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CATEGORICAL SALIENCE THEORY

Mark Schneider1,∗ Cary Deck1,2 Patrick DeJarnette3

February 15, 2020

Abstract

Monetary lotteries are the overwhelmingly predominant tool for understanding de-

cisions under risk. However, many real-world decisions concern multidimensional out-

comes involving di�erent goods. Recent studies have tested whether people treat mul-

tidimensional risky choices in the same manner as unidimensional monetary lotteries

and found that choices over consumer goods are less risk-averse and more consistent

with expected utility theory than choices over monetary lotteries. While these puzzling

results cannot be explained by any standard model of decision making, we demonstrate

that these �ndings are predicted by a salience-based model of category-dependent pref-

erences that also explains the classic anomalies for choices under risk. Additionally,

we experimentally verify a novel prediction of this Categorical Salience Theory. We

further demonstrate that our model can explain empirical puzzles in �nancial markets,

insurance markets, and principal agent settings, including behavior in a new portfolio

choice experiment that is unexplained by expected utility theory or prospect theory.
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1 Introduction

Many decisions involve uncertainty about outcomes, such as how a consumer's diet and ex-

ercise regimen will a�ect long-term health, whether to purchase a shirt or pair of sneakers

from Amazon.com without knowing if they will �t comfortably, and whether to open Door

number 2 or Door number 3 on a television game show in order to maximize the probability

of winning a new car. Many decisions also involve multi-dimensional outcomes. For instance,

the choice to order triple chocolate cheesecake for dessert may result in both utility from

consumption and disutility from gaining weight. The decision to speed may save time, but

may also result in personal injury. However, despite the ubiquity of decisions under uncer-

tainty that involve non-�nancial outcomes or multidimensional outcomes, the vast research

on decisions under risk has focused primarily on unidimensional monetary lotteries.

Going back at least as far as 1738 with Bernoulli's work on the St. Petersburg Paradox,

monetary lotteries have been the workhorse framework for understanding decisions under

risk. Recent studies have tested whether people treat multidimensional risky choices the

same as unidimensional monetary lotteries and found systematic di�erences. In particular,

revealed preferences over consumer goods are less risk-averse (DeJarnette, 2017) and more

consistent with expected utility theory (Arroyos-Calvera et al., 2018) than revealed prefer-

ences over monetary lotteries. These puzzling results cannot be explained by any standard

model of decision making.

We demonstrate that these �ndings are predicted by a salience-based model of behavior

that also explains the classic anomalies for choices under risk. In particular, we generalize

the salience theory of Bordalo et al. (2012) to multidimensional outcomes. The essence of

our approach is to assume that, rather than grouping outcomes into `salient states,' indi-

viduals group outcomes into `categories.' The predictions of our model coincide with those

of salience theory when all outcomes are from a single category. Our approach thus links

to two fundamental concepts in psychology and behavioral economics � salience perception

and categorization to individual choices under risk. We refer to the resulting model as cate-

gorical salience theory (CST). CST adds no additional parameters to salience theory given

any categorization of outcomes, and it reduces to the Bordalo et al. (2012) salience model

when there is a single category. The CST model also has fewer parameters than cumula-

tive prospect theory (Tversky and Kahneman, 1992), while generating novel predictions that

more strongly distinguish it from prospect theory and other models of choice under risk than

are provided by salience theory for monetary lotteries.

After applying CST to basic choices between lotteries, we consider the implications of

CST for a variety of economic contexts. O'Donoghue and Somerville (2018) argue that three
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of the primary applications for behavioral models of choice under risk should be �nancial

markets, insurance markets, and principal-agent settings. We show how CST can explain

empirical puzzles in each of these domains: the higher demand for categorized insurance, the

e�ectiveness of non-monetary incentives in employment contracts, greater variety seeking in

simultaneous than in sequential choice, and naive diversi�cation across �nancial assets.

The paper is structured as follows. Section 2 introduces the generalization of salience

theory to risky choices involving multidimensional outcomes. Section 3 applies this theory

to explain choices between lotteries over multidimensional outcomes. In particular, we apply

CST to explain di�erences in risk preferences over money compared to goods from prior

experimental studies and report a new study examining risk preferences across categories of

goods to provide a direct test of CST. We then apply CST to di�erent economic contexts

including portfolio choice (Section 4), insurance (Section 5), and employment contracts (Sec-

tion 6). Section 4 also reports a new experiment documenting a preference for a 1/N rule in

portfolio choice in a manner predicted by CST. Section 7 concludes.

2 Salience Theory with Multidimensional Outcomes

To apply salience theory to the two empirical puzzles found in the literature, we �rst in-

troduce a general salience theory over multidimensional outcomes in which outcomes are

grouped into categories.

Let X denote the set of possible outcomes, and let ∆(X ) denote the set of lotteries over

X . Let % denote a preference relation on ∆(X ). Under expected utility theory (EU), risk

preferences are characterized by the following relationship: For all L1,L2 ∈ ∆(X ),

L1 % L2 ⇐⇒
∑
x∈X

L1(x)u(x) ≥
∑
x∈X

L2(x)u(x) (1)

where Lj (x ) is the probability of receiving outcome x from lottery Lj , and u is a utility

function.

Model (1) is the standard model of rational choice under risk. However, a range of

empirical tests have documented systematic ways in which observed behavior di�ers from

EU. One recent model developed to explain this empirical evidence is the salience theory

of choice under risk from Bordalo et al. (2012). To provide a psychologically grounded

explanation of the empirical violations of expected utility theory, Bordalo et al. (2012)

propose that a choice between lotteries induces an endogenous state space, and they assume

that this state space is the `minimal state space' that arises if lotteries are statistically

independent. They then decompose behavior into two stages. In Stage 1, in accordance
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with the decision maker's salience perception, the decision maker ranks all pairs of outcomes

between two independent lotteries by a salience function, σ. In Stage 2, the decision maker

discounts less salient states by a constant discount factor δ, similar to how distant time

periods are discounted in models of intertemporal choice.

Formally, let %̇|L be a `perceptual' relation over lotteries in choice set L := {L1, ...,Ln},
with the meaning `looks at least as good as'. Denote the set of all choice sets by Θ. The

relation %̇ potentially di�ers from the preference relation % since %̇ is in�uenced by both

the preference relation over lotteries, and the `salience relation' (represented by the salience

function) over states. Hence, a decision maker might systematically deviate from preferences

in (1) due to the in�uence of salience perception and instead choose the lottery that `looks

better'. In particular, for a given ranking of salient states, under the Bordalo et al. (2012)

salience model, a choice between two lotteries (i.e., L := {L1,L2}), is represented by:

L1%̇|LL2 ⇐⇒
∑
s∈S

δs[u(x1s)− u(x2s)]ps > 0. (2)

In (2), S is the set of salient states induced by choice set L, where the states are ranked
by their salience according to a salience function, σ, ps is the probability that state s occurs,

and x j
s is the outcome in state s if lottery Lj is chosen. If there are k states, the states are

ranked such that

σ(x11, x
2
1) > σ(x12, x

2
2) > · · ·σ(x1s, x2s) > · · · > σ(x1k, x

2
k). (3)

Hence the discount factor δ discounts less salient states exponentially. If δ = 1, then (2)

reduces to EU and (1) holds.

Bordalo et al. (2012) demonstrate that (2) can explain a variety of classical anomalies for

choices under risk (in particular, the Allais paradox (Allais, 1953), the common ratio e�ect

(Allais, 1953; Kahneman and Tversky, 1979), and the fourfold pattern of risk preferences

(Tversky and Kahneman, 1992)), given plausible assumptions about the salience function

(that we present in Section 2.2). Of course, although these three anomalies are three of

the most robust empirical violations of expected utility theory, they are each explained by

alternative models of choices under risk, including prospect theory (Kahneman and Tversky,

1979; Tversky and Kahneman, 1992), disappointment theory (Bell 1985; Loomes and Sugden

1986), and regret theory (Bell 1982; Loomes and Sugden, 1982). To distinguish salience the-

ory from these alternative models, Bordalo et al. (2012) make two additional observations:

(i) salience theory predicts the Allais paradox and common ratio e�ect to be reduced when

lotteries are correlated, and (ii) under additional plausible assumptions, salience theory can

explain the preference-reversal phenomenon of Lichtenstein and Slovic (1971). Although ob-

4



servations (i) and (ii) are not explained by prospect theory or disappointment theory, they

can both be explained by regret theory. Bordalo et al. (2012) thus provide additional dis-

cussion suggesting that salience theory provides a better explanation of preference reversals

than regret theory. However, as noted, additional assumptions must be applied to salience

theory before it can explain preference reversals, and the ability of salience theory to explain

(i) and (ii) does not come for free. In particular, (cumulative) prospect theory satis�es both

stochastic dominance and transitivity � arguably the two most basic principles of rational

choice under risk. Neither of these normative properties is preserved in general by salience

theory, although salience theory does preserve stochastic dominance when lotteries are in-

dependent (Bordalo et al., 2012). Moreover, the essential property of a salience function �

diminishing (absolute) sensitivity, although rooted in psychology, is also at the heart of the

prospect theory value function.

