.091∗∗∗ −0.066∗∗ −0.052

(0.018) (0.016) (0.025) (0.028) (0.026) (0.034)

TwoUrn −0.010 −0.014 −0.024 0.037 0.035 0.109∗∗∗

(0.018) (0.017) (0.019) (0.028) (0.027) (0.030)

Market −0.015∗∗∗ −0.015∗∗∗ −0.012∗∗ −0.003 −0.003 0.006

(0.006) (0.005) (0.006) (0.009) (0.008) (0.009)

avRisk −0.030∗∗ −0.048∗∗∗ 0.067∗∗∗ 0.074∗∗∗

(0.015) (0.018) (0.024) (0.022)

avFemale 0.245∗∗∗ 0.242∗∗∗ −0.196∗∗∗ −0.236∗∗

(0.034) (0.058) (0.062) (0.099)

avCRT −0.005 −0.001

(0.040) (0.054)

Observations 192 192 144 192 192 144

R2 0.042 0.170 0.233 0.063 0.121 0.191

Adjusted R2 0.026 0.148 0.200 0.048 0.097 0.156

F Statistic 2.714∗∗ 7.627∗∗∗ 6.950∗∗∗ 4.230∗∗∗ 5.124∗∗∗ 5.401∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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