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A Capital Asset Pricing Model with Idiosyncratic Risk

and the Sources of the Beta Anomaly

Mark Schneider∗ and Manuel Nunez†

December 16, 2020

Abstract

We introduce a generalization of the classical capital asset pricing model in which market

uncertainty, market sentiment, and forms of idiosyncratic volatility and idiosyncratic skewness

are priced in equilibrium. We derive two versions of the model, one based on a representative

agent who cares about three criteria (risk, robustness, and expected returns), and the other with

a microfoundation based on three types of investors (speculators, hedgers, and arbitrageurs).

We apply the resulting capital asset pricing model with idiosyncratic risk (IR-CAPM) to provide

a new theoretical account of the beta anomaly, one of the most fundamental and widely studied

empirical limitations of the CAPM. We show that the IR-CAPM explains the main conditional

relationships involving the beta anomaly in the literature including the time variation of the

beta anomaly across optimistic and pessimistic periods and across high and low uncertainty

periods, the relationship between the beta anomaly and the correlation between a stock’s beta

and its idiosyncratic volatility, and the concentration of the beta anomaly among stocks with

high idiosyncratic maximum returns.
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1 Introduction

In the capital asset markets studied by Sharpe (1964) all investors know the true distribution of

asset returns and trade to diversify their risks. Consequently, only systematic (market) risk is

priced in equilibrium. In practice, however, some agents have different levels of information and

may trade with other motives. Some agents may trade primarily to speculate in hopes of making

a short-term profit, while others may trade to hedge against market downturns. Such a market

with speculators and hedgers is consistent with the historical folklore of financial markets that has

witnessed persistent waves of optimism and pessimism.

In this paper, we consider a market with three types of agents. One type consists of standard

agents who have correct beliefs about mean asset returns, determined in equilibrium. Since these

agents are informed and their trade effectively serves to correct mispricing, these agents serve to

some degree as arbitrageurs. The other two types of agents are uninformed agents, some with

optimistic beliefs who trade primarily to speculate and others with pessimistic beliefs who trade to

hedge against market downturns. We drop the assumption of a rational expectations equilibrium.

We also do not require that heterogeneous beliefs are, on average, accurate, as assumed by previous

authors (e.g., Levy et al., 2006). The resulting Capital Asset Pricing Model with idiosyncratic risk

(IR-CAPM) generalizes the standard CAPM by allowing for market uncertainty, market sentiment,

idiosyncratic volatility, and idiosyncratic skewness to affect equilibrium expected returns.

Before considering the heterogeneous agent market in Section 3, we first show in Section 2

that a version of the IR-CAPM can be derived in a representative agent framework in which the

representative agent cares about three features of asset returns: (i) expected returns with respect

to the agent’s subjective prior distribution, (ii) risk or dispersion of returns with respect to the

agent’s prior, and (iii) robustness of returns to different specifications of the agent’s prior, reflecting

the model uncertainty risk that the agent’s prior may be mis-specified. We measure risk based on

the variance of returns as in classical portfolio theory, and we measure robustness based on the

Hurwicz criterion which includes as a special case Wald’s (1950) maximin criterion that is widely

used in robust optimization.

Both versions of the IR-CAPM predict that an asset’s idiosyncratic skewness and idiosyncratic

volatility are priced in equilibrium. In contrast, standard generalizations of the CAPM do not

include a role for the pricing of idiosyncratic risk. Prior generalizations of the CAPM have con-

sidered different measures of systematic risk that are not captured by the traditional CAPM beta.

These include the downside beta (Ang et al., 2006), the tail beta (Kelly and Jiang, 2014), and the

bear beta (Lu and Murray, 2019), for measuring covariance between an asset and the market in

bad market states, as well as models which incorporate co-skewness (e.g., Kraus and Litzenberger,

1976; Harvey and Siddique, 2000; Schneider et al., 2020) to account for investor preferences for

extreme positive returns when the market performs well. Hong and Sraer (2016) break from the

traditional generalizations of the CAPM by developing a model in which an asset’s own standard

deviation is priced. However, their model does not price an asset’s idiosyncratic skewness. While

some prior work has argued that idiosyncratic skewness is priced (Brunnermeier et al., 2007; Mit-

2



ton and Vorkink, 2007; Barberis and Huang, 2008), these ideas have not been developed into a

generalization of the classical CAPM in which idiosyncratic skewness is priced in equilibrium.

Our first contribution is to introduce and derive two versions of the IR-CAPM. In both versions,

an asset’s idiosyncratic skewness is priced, as documented empirically by Bali et al. (2011) and

Cheon and Lee (2018), and an asset’s idiosyncratic volatility is priced, as documented by Ang et

al. (2006). The IR-CAPM also predicts that systematic market uncertainty and systematic market

sentiment are priced in equilibrium, consistent with Bali and Zhou (2016), and Baker and Wurgler

(2006).

Our second main contribution is to show that the IR-CAPM predicts the beta anomaly (Black

et al., 1972; Frazzini and Pedersen, 2014) and its conditional relationships documented in the

literature. The beta anomaly in which stocks with high market beta have relatively low expected

returns compared to low beta stocks is one of the most prominent and fundamental empirical

violations of the CAPM. Several conditional relationships involving the beta anomaly have also

been established: The beta anomaly is concentrated in stocks with high maximum returns (Bali

et al., 2017); it is stronger in periods of high market sentiment (Antoniou et al., 2016), in particular,

when the correlation between a stock’s beta and its idiosyncratic volatility are simultaneously high

(Liu et al., 2018); and the beta anomaly is stronger in periods of high market uncertainty (Hong

and Sraer, 2016). These findings constitute basic puzzles pertaining to both the cross-section and

the time series of the beta anomaly that no model in the literature yet comprehensively explains.

Among the leading theoretical explanations, Frazzini and Pedersen (2014) explain the beta

anomaly based on a model of leverage constraints, while Hong and Sraer (2016) explain the beta

anomaly based on the higher sensitivity of high beta assets to investor disagreement. However,

these approaches do not consider the dependence of the beta anomaly on market sentiment or its

concentration among stocks with high idiosyncratic skewness. Schneider et al. (2020) show that

the abnormal profits from the beta anomaly in the cross-section of returns can be largely explained

by co-skewness. However, they do not explore the time series variation in these anomalies across

periods of high versus low sentiment or high versus low uncertainty. In addition, Kumar et al.

(2019) and Jiang et al. (2020) find that variation in a variety of anomaly returns is explained by

idiosyncratic skewness but is not explained by co-skewness.

2 A Representative Agent Approach to Idiosyncratic