In light of the preceding discussion, the question arises as to how salience theory enhances

our basic understanding of choices under risk. In this paper, we generalize the Bordalo et al.

(2012) salience theory to risky choices involving multidimensional outcomes. We demonstrate

that in this larger (and arguably more commonly encountered) choice environment, salience

theory generates novel predictions that cannot be explained by any of the conventional

models of choice under risk. Moreover, the predictions are strong and systematic � the

reverse predictions do not hold. We document empirical puzzles that provide a means of

investigating the predictions of this multi-dimensional salience theory, and we observe that

salience theory provides a resolution to each of these puzzles.

It has been recently shown by Herweg and Müller (2019) that the Bordalo et al. (2012)

salience theory is equivalent to a special case of regret theory (Loomes and Sugden, 1982;

Bell, 1982). This correspondence entails that our extension of salience theory developed here

can be alternatively interpreted as an extension of regret theory. We feel that our analysis

is more naturally motivated by the intuition of salience theory, but one could also develop

an alternative interpretation based on regret theory. Consequently, for a single category of

outcomes, our model inherits the predictions of salience theory and regret theory. Although

both models explain empirical �ndings that cannot be explained by EU such as the Allais

paradoxes and the fourfold pattern of risk preferences, early direct tests of regret theory

have identi�ed event-splitting e�ects that are not predicted by the model (e.g., Starmer and

Sugden, 1993). These �ndings also contradict the Bordalo et al. salience theory. However,

more recent direct experimental tests �nd support for salience theory (Bordalo et al., 2012;

Frydman and Mormann, 2018, Nielsen et al., 2018). For instance, Bordalo et al. (2012) and

Frydman and Mormann (2018) both observe shifts in the distribution of choices between

correlated and statistically independent lotteries in the direction predicted by salience theory.
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These �ndings also support regret theory. As we develop our approach motivated by the

intuition of salience theory, we refer to salience theory in the analysis to follow, keeping in

mind that in principle, there can be an alternative interpretation based on regret theory.

2.1 Categorical Salience Theory

Choices under risk often involve outcomes that di�er in kind (i.e., are from di�erent `cate-

gories'), such as choices between di�erent types of �nancial investments, di�erent types of

consumer goods, or di�erent types of employment opportunities). However, the workhorse

framework for studying decisions under risk has been unidimensional monetary lotteries �

that is, choices where all outcomes are monetary. It has then been implicitly assumed that

behavior for multidimensional lotteries where outcomes di�er across categories is not system-

atically di�erent from behavior for unidimensional monetary lotteries. From a behavioral

economics perspective, it is not obvious that this tacit assumption should hold. One general

�nding in the psychology literature is that people naturally think in terms of categories.

Indeed, one author even makes the strong claim that cognition is categorization (Harnad,

2017). It thus seems plausible that, rather than grouping outcomes into salient states, peo-

ple group outcomes into categories. In particular, our main substantive assumption, and the

essence of our approach is to replace the Bordalo et al. (2012) state space and salience rank-

ing across states, and assume instead that people process decisions by aligning outcomes by

their categories. We then apply the Bordalo et al. salience theory within categories, result-

ing in a more general model for multidimensional outcomes that we refer to as `categorical

salience theory' (CST). The CST model links two major concepts from psychology and be-

havioral economics � categorization and salience perception to decision making, it reduces to

the Bordalo et al. salience theory if there is only one category of outcomes, and it provides

explanations for two empirical puzzles that violate every standard theory of behavior.

Let outcomes in X be partitioned into C categories. Each category c ∈ C has m(c)

outcomes, and each outcome is included in precisely one category. For each choice set,

L := {L1, ...,Ln}, each outcome i ∈ c and each category c ∈ C , de�ne a category-outcome

vector, cic := (x 1
ic, . . . , x

n
ic) of dimension n. In each cic, we let x j

ic denote outcome i(c),

i(c) ∈ {1, 2, . . . ,m(c)} from category c ∈ C that obtains if lottery Lj ∈ L is chosen. Risk

is modeled as a lottery over category-outcome vectors, where a category-outcome vector is

randomly selected for each category c ∈ C . That is, each decision may simultaneously result

in multiple outcomes that di�er categorically. Indeed, it is rare when a decision in the `real

world' results in only a single isolated outcome. If the decision maker can only choose one

lottery from L, then only one outcome in each category-outcome vector (the outcome from
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the chosen lottery) results from the decision. However, multiple outcomes (one for each

category) may still result from the decision. Of course, many categories can have outcomes

of zero, where a zero outcome from a category c indicates that nothing is gained or lost in

category c as a result of the decision.

We let pic denote the probability that category-outcome vector cic is the randomly se-

lected vector of outcomes for category c, where
∑

i∈c pic = 1 for each c ∈ C . Under Categor-

ical Salience Theory (CST), model (2) is generalized to model12 (4):

L1%̇|LL2 ⇐⇒
∑
c∈C

∑
i∈c

σc(x
1
ic, x

2
ic)[u(x

1
ic)− u(x2ic)]pic > 0. (4)

Comparing (2) and (3), we note the following di�erences: The two stages of generating a

salience ranking and then discounting less salient states is merged into a single stage in which

the discount factor δ is replaced by the salience function, σv. In this way, salience perception

directly distorts how payo� di�erences are perceived. Outcome di�erences are summed both

within categories and across categories. Bordalo et al. (2012) refer to a decision maker who

chooses according to (2) as a local thinker. In a similar spirit, we refer to an economic agent

who chooses according to (3) as a categorical thinker.

For a choice between two independent monetary lotteries, we let the category vectors

correspond to the minimal state space in the Bordalo et al. (2012) salience theory (i.e., each

pair of outcomes in a category vector corresponds to a `state' in the Bordalo et al. (2012)

minimal state space). In that case, our model of category-dependent risk preferences reduces

to the Bordalo et al. (2012) model when there is only one category of outcomes and the one-

stage salience weighting in (3) is replaced by the two-stage ranking-then-weighting process

assumed by Bordalo et al. (2012). More generally, within any category, we let the category

vectors correspond to the minimal state space in Bordalo et al. (2012). Our approach

generates novel predictions regarding the relationship between risk preferences for money and

for di�erent consumer goods, as well as for deviations from expected utility theory for money

and for goods. Both of these predictions have empirical support discussed in Sections 3 and

4, which cannot be explained by expected utility theory with multi-dimensional outcomes

(Karni, 1979; DeJarnette, 2017).

1Although model (3) as written applies to binary choice, it can be straightforwardly extended to larger
choice sets using an approach such as that suggested in the online appendix to Bordalo et al. (2012).

2In general (3) allows for category-dependent salience functions, σc which may be natural when comparing
outcomes across categories that have di�erent units (such as the weight of a bag of potato chips versus the
price of the bag). This generality will not be necessary in our subsequent analysis. To constrain the model,
we use a category-independent salience function and we accordingly drop the c subscript in what follows.
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2.2 Extension to Multiple Alternatives

Representation (4) can be extended from a model of binary choice to simultaneous choice

among multiple alternatives. A simple approach is for a categorical thinker to evaluate a

lottery Lk from choice set L as in (5)

V(Lk |L) =
1

n

∑
Lj∈L

∑
c∈C

∑
i∈c

σc(x
k
ic, x

j
ic)[u(x

k
ic)− u(x

j
ic)]pic (5)

Under (5), a categorical thinker evaluates each lottery according to the salient comparisons of

that lottery's payo�s with the background context (the other alternatives in the choice set).

Formula (5) computes salient comparisons across outcomes, across categories, and across

lotteries. When the choice set contains only two alternatives, (5) is equivalent to (4).

2.3 Properties of Salience Perception

The salience function, σv, is assumed to satisfy two basic properties: (i) ordering and (ii)

diminishing absolute sensitivity. Ordering implies that the perceptual system is more sen-

sitive to larger di�erences in outcomes when the outcomes with the smaller di�erence are

contained in the interval spanned by the outcomes with the larger di�erence. Diminishing

Absolute Sensitivity (DAS) implies that for a �xed absolute di�erence, the perceptual system

is more sensitive to larger ratios. The DAS property is rooted in the Weber-Fechner law in

psychology. Bordalo et al. (2012) justify this assumption in their salience model, noting �As

in Weber's law of diminishing sensitivity, in which a change in luminosity is perceived less

intensely if it occurs at a higher luminosity level, the local thinker perceives less intensely

payo� di�erences occurring at high (absolute) payo� levels� (p. 1254). Citing evidence from

McCoy and Platt (2005), Bordalo et al. add that �visual perception and risk taking seem to

be connected at a more fundamental neurological level� (p. 1254-1255). In the appendix we

show one way that this intuition can be made more precise.

The DAS property of salience perception has also been used in models of salience-based

choice to explain ambiguity aversion (Leland, Schneider, & Wilcox, 2019), present bias (Pr-

elec and Loewenstein, 1991), and an attraction to consumer products with high quality-price

ratios (Bordalo et al., 2013a). We employ the following de�nition based on Bordalo et al.

(2012, 2013a):

De�nition 1: (Salience Function): A non-negative, continuous, symmetric and

bounded function, σ(x 1
ic, x

2
ic) is a salience function if the following two properties hold:

1. Ordering: If [x 1
ic, x

2
ic] ⊂ [x 1′

ic , x
2′
ic ], then σ(x

1
ic, x

2
ic) < σ(x 1′

ic , x
2′
ic ).
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2. Diminishing Absolute Sensitivity (DAS): For all x j
ic > 0, ε > 0, and for all Lj ∈L,

σ(x 1
ic + ε, x 2

ic + ε) < σ(x 1
ic, x

2
ic).

One other property of salience perception that is natural to assume is the following:

Increasing Proportional Sensitivity (IPS): For all x j
ic > 0, α > 1,x 1

ic 6= x 2
ic and for

all Lj ∈ L, σ(αx 1
ic, αx 2

ic) > σ(x 1
ic, x

2
ic).

Increasing Proportional Sensitivity (IPS) implies that for a �xed ratio, the perceptual

system is more sensitive to larger absolute di�erences. The IPS property was explicitly as-

sumed by Prelec and Loewenstein (1991) for the perception of payo�s, probabilities, and

time delays and it generates a preference for positively skewed lotteries when applied to

the Bordalo et al. (2012) salience theory. It has also received empirical support in the

marketing literature by Pandelaere et al. (2011) and Wertenbroch (2007) who observe IPS

for numerical and monetary stimuli. More broadly, IPS generates one of the central im-

plications of salience theory � a preference for positively skewed lotteries. A preference for

positive skewness (attraction to low-probability, low-cost, high-payo� lotteries) can explain

the popularity of state-run lotteries, the favorite-longshot bias in race-track betting (Golec

and Tamarkin, 1998), the over-valuation of IPO's, growth stocks, and other positively skewed

�nancial assets (Barberis and Huang, 2008; Bordalo et al., 2013b), and the motivation for

bargain hunting on eBay. However, the determinants of skewness preference are not well

understood. Salience theory provides a psychologically grounded account of skewness pref-

erence in decision making. Moreover, using simple perceptual decision tasks, Rochanahastin

et al. (2018) provide experimental evidence indicating that visual perception satis�es IPS.

Interestingly, they also �nd that experimental participants who more frequently violated IPS

in the perceptual task, were also signi�cantly less likely to select positively skewed lotteries

in a subsequent decision task, suggesting a link between visual perception and risky choice.

Such a link is consistent with the hypothesis used by McCoy and Platt (2005) to explain

their data that �enhanced neuronal activity associated with risky rewards biases attention

spatially, marking large payo�s as salient for guiding behavior� (p. 1226). Although we

state DAS and IPS as natural assumptions of salience perception supported by both the

psychology and decision theory literature, our proofs in Sections 3 and 4 rely only on the

ordering property of salience perception which implies, for instance, that the comparison

between payo�s of $40 and $60 is less salient than the comparison between $1 and $100.

Bordalo et al. (2012) proposed the following salience function that satis�es ordering,

DAS, and IPS, where θ > 0:

σ(x 1
ic, x

2
ic) =

|x 1
ic − x2ic|

|x1ic|+ |x2ic|+ θ
. (6)
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In their analysis of consumer choice, Bordalo et al. (2013a) proposed a parameter-

free variant of (6) in which the salience function is de�ned as in (6) with θ = 0, and to

ensure the function is well-de�ned, they set σ(0, 0) = 0. To explain the fourfold pattern of

risk preferences and skewness preference more generally, the parameter θ must be positive.

However, since (i) θ does not have an intuitive psychological or economic interpretation, and

(ii) since the predictions of salience theory appear to be largely insensitive to variations in

θ for a wide range of parameter values, all of our analyses that employ a speci�c salience

function will employ (6) with θ = 1 to illustrate the model.

We do not impose IPS as a required property of all salience functions since Bordalo et al.

(2013a) employ a salience function that does not satisfy IPS in their analysis of consumer

choice. By not imposing IPS, our assumptions are consistent with theirs. However, in

illustrating our approach, we employ salience function (6) which does satisfy IPS, thereby

retaining the prediction of skewness preference that is a central implication of salience theory.

In addition to satisfying ordering, DAS, and IPS, salience function (6) has another psy-

chological foundation. In particular, in the appendix, we show that this measure of contrast

between two payo�s in a choice set coincides with a formula that has been used in compu-

tational neuroscience to measure visual contrast between two pixels in an image (e.g., Raj

et al., 2005; Frazor and Geisler, 2006; Chen and Blum, 2009).

3 Lotteries over Multidimensional Outcomes

In this section we apply CST to choices between lotteries over multidimensional outcomes.

In sections 3.1 and 3.2 we show how CST can explain existing empirical anomalies. In section

3.3, we conduct a new experiment that was designed to test an additional prediction of CST.

3.1 Risk Preferences over Money versus Goods

One recent puzzle regarding risk preferences was identi�ed by DeJarnette (2017). In his

experiment, subjects allocated either monetary credit or an equivalent value of goods from

Amazon.com over equally likely states (either two states, over which $20 was allocated,

or ten states, over which $100 was allocated). Subjects allocating monetary credit were

required to spend their money on consumer goods at Amazon.com prior to leaving the

laboratory. DeJarnette observed signi�cantly more risk aversion over money than over goods.

For instance, subjects were more likely to allocate money equally across states and to allocate

a high-value consumer good to one of the states. DeJarnette did not provide an explanation

for his �ndings but demonstrated that standard approaches could not explain his results.

10



The categorical salience model in (4) o�ers a novel approach to DeJarnette's puzzle.

Since money is a single `category', choices involving money are represented as in the `Money

Frame' in Figure I. Since consumer goods typically span many di�erent product categories,

if products are aligned by their categories, then these choices are represented as in the

`Consumer Goods Frame' in Figure I.

Figure I. Risk Preferences over Money versus Goods

Consider the case in which a consumer chooses between two bets on the toss of a coin. In

bet A, the consumer receives $15 if the coin lands heads and $5 if the coin lands tails. In bet

B, the consumer receives $10 regardless of whether the coin lands heads or tails. Formally,

for this `money frame', we have L:= {L1 = A,L2 = B}, j ∈ {1, 2}, c ∈ {1}, i ∈ {1, 2}. The
category-outcome vectors are:

c11 := {x 1
11, x

2
11} = {15, 10}, c21 := {x 1

21, x
2
21} = {5, 10}.

As there is only a single category, the probabilities are given by (p11, p21) = (0.5, 0.5).

Consider next the case in which a consumer chooses between a di�erent pair of bets on the

toss of a coin. In bet A', the consumer receives `good 1' that is worth $15 to him if the coin

lands heads and he receives a good that he values at $5 (good 2) if the coin lands tails. In bet

B', the consumer receives a good that he values at $10 (good 3) regardless of the outcome of

the coin toss. Formally, for this `consumer goods frame', we have L:= {L1 = A′,L2 = B′},
j ∈ {1, 2}, c ∈ {1, 2, 3}, i ∈ {1, 2}. That is, there are three (goods) categories. The category-
outcome vectors are:

c11 := {x 1
11, x

2
11} = {15, 0}, c12 := {x 1

12, x
2
12} = {0, 0}, c13 := {x 1

13, x
2
13} = {0, 10},
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c21 := {x 1
21, x

2
21} = {0, 0}, c22 := {x 1

22, x
2
22} = {5, 0}, c23 := {x 1

22, x
2
22} = {0, 10}.

The probabilities for these category outcome vectors are (p11, p21, p12, p22, p13, p23) =

(0.5,0.5,0.5,0.5,0.5,0.5). Since outcomes are aligned by their categories, they are not directly

compared if they are in di�erent categories. That is, receiving the $10 good is compared to

not receiving the $10 good (a payo� of $0), rather than being compared to receiving the $15

good or the $5 good.

Under our running speci�cation (where u(x ) = x , and σv is given by (4) with θ = 1), the

CST model predicts that a categorical thinker allocates money evenly across states (due

to the DAS property of salience), but prefers to allocate goods asymmetrically due to the

ordering property of salience (e.g., a $15 item in one state and a $5 item in another state is

preferred to allocating a $10 item to each state)3. Lotteries B and A' are bolded in Figure I

because they are the CST preferred lotteries. We follow the convention of bolding the CST

preferred option throughout the remainder of the paper.

Figure II. Risk Preferences with Payo�s Aligned by their Categories

For the choice between lotteries A and B over money in Figure II, the category outcome-

vectors are c1 := (x , y) and c2 := (0,y). For the choice between lotteries A' and B' over con-

sumer goods in Figure II, the category outcome vectors are c11 := (x ,0), c21 := (0, 0),c12 := (0, y).

The probabilities for these category outcome vectors are (p11, p21, p12) = (0.5, 0.5, 1).

De�nition 2: For the choices in Figure II, a categorical thinker exhibits more risk

aversion toward money than toward di�erent goods if A ∼̇|{A,B}B implies A′ ˙̇� |{A′,B′}B
′
.

Proposition 1: For the choices in Figure II, let x > y ≥ 0.5x and let u(x ) = x . Then a

categorical thinker exhibits more risk aversion toward money than toward di�erent goods.

3For the money frame in Figure I, B%̇|LA as |15−10|
|15|+|10|+1 (15 − 10)(0.5) + |5−10|

|5|+|10|+1 (5 − 10)(0.5) <

0. For the goods frame in Figure I, A′%̇|LB′ as
[
|15−0|
|15|+|0|+1 (15− 0)(0.5) + |0−0|

|0|+|0|+1 (0− 0)(0.5)
]

+[
|0−0|
|0|+|0|+1 (0− 0)(0.5) + |5−0|

|5|+|0|+1 (5− 0)(0.5)
]
+
[
|0−10|
|0|+|10|+1 (0− 10)(0.5) + |0−10|

|0|+|10|+1 (0− 10)(0.5)
]
> 0.
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Proof: For the choice of A versus B, A∼̇|{A,B}B if and only if

σ(0, y)[−y ]0.5 + σ(x , y)[x − y ]0.5 = 0.

For the choice of A′ versus B′,A′ ˙̇� |{A′,B′}B
′
if and only if

σ(x ,0)[x ]0.5 > σ(0, y)[y ].

Substituting σ(0, y)[y ] = σ(x , y)[x − y ], we have A′ ˙̇� |{A′,B′}B
′

if and only if

σ(x ,0)[x ]0.5 > σ(x , y)[x − y ]. Let y = 0.5x . Then A′ ˙̇� |{A′,B′}B
′

if and only if

σ(x ,0)[x ]0.5 > σ(x , 0.5x )[0.5x ] which holds by ordering. For y > 0.5x , ordering implies

σ(x , 0.5x )[0.5x ] > σ(x , y)[x − y ]. �

3.2 The Common Ratio E�ect for Money versus Goods

The categorical salience model in (3) also makes novel predictions for the classical common

ratio e�ect in choices under risk. The common ratio e�ect (Allais, 1953) is one of the best-

known and most robust systematic violations of expected utility theory. However, empirical

studies of the common ratio e�ect have traditionally used money as the outcome. If the

outcomes are consumer goods in di�erent categories, the CST predicts that the common

ratio e�ect will disappear.

The common ratio e�ect consists of a pair of choices that are related because the prob-

abilities of prizes in the second choice scale down the probabilities of the same prizes in

the �rst choice by a common ratio. In both versions of the common ratio e�ect in the top

portion of Figure III, one alternative yields an 80% chance of winning a $4z prize (Option

A), either in cash or in the form of a consumer good that the decision maker values at $4z,

for some constant z > 0, and the other alternative yields $3z with certainty (Option B). In

the bottom portion of Figure III, the decision maker chooses between a 20% chance of the

same $4z prize in Choice 1 (Option C) and a 25% chance of winning the $3z prize from

Choice 1 (Option D).

A decision maker exhibits the common ratio e�ect by choosing 3z with certainty over

an 80% chance of 4z, and also choosing a 20% chance of 4z over a 25% chance of 3z. This

pattern of behavior violates EU and explaining it has been one of the primary motivations

behind alternative theories of choice under risk.
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Figure III. The Common Ratio E�ect with Payo�s Aligned by their Categories

Figure III displays the category outcome vectors for the common ratio lotteries, along

with the probability that each category outcome vector is randomly selected. For the money

frame in Figure III, these probabilities correspond to the state probabilities in the minimal

state space of the Bordalo et al. (2012) model given that the lotteries are statistically inde-

pendent. Bordalo et al. (2012, p.1254) note that the minimal state space can be identi�ed �by

the set of distinct payo� combinations that occur with positive probability.� They note that

for statistically independent lotteries, the minimal state space is the product space induced

by the lotteries' marginal distributions over payo�s. Importantly, the minimal state space is

uniquely de�ned and so leaves no degrees of freedom for how probabilities are assigned. For

instance, in the choice between options C and D in Figure III, the minimal state space assigns

probability 0.05 (0.20 × 0.25) to category-outcome vector (4z, 3z), probability 0.15 (0.20 ×
0.75) to category-outcome vector (4z, 0), probability 0.20 (0.25 × 0.80) to category-outcome

vector (0, 3z), and probability 0.60 (0.75 × 0.80) to category-outcome vector (0, 0).

In the money frame, the outcomes are in a single category (money). In the consumer

goods frame, the outcomes span two product categories (Good 1 and Good 2). Since out-

comes are aligned by their categories in (3), the comparison between a payo� worth 4z and a

payo� worth 3z is not cued in the choice between A' and B' since these outcomes are in dif-

ferent categories. As a consequence, the 4z payo� from Good 1 under lottery A' is compared
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to a zero payo� from not receiving Good 1 under lottery B'. Since the category-outcome

vector (4z,0) is salient in both choice sets {A', B'} and {C', D'}, the CST model in (3)

predicts consistent choices of A' over B' and C' over D' for lotteries over consumer goods. In

contrast, since the category-outcome vector (0,3z) that favors B is salient in choice set {A,B}

and the category-outcome vector (4z,0) that favors C is salient in choice set {C,D}, CST

predicts the decision maker will exhibit the common ratio e�ect in the money frame. Hence,

CST predicts the classical common ratio e�ect in the money frame but predicts consistent

risk preferences in the consumer goods frame.

Under EU from (1), a decision maker is predicted to exhibit consistent risk preferences for

both money and equally valued goods. In addition, salience theory from (2) aligns outcomes

by salient states rather than by categories. Since both the money lotteries and the consumer

goods lotteries in each choice set are statistically independent, salience theory predicts that

both choices are framed as in the `money frame' in Figure III. Hence, salience theory predicts

that a decision maker displays the same behavior under risk toward money as toward goods.

Recently, Arroyos-Calvera et al. (2018) tested the common ratio e�ect with money and

consumer goods in an incentivized experiment. They used 10 objects for the goods and

elicited subject valuations for each object. To test the common ratio e�ect with goods, they

presented subjects with pairs of goods such that their valuations approximately preserved

the 3:4 ratio of the monetary prizes that has also been used in the classical common ra-

tio experiments (e.g., Kahneman and Tversky, 1979). They report, �we manipulated object

similarity by using some pairs of goods that had common characteristics (alarm clocks with

di�erent additional features), and other pairs where the characteristics were rather di�erent

and more di�cult to compare (such as an airbed and a toaster, or an alarm clock and a suit-

case.)� (p. 3). They observed the standard common ratio e�ect for monetary consequences

but note that it was signi�cantly weakened for similar goods and that it disappeared for dis-

similar goods. Each of these �ndings is in line with the predictions of the CST: The common

ratio e�ect was strongest in the money frame, it disappeared in the frame where the goods

were clearly in di�erent categories, and it was weakened but present for similar goods, which

plausibly some subjects categorized as di�erent and some classi�ed in the same category.

Note that CST not only predicts the common ratio e�ect will disappear when the items

are in di�erent categories, it predicts this to happen in a particular direction: choices are

predicted to shift toward the riskier lottery in the choice with a certain outcome. As predicted

by CST, Arroyos-Calvera et al. (2018) report, �The stronger tendency for people to choose

the risky alternative in the scaled up questions with goods may be at least partially driving

this.� (p.3)4. Formally, we have the following de�nition and result:

4Under the assumption that the Bordalo et al. (2012) minimal state space holds within categories, CST
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De�nition 3: Consider the four lotteries in Figure IV5: A := (x , p; 0, 1− p), B := (y ,1),

A′ := (x , rp; 0, 1− rp), B′ := (y , r ;0, 1− r),where r ∈ (0, 1) and E[A] ≥ E[B]. A categorical

thinker exhibits the common ratio e�ect if A ∼̇|{A,B}B implies A′ ˙̇� |{A′,B′}B
′
.

Proposition 2: Let σ(0, 0) = 0 and u(x ) = x . Then for the common ratio lotteries

(shown in Figure IV ), a categorical thinker exhibits the common ratio e�ect for money, but

does not exhibit the common ratio e�ect for choices over goods in di�erent categories.

Proof: For the choice of A versus B in the money frame (shown in Figure IV), A ∼̇|{A,B}B

if and only if σ(0, y)[−y ](1− p) + σ(x , y)[x − y ]p = 0.

For the choice of A′ versus B′ in the money frame, A′ ˙̇� |{A′,B′}B
′
if and only if

σ(x , y)[x − y ](r2p) + σ(x ,0)[x ](rp − r2p) > σ(0, y)[y ](r − r2p).

Substituting σ(x , y)[x − y ]p = σ(0, y)[−y ](1− p),A′ ˙̇� |{A′,B′}B
′
if and only if

σ(0, y)[y ](1− p)r + σ(x ,0)[x ](p − rp) > σ(0, y)[y ](1− rp),

which holds if and only if σ(x ,0)[x ]p > σ(0, y)[y ]. Since E[A] ≥ E[B], by ordering of σ,

the categorical thinker exhibits the common ratio e�ect for money.

For the choice of A versus B in the consumer goods frame (shown in Figure IV),A ∼̇|{A,B}B

if and only if σ(x ,0)[x ]p = σ(0, y)[y ] which cannot hold due to the ordering property of σ and

since E[A] ≥ E[B]. Instead, we have σ(x ,0)[x ]p > σ(0, y)[y ] which implies both A ˙̇� |{A,B}B

and A′ ˙̇� |{A′,B′}B
′
and thus the categorical thinker does not exhibit the common ratio e�ect

for goods in di�erent categories. �
It is also the case more generally (i.e., for any utility function) that the common ratio

e�ect does not hold for consumer goods in di�erent categories and instead a categorical

thinker conforms to expected utility theory over goods, as observed by Arroyos-Calvera et

al. (2018). While it is the case that a su�ciently concave utility function could produce

consistent risk-averse choices over goods, the salient comparison that drives this choice favors

the riskier lottery which will produce a systematic bias toward that lottery, relative to the

does not explain all features of the experiment by Arroyos-Calvera et al. (2018). In particular, they �nd
greater risk-seeking for the choice between C and D in Figure III than for the choice between C′ and D′.
However, CST predicts that a consumer indi�erent between C and D would choose C′ over D′. If one instead
develops CST assuming that choice are represented by minimal frames within categories as formalized in
Leland et al. (2019) and employs their salience weighted utility model that operates over frames, then CST
predicts greater risk-seeking in the choice between C and D than in the choice between C′ and D′. That
approach preserves the other predictions in this paper. However, to deviate as little as possible from the
standard salience theory of Bordalo et al. (2012), we assume choices are represented by (4) and that choices
within categories are represented by the minimal state space.

5The minimal state space for the choice between A' and B' over monetary outcomes in Figure IV uniquely
assigns probability r2p (rp × r) to category-outcome vector (x, y), probability rp(1 − r) (rp × (1 − r)) to
category-outcome vector (x, 0), probability r(1− rp) (r × (1− rp)) to category-outcome vector (0, y), and
probability (1− rp)(1− r) ((1− rp) × (1− r)) to category-outcome vector (0, 0).
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true risk preferences of the categorical thinker (in the absence of salience distortions).6

Figure IV. The Common Ratio E�ect with Payo�s Aligned by their Categories

3.3 Experiment on Risk Preferences Across Categories

To further investigate the predictions of CST, we conducted an experiment involving tradeo�s

within categories and across categories. One hundred and �fty four subjects participated:

�fty-eight participants were female and ninety-six were male.7All subjects were individuals

on The University of Alabama campus who passed by a rolling cart that we arranged with

four types of snacks: a regular size pack of m & m's, a pack of six Oreo cookies, a small bag

of Lay's potato chips, and a pack of Cheez-it crackers. The options were chosen to represent

di�erent categories of snacks (chocolate, cookies, potato chips, crackers), and to increase

the likelihood that there would be two snacks that a subject liked. The sample size was

6A general statement that categorical salience theory satis�es the independence axiom is not possible since
the perceptual relation is choice set dependent. The categorical thinker prefers A to B if and only if they
prefer A' to B', regardless of whether E[A] ≥ E[B] or not, where these values are as given in De�nition 3. To

see this, note A ˙̇� |{A,B}B⇐⇒ σ(x ,0)[x ]p = σ(0, y)[y ]⇐⇒rσ(x ,0)[x ]p = rσ(0, y)[y ]⇐⇒A′ ˙̇� |{A′,B′}B
′.

7We made no attempt to recruit more males than females. The discrepancy between the number of male
and female participants might re�ect that the female participants we asked to participate declined more
frequently than the male participants.

17



determined so as to yield 80% power for identifying an e�ect at the 5% signi�cance level for

a one-tailed test8 under the prior that the true proportion of risky cross-category choices is

60% and the true proportion of risky within-category choices is 40%.

We employed a between-subjects design with two treatments. Subjects made a single

choice between two lotteries over snacks. In the within-category treatment, subjects chose

between a safe (S) lottery o�ering a 9/10 chance of one unit of a snack and a riskier (R)

lottery o�ering a 5/10 chance of 2 units of the same snack. In the cross-category treatment,

subjects chose between an S lottery o�ering a 9/10 chance of one unit of a snack and a R

lottery o�ering a 5/10 chance of 2 units of a di�erent snack. The probabilities were chosen

so that they could be transparently presented and implemented with a ten-sided die.

Assignment to treatment was alternated.9 For within-category choices, we �rst asked sub-

jects to identify their favorite snack out of the four snack choices available. For cross-category

choices, we �rst asked subjects to identify their two favorite types of snacks. Subjects were

informed that their compensation would be in snacks so that they had an incentive to truth-

fully reveal their preferences. For the cross-category choices we randomized between using

the snack the subject picked �rst as the safe lottery and using the snack the subject picked

�rst for the riskier lottery. This randomization was done prior to data collection so that

we knew which condition to implement and could do so e�ciently as potential participants

approached the rolling cart.10

Representations for the choices in the experiment under CST are uniquely determined

by the minimal state space and are shown in Figure V11. In the �gure, there are two snacks,

where one unit of each snack brings a utility of 1 and 2 units of each snack brings a utility of

2. For these choices, CST (as speci�ed in equations (4) and (6) with θ = 1) predicts subjects

will exhibit greater risk aversion in the within-category treatment than in the cross-category

treatment. In particular, CST predicts that the comparison of getting two units in the

cross-category choice will be more salient than the comparison of getting two units in the

8The one-tailed test is the appropriate statistical test since CST makes clear directional predictions of
greater risk tolerance in cross-category choices and a di�erence in the opposite direction would not support
CST.

9If a subject approached the rolling cart while the previous subject was present the same treatment was
applied so as to avoid confusion and to mask the purpose of the experiment. However, an equal number of
subjects participated in each treatment.

10One researcher administered the experiment while another recorded the data which included the treat-
ment, whether the subject chose to go for 1 snack with a 90% chance (safe lottery) or 2 snacks with a 50%
chance (risky lottery), and the subject's sex (male or female).

11The minimal state space for the within-category choices in Figure V uniquely assigns probability 0.45
(0.90 × 0.50) to category-outcome vector (1, 2), probability 0.45 (0.90 × 0.50) to category-outcome vector
(1, 0), probability 0.05 (0.10 × 0.50) to category-outcome vector (0, 2), and probability 0.05 (0.10 × 0.50)
to category-outcome vector (0, 0).
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within-category choice (since 0.5σ(0, 2) > 0.45σ(1, 2) + 0.05σ(0, 2)).12 Under our running

parametric speci�cation, the safe (S) lottery is chosen in the within-category choice, but the

risky (R) lottery is chosen in the cross-category choice. Hence, CST predicts a shift toward

greater risk-taking in the cross-category choices.

Figure V. Risky Choices Within and Across Categories

We �nd that 62.3% of the subjects in the within-category treatment selected the S lottery

indicating a typical level of risk aversion. However, 46.8% of the subjects in the cross-category

treatment opted for the S lottery. Thus, observed behavior shifts in the direction predicted

by CST and the di�erence is statistically signi�cant (p = 0.02619, one tailed two-sample

proportions test).

The results are summarized in Table I. The �rst row displays the percentage of R lottery

choices in the within-category treatment. The second row displays the percentage for R

lottery choices in the cross-category treatment.

Total (% R)

Within-Category 0.377

Cross-Category 0.532

Table I. Proportion of Risky Choices Across Treatments

12One caveat is that this prediction is derived under the assumption that the two snacks are valued equally.
While the prediction continues to hold if the snacks are valued approximately equally, it need not hold if
there is a strong preference for one snack over the other. For this reason we selected four types of snacks
and asked participants to pick their favorite two for the cross-category choices, supposing that more snacks
to choose from increases the chances that subjects would �nd multiple snacks they liked. We also selected
the snacks to be comparable in retail value.
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4 Categorization and Portfolio Choice

We next consider implications of CST for the use of diversi�cation strategies in consumer

choice and portfolio choice.

4.1 Variety-Seeking in Simultaneous versus Sequential Choice

One of the more puzzling anomalies in the consumer behavior literature is the diversi�cation

bias: Simonson (1990) and Read and Loewenstein (1995) both �nd greater variety seeking

behavior in simultaneous than in sequential choices. In of their experiments, Read and

Loewenstein tested this behavior on Halloween night. Children trick-or-treating between

two adjacent houses were either given a single choice between a milky way candy bar and

a musketeers bar at each house (sequential choice condition), or a choice of two candy

bars (which could be two milky way, two musketeers, or one of each) at one of the houses

(simultaneous choice condition). Read and Loewenstein found that in the simultaneous

choice condition, all children chose one of each candy bar, whereas only 48% of children in

the sequential choice condition did so.

The puzzling choices observed by Read and Loewenstein can be simply reconciled by

CST. Figure VIII depicts the CST representation of these choices in the simultaneous and

sequential choice conditions. Note that in the simultaneous choice, diminishing sensitivity

implies that the downside of not obtaining any of one candy outweighs the upside of obtaining

two of the other candy. Hence, CST implies the use of the diversi�cation heuristic in the

simultaneous choice for any salience function. In the sequential choice, if the two bars have

roughly the same utility, CST predicts indi�erence in these choices. Indeed, the �nding that

48% of the children chose one of each candy in the sequential choice is consistent with the

implication of CST that the children were indi�erent in the sequential choices and chose

randomly.

Figure VIII. The Diversi�cation Heuristic
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A CST agent with u(x ) = x chooses one of each item in the simultaneous choice but

is indi�erent between each item in the sequential choices in Figure VIII if the following

inequality holds:

σ(1, 0)− σ(1, 2) > 0.

The above inequality follows generally from diminishing sensitivity and symmetry of σ.

Hence, the CST agent chooses to diversify in the simultaneous choice, and chooses randomly

in the sequential choice, consistent with the �ndings of Read and Loewenstein.

4.2 The �1/N� Rule in Portfolio Choice

Benartzi and Thaler (2001) �nd evidence consistent with a 1/N diversi�cation heuristic in

portfolio allocation decisions. Under this heuristic, given a �xed amount of money to allocate

to N di�erent assets, a signi�cant fraction of people allocate an equal amount to each asset.

This form of diversi�cation can deviate from a truly diversi�ed portfolio as we illustrate

below.

The CST model also generates a novel prediction for portfolio choice - that behavioral

investors will systematically deviate from allocating an equal amount of resources across

states, by instead allocating an equal amount of resources across categories. The CST thus

provides a formal framework for contrasting the predictions of expected utility theory with

those of the diversi�cation heuristic.

Naive diversi�cation is an empirical puzzle for both leading rational and behavioral de-

cision theories of choice under risk. In independent work, Koszegi and Matejka (2019)

developed a model of choice simpli�cation and Landry and Webb (2020) developed a neu-

roeconomic model of multi-attribute choice, both of which generate behavior consistent with

the diversi�cation heuristic. However, these models were not developed as general models

of choice under risk and so do not explain our other �ndings or the classical risky choice

anomalies such as the fourfold pattern of risk preferences (Tversky and Kahneman, 1992).

4.2.1 Experiment on Diversi�cation across Categories versus States

We conducted an online experiment using Amazon Mechanical Turk13 to explore the com-

peting predictions of true diversi�cation implied by EU for any risk-averse agent with 'naive'

diversi�cation implied by CST for the same investment decision. Experimental subjects each

13We used a lab-in-the-�eld procedure for the risky choices across categories experiment given the com-
plexity of delivering non-monetary payments in an online experiment.
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participated in one portfolio allocation decision, involving either two states and two cate-

gories or three states and three categories. In the two-state, two-category decision14, subjects

were asked to allocate 12 tokens across two di�erent assets, where each asset yields a payo�

in one of two equally likely states. In particular, subjects were shown the table on the left

side of Figure IX. Subjects were informed that each experimental currency unit (ECU) was

worth $0.05. That is, if Outcome 1 occurred and all 12 tokens were allocated to Asset B, that

subject would earn 36 ECU's ($1.80).15 To allocate their tokens, subjects were required to

increase or decrease their allocation to each asset by changing one token at a time, with the

initial allocation set to 0. The experimental software enforced the requirement that exactly

12 tokens must be allocated before that subject could proceed. In the three-asset, three-state

portfolio decision, a di�erent group of subjects was asked to allocate 15 tokens across three

di�erent assets, where each asset yields a payo� in one of three equally likely states. In

particular, subjects were shown the table on the right side of Figure IX. For simplicity, we

refer to Asset A as shown in the �gure as the �safe� asset in both conditions, and Asset B

as shown in the �gure as the �risky� asset in both conditions, but this terminology was not

used with the subjects. The actual order of the rows and columns were randomized across

subjects in both conditions.

Figure IX. Allocation Decisions for Two Assets (Left) and Three Assets (Right)

Expected utility theory predicts that any risk-averse agent will allocate 9 tokens to Asset

1 and 3 tokens to Asset 2 in the two-asset condition as both assets have the same expected

14To keep the experimental design simple, we do not distinguish assets from categories in the experiment,
implicitly assigning di�erent assets to di�erent categories. This might be particularly natural, for instance,
if the assets are categorized by their riskiness. In our experiment, the assets can be ranked in precisely that
way according to second-order stochastic dominance, as the assets are mean-preserving spreads.

15These stakes are consistent with the amount commonly paid in experiments conducted via Amazon
Mechanical Turk. Subjects also received an additional $1 payment for participating.
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payo� and that particular allocation will perfectly equalize payo�s across the two states. In

addition, EU predicts that any risk-seeking agent will allocate all 12 tokens to Asset B. Only

in the knife-edge case in which the decision maker is exactly risk-neutral does EU not make a

clear prediction: A risk-neutral EU agent will be indi�erent between all possible allocations.

In contrast, under our running parametric speci�cation in (5, 6) with u(x) = x and θ = 1, a

categorical thinker uniquely chooses the equal split allocation (six tokens to each asset) out

of the 13 possible allocation strategies.

For the three-asset condition, EU predicts that any risk-averse agent will allocate 10

tokens to Asset A, 3 tokens to Asset B, and 2 tokens to Asset C, as each asset has the same

expected payo� and that particular allocation will perfectly equalize payo�s across states.

In addition, EU predicts that any risk-seeking agent will allocate 15 tokens to Asset C. A

risk-neutral EU agent will be indi�erent between all possible allocations. In contrast, under

our running parametric speci�cation in (5, 6) with u(x) = x and θ = 1, a categorical thinker

uniquely chooses the equal split allocation (�ve tokens to each asset) out of the 136 possible

allocation strategies.

The CST prediction of an equal allocation across assets is distinct from the predictions

of the original salience theory of Bordalo et al. (2012). Under the original salience theory,

an agent constructs the minimal state space from the support of the overall distribution

of lottery payo�s. To simplify the problem, it is su�cient to show that under the original

salience theory, the optimal CST allocation is dominated by the EU allocation. Under

the optimal CST allocation (consistent with the 1/N rule), the portfolio pays 12 ECU's

or 24 ECU's with equal probability, whereas the optimal EU allocation pays 18 ECU's

with certainty. The minimal state space under original salience theory is then (12,18) and

(24,18) and the original salience theory predicts that the EU allocation is chosen over the

CST allocation for an agent with any salience function satisfying diminishing sensitivity and

any linear or concave utility function. Similarly, for the three-asset allocation decision, the

optimal CST portfolio pays 15 ECU's, 30 ECU's, or 45 ECU's with equal probability, whereas

the optimal EU allocation pays 30 ECU's with certainty. The minimal state space under

original salience theory is then (15,30), (45,30), and (30,30) and the original salience theory

predicts that the EU allocation is chosen over the CST allocation for an agent with any

salience function satisfying diminishing sensitivity and any linear or concave utility function.

The CST prediction is also distinct from that of cumulative prospect theory (CPT) due to

Tversky and Kahneman (1992). Using the value function and probability weighting function

from Tversky and Kahneman (1992) and the parameter estimates from the classic experi-

mental studies of CPT cited in Neilson and Stowe (2002, p. 36) (Tversky and Kahneman

(1992), Camerer and Ho (1994), or Wu and Gonzalez (1996)), we �nd that a CPT agent
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prefers the optimal EU allocation over the optimal CST allocation for both the two-asset

and three-asset allocation decisions.

The CST further predicts there to be a framing e�ect in portfolio choice decisions. In

the format presented in many retirement savings plans in which participants are asked to al-

locate their wealth across di�erent asset categories, a CST agent will systematically deviate

from true diversi�cation (equalizing wealth across states) in the direction of naive diver-

si�cation (equalizing wealth across categories). However, CST also provides a remedy to

this sub-optimal investment bias: If participants are presented with the distribution of their

portfolio returns across states, as shown for instance in Figure X, a CST agent with linear

(or concave) utility will prefer Allocation 1 (corresponding to the optimal EU allocation)

in both portfolio decisions for any salience function. In our experiment, the subjects who

faced the two-asset (three-asset) allocation decision in Figure IX were subsequently asked to

make a binary choice between two lotteries shown in Figure X, one option corresponding to

the distribution implied by the 1/N allocation for two (three) assets (Allocation 2) and the

other option corresponding to true diversi�cation (Allocation 1). Since only the portfolio

distribution ultimately matters, a CST agent with concave utility (i.e., who has preferences

for diversi�cation across states) but who allocates payo�s equally across categories would

bene�t from a policy which displayed the distribution of portfolio returns, thereby mitigating

the bias due to categorization.16

Figure X. Asset Allocation with Salient States

16After making their portfolio allocation decisions, subjects completed a risk-preference elicitation task
based on Eckel and Grossman (2002) and the cognitive re�ection test (Frederick, 2005).
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4.2.2 Results

A total of 192 subjects completed the study, of whom 88 were randomly assigned to the

two-asset condition and 104 were randomly assigned to the three-asset condition.17 In both

conditions, there was a wide dispersion of asset allocation choices. In the two-asset allocation

condition, there are thirteen possible allocations (allocating any integer between 0 and 12

tokens to the safe asset). Figure XI shows the frequency of allocation decisions for the two-

asset condition. Despite the variety of chosen allocations, the modal response was correctly

predicted by CST (chosen by 19 of 88 subjects), whereas only 5 subjects chose the allocation

predicted by EU for any risk-averse agent (EU-RA) allocating 9 tokens to the safe asset.

Only two subjects chose the EU risk-seeking strategy (EU-RS) of purchasing only the risky

asset. We also note that 13 subjects chose what one could term a 'naive' risk-averse strategy

by allocating all 12 tokens to the safe asset. One could more generally categorize subjects as

approximately CST or approximately EU-RA if their chosen allocation was one token away

from the CST and EU-RA predictions, respectively. Under this categorization, 35 subjects

are approximately CST while 30 are approximately EU-RA in their allocation decisions.

Figure XI. Frequency of Choices in Two-Asset Allocation Condition

The results for the three-asset allocation condition are even more supportive of CST.

In that condition, there are 136 di�erent possible allocation decisions. Despite the wide

17The sample size was set at 200, but the data was not recorded for one subject who started but did not
complete the study. Seven other subjects were dropped from the data for violating the instructions by trying
to complete the experiment twice or by entering a di�erent subject ID from the one they were assigned. The
number of subjects di�ered between the two conditions due to the random assignment. The objective of this
study is descriptive, therefore the sample size was not based on power calculations, unlike the risky choice
across categories experiment where a treatment e�ect was being measured.
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dispersion of chosen allocations, as show in Figure XII, the modal response was predicted

by CST (chosen by 17 of 104 subjects). No subject chose the EU-RA allocation strategy.

There were 11 subjects who chose the 'naive' risk-averse strategy by only purchasing the safe

asset. No subject followed the EU-RS strategy and no other allocation strategy was chosen

by more than �ve subjects.

Figure XII. Frequency of Choices in Three-Asset Allocation Condition

Of the 88 subjects in the two-asset allocation condition, 51 chose Allocation 1 on the

left side of Figure X. Behavior in the three-asset condition is even more stark. There, 79 of

the 104 subjects chose Allocation 1 on the right side of Figure X. In both conditions, the

majority choice is predicted by the CST and EU-RA models.

5 Categorization and Insurance

Insurance contracts and warranties are often highly specialized. For instance, it is common

to see insurance companies o�er �ood insurance, �re insurance, and earthquake insurance,

rather than o�ering a single comprehensive insurance policy against natural disasters. There

is also evidence that consumers are willing to pay more for two specialized insurance policies

covering mutually exclusive risks than they will pay for a single policy covering both of those

risks. In a classic study, Johnson et al. (1993) found that the total amount respondents were

willing to pay for two life insurance policies due to death from air travel - terrorism insurance

and non-terrorism related mechanical failure, exceeded the amount they would pay for �ight

insurance that applied to any cause of death.
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The CST predicts such e�ects to occur. Consider the choice problem given in Figure VI.

In the left hand side of the �gure, a consumer chooses whether to purchase two actuarially

fair insurance policies to insure a potential $1000 loss. One policy is for �ood insurance,

where the �ood occurs with probability p. The other policy is for earthquake insurance

where the earthquake occurs with probability q . For simplicity, we assume as in Gennaioli

and Shleifer (2010) that at most one disaster occurs. In the right hand side of Figure VI, a

consumer chooses whether to purchase a single insurance policy that applies to all natural

disasters. Clearly this policy applies more broadly than to just �ooding and earthquakes

but in our illustration we let these be the only two risks so that the two choices in Figure

VI have the same expected cost.

Figure VI. Categorized versus Comprehensive Insurance

For the choices in Figure VI, CST predicts that a consumer will be more inclined to

purchase the �ood and earthquake insurance policies than the natural disaster insurance

since the smaller costs of the separately categorized insurance policies are less salient than

the larger cost of the single-category policy. To illustrate, let p = 0.01 and q = 0.02 in Figure

VI and let u(x ) = x . Then a CST consumer would choose A over B in the choice on the left

(insuring against the loss by purchasing �ood insurance and earthquake insurance) if the

following inequality holds:

[σ(−10,−1000)− σ(−10, 0)](9.9) > [σ(−20, 0)− σ(−20,−1000)](19.6).

In contrast, a CST consumer would choose B over A in the choice on the right (choosing

not to purchase natural disaster insurance) if the following inequality holds:

σ(−30,−1000) < σ(−30, 0).

Under our running parametric speci�cation (salience function (6) with θ = 1), both of

the above inequalities hold.
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6 Categorization and Contracts

We next consider an application of CST to contract theory. In practice, employment con-

tracts often feature non-monetary incentives such as bonus paid vacation time for good

performance. A �eld experiment by Lockwood et al. (2010) found that a contingent time o�

(CTO) plan that rewarded high productivity with paid time o� led to an increase in produc-

tivity at a manufacturing plant that persisted when productivity was measured six months

after the intervention was implemented. From the perspective of neoclassical economics,

monetary incentives should dominate non-monetary incentives of equivalent value because

money has option value (Je�rey, 2003) and employers are unlikely to know an employee's

preference-maximizing choice for how to use that money.

From the perspective of CST, non-monetary incentives provide another category of out-

comes in addition to wages, which due to diminishing sensitivity of salience perception, could

incentivize agents to work even more than a marginally higher wage. To illustrate, consider

a principal-agent problem with a risk-neutral principal and a CST agent where the agent

chooses between two e�ort levels, e ∈ {0, 1}, and the principal wants to induce the agent to

work (e = 1) rather than shirk (e = 0). There are two possible output levels for the principal,

H and L, denoting high and low output, respectively. States are denoted {s0, s1}, indicating
the output level for e�ort levels 0 and 1, respectively, where s0, s1 ∈ {L,H}. The probability
of each state, pes , depends on the agent's e�ort level where p1H > p0H .

To induce the agent to work, the principal chooses between two contracts. Contract A

uses only monetary incentives. It pays the agent w if output is low and it pays w > w if

output is high. Contract B pays the agent a base salary, w , in every state, and it gives the

employee bonus paid time o� (or some other non-monetary incentive) that has a monetary

value equivalent to w − w if the output is high. The agent has a cost of e�ort c(e) normal-

ized such that c(0) = 0 and c(1) = c. The two contracts are summarized from the agent's

perspective in Figure VII.

A CST agent with linear utility chooses to work (e = 1) under Contract A if

σ(w ,w)(w − w)[(p0L)(p1H )− (p0H )(p1L)]− σ(−c, 0)(c) > 0. (7)

A CST agent with linear utility chooses to work (e = 1) under Contract B if

σ(w − w , 0)(w − w)[(p0L)(p1H )− (p0H )(p1L)]− σ(−c, 0)(c) > 0. (8)
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Figure VII. Contracts with Monetary and Non-Monetary Incentives

By diminishing absolute sensitivity,

σ(w ,w) = σ(w − w + w , 0 + w) = σ(w − w + ε, ε) < σ(w − w , 0).

Thus, for any salience function, the CST agent is more sensitive to the non-monetary

incentive than to a marginally higher wage. If the agent were indi�erent between working

and shirking under contract A, the agent would strictly prefer to work under contract B. If

the agent prefers to work under both contracts, the above analysis implies that the principal

could lower the non-monetary incentive under Contract B and thereby have a lower expected

payment than under Contract A but still induce the agent to work. This prediction also has

empirical support. Choi and Presslee (2016) conduct an experiment using a real-e�ort task to

investigate the performance e�ects of tangible (non-monetary) incentives versus cash rewards

and they �nd a mediating role of categorization. They report: �performance increases the

more participants categorize performance-contingent pay separately from salary.�
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7 Conclusion

We provided a generalization of salience theory called categorical salience theory (CST) to

risky choices over multidimensional outcomes. In this richer setting, we derive two novel

predictions of CST in the context of choices between lotteries: (i) Risk aversion will be

greater for money (or a single consumer good) than for di�erent types of consumer goods (or

a combination of money and goods), and that (ii) one of the most robust empirical violations

of EU, the Allais common ratio e�ect, will disappear when the outcomes consist of di�erent

types of goods (or a combination of money and goods). These are strong predictions of

CST because (i) the predictions are systematic (the reverse predictions do not hold) and

(ii) the predictions are novel (they are not shared by alternative models). These predictions

are also supported by recent experimental results that on their own seem surprising (e.g.,

Arroyos-Calvera et al., 2018; DeJarnette, 2017), and by our lab-in-the-�eld experiment on

risky choices across categories designed to test CST.

We demonstrated that CST o�ers explanations for empirical puzzles across a variety of

contexts including the higher willingness to pay for categorized insurance, the e�ectiveness

of non-monetary incentives in labor contracts, and greater variety seeking in simultaneous

than in sequential choice. Moreover, the same simple parametric speci�cation is su�cient

to explain each puzzle studied in this paper. We also found that CST predicts majority

behavior consistent with naive diversi�cation in portfolio choice in a new online experiment.

In each application, the predictions of CST are systematic and they are distinct from other

models of choice under risk.

The predictive success of CST is not derived from added �exibility. For a given cate-

gorization of outcomes, CST generalizes the Bordalo et al. (2012) salience model without

adding parameters. Further, CST has fewer parameters than cumulative prospect theory.

The original version of salience theory can explain the classical empirical phenomena that

prospect theory can also accommodate18, while CST delves into uncharted territory by link-

ing the basic concepts of salience perception and categorization to choices under risk.

18Bordalo et al. (2012) do demonstrate that salience theory can explain di�erences in behavior toward
correlated and independent lottery payo�s and preference reversals between choice and pricing tasks that
also distinguish salience theory from cumulative prospect theory for monetary lotteries.
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Appendix

In this appendix we show that the measure of contrast between two payo�s in a choice set

given by equation (6) coincides with a measure of visual contrast between two pixels in an

image used in computational neuroscience. Raj et al. (2005), Frazor and Geisler (2006), and

Chen and Blum (2009) use the following formula to measure visual contrast between pixels

in an image (where Li is the luminous intensity of pixel i):

C =

√√√√ 1∑N
i=1wi

N∑
i=1

wi
(Li − L)2
(L+ L0)2

. (9)

In (9), L0 ≥ 0 is a constant and L > 0 is a weighted average of the luminous intensities:

L =
1∑N

i=1wi

N∑
i=1

wiLi. (10)

Proposition A.1 (Equivalence between visual contrast and payo� contrast):

For N = 2 pixels, with luminous intensities L1 ,L2≥ 0, and mean L = 1
2
(L1 + L2 ) > 0, the

formula for visual contrast in (9) is equivalent to the formula for payo� salience in (6).

Proof: Given N = 2 , L1 ,L2≥ 0, and L = 0.5L1 + 0.5L2 , formula (9) reduces to:

C =

√
0.5

(
L1 − 0.5L1 − 0.5L2

0.5L1 + 0.5L2 + L0

)2

+ 0.5

(
L2 − 0.5L1 − 0.5L2

0.5L1 + 0.5L2 + L0

)2

The above formula simpli�es to:

C =

√(
L1 − L2

L1 + L2 + 2L0)

)2

=
|L1 − L2|
L1 + L2 + θ

where θ ≡ 2L0. @

31



References

1. Allais, M. 1953. Le comportement de l'homme rationnel devant le risque: critiques des

postulats et axioms de l'ecole Americaine. Econometrica 21, 503-546.

2. Arroyos-Calvera, D., A. Isoni, G. Loomes, R. McDonald. 2018. �The common ratio

e�ect with objects and money.� Foundations of Utility and Risk, Book of Abstracts.

https://www.furconference.org/wp-content/uploads/2018/07/Book-of-Abstracts-2.pdf

3. Barberis, N., M. Huang. 2008. Stocks as lotteries: The implications of probability

weighting for security prices, American Economic Review 98, 2066-2100.

4. Bell, D. 1982. Regret in decision making under uncertainty. Operations Research 20,

961-981.

5. Bell, D. 1985. Disappointment in decision making under uncertainty. Operations

Research 33, 1- 27.

6. Benartzi, S., R.H. Thaler. 2001. Naive diversi�cation strategies in de�ned contribution

saving plans. American Economic Review 91, 79-98.

7. Bordalo, P., Gennaioli, N., Shleifer, A. 2012. Salience theory of choice under risk.

Quarterly Journal of Economics 127, 1243-1285.

8. Bordalo, P., Gennaioli, N., Shleifer, A. 2013a. Salience and consumer choice. Journal

of Political Economy 121, 803-843.

9. Bordalo, P., Gennaioli, N., Shleifer, A. 2013b. Salience and asset prices. American

Economic Review 103, 623-28.

10. Camerer, C.F., T. Ho. 1994. Violations of the betweenness axiom and nonlinearity in

probability. Journal of Risk and Uncertainty 8, 167-196.

11. Chen, Y., R.S. Blum. 2009. A new automated quality assessment algorithm for image

fusion. Image and Vision Computing 27, 1421-1432.

12. Choi, W., A. Presslee. 2016. �The performance e�ects of tangible versus cash rewards:

The mediating role of categorization.� Manuscript.

13. DeJarnette, P. 2017. Risky Choices over Goods. Unpublished manuscript.

https://site.stanford.edu/sites/default/�les/riskychoicesovergoods.pdf

32



14. Eckel, C.C., P.J. Grossman. 2002. Sex di�erences and statistical stereotyping in

attitudes toward �nancial risk. Evolution and Human Behavior 23, 281-295.

15. Frazor, R.A., W.S. Geisler. 2006. Local luminance and contrast in natural images.

Vision Research 46, 1585-1598.

16. Frederick, S. 2005. Cognitive re�ection and decision making. Journal of Economic

Perspectives 19, 25-42.

17. Frydman, C., M.M. Mormann. 2018. The role of salience in choice under risk: An

experimental investigation. papers.ssrn.com/sol3/Papers.cfm?abstract_id=2778822

18. Gennaioli, N., Shleifer, A. 2010. What comes to mind. Quarterly Journal of Economics

125, 1399-1433.

19. Golec, J., M. Tamarkin. 1998. Bettors love skewness, not risk, at the horse track.

Journal of Political Economy 106, 205-225.

20. Harnad, S. 2017. To cognize is to categorize: Cognition is categorization. In: Handbook

of Categorization in Cognitive Science, (Second Edition), Cohen, H., and Lefebvre, C.

(Eds), Elsevier. Chapter 2, 21-54.

21. Herweg, F., D. Müller. 2019. Regret theory and salience theory: Total strangers,

distant relatives, or close cousins? CESifo working paper no. 7445.

22. Je�rey, S. 2003. Non-monetary incentives and motivation: When is Hawaii better than

cash? Manuscript.

23. Johnson, E.J., J. Hershey, J. Meszaros, H. Kunreuther. 1993. Framing, probability

distortions, and insurance decisions. Journal of Risk and Uncertainty 7, 35-51.

24. Kahneman, D., A. Tversky. 1979. Prospect theory: An analysis of decision under risk.

Econometrica 47, 263-292.

25. Karni, E. 1979. On multivariate risk aversion. Econometrica 47, 1391-1401.

26. Koszegi, B., F. Matejka. 2019. Choice simpli�cation: A theory of mental budgeting and

naive diversi�cation. https://economics.harvard.edu/�les/economics/�les/ms29833.pdf

27. Landry, P., R. Webb. 2020. Pairwise normalization: A neuroeconomic theory of milti-

attribute choice. Manuscript.

33



28. Leland, J., Schneider, M., Wilcox, N. 2019. Minimal frames and transparent frames

for risk, time, and uncertainty. Management Science, 4318-4335.

29. Lichtenstein, S., Slovic, P. 1971. Reversals of preference between bids and choices in

gambling decisions. Journal of Experimental Psychology 89, 46-55.

30. Lockwood, D.L., Frayne, C., Stephenson, H. and Geringer, J.M. 2010. The impact of

contingent time o� on productivity in a small manufacturing environment, Journal of

Management and Marketing Research, 3, 1-5.

31. Loomes, G., R. Sugden. 1982. Regret theory: An alternative theory of rational choice

under uncertainty. Economic Journal 92, 805-824.

32. Loomes, G., R. Sugden. 1986. Disappointment and dynamic consistency in choice

under uncertainty. Review of Economic Studies 53, 271-282.

33. McCoy, A., M. Platt. 2005. Risk-sensitive neurons in macaque posterior cingulate

cortex. Nature Neuroscience 8, 1220-1227.

34. Nielsen, C.S., A.C. Sebald, P.N. S�rensen. 2018. Testing for salience e�ects in choices

under risk. Manuscript.

35. Neilson, W., J. Stowe. 2002. A further examination of cumulative prospect theory

parameterizations. Journal of Risk and Uncertainty 24, 31-46.

36. O'Donoghue, T., J. Somerville. 2018. Modeling risk aversion in economics. Journal of

Economic Perspectives 32, 91-114.

37. Pandelaere, M., Briers, B., Lembregts, C. 2011. How to make a 29% increase look

bigger: The unit e�ect in option comparisons. Journal of Consumer Research 38,

308-322.

38. Prelec, D., Loewenstein, G. 1991. Decision making over time and under uncertainty:

A common approach. Management Science 37, 770-786.

39. Raj, R., W.S. Geisler, R.A. Frazor, A.C. Bovik. 2005. Contrast statistics for foveated

visual systems: �xation selection by minimizing contrast entropy. Journal of the Op-

tical Society of America 22, 2039-2049.

40. Read, D., G. Loewenstein. 1995. Diversi�cation bias: Explaining the discrepancy

in variety seeking between combined and separated choices. Journal of Experimental

Psychology: Applied 1, 34-49.

34



41. Rochanahastin, N., Schneider, M., Leland, J. 2018. Salience perception and skewness

preference: A test of salience theory for choice under risk. Manuscript.

42. Simonson, I. 1990. The e�ect of purchase quantity and timing on variety-seeking

behavior. Journal of Marketing Research 27, 150-162.

43. Starmer, C., R. Sugden. 1993. Testing for juxtaposition and event-splitting e�ects.

Journal of Risk and Uncertainty, 6, 235-254.

44. Tversky, A., Kahneman, D. 1992. Advances in prospect theory: Cumulative represen-

tation of uncertainty. Journal of Risk and Uncertainty 5, 297-323.

45. Wertenbroch, K., Soman, D., Chattopadhyay, A. 2007. On the perceived value of

money: The reference dependence of currency numerosity e�ects. Journal of Consumer

Research 34, 1 � 10.

46. Wu, G., R. Gonzalez. 1996. Curvature of the probability weighting function. Manage-

ment Science 42, 1676-1690.

35


	Categorical Salience Theory
	Recommended Citation

	Categorical Salience Theory
	Comments

	tmp.1582159944.pdf.ZV3e3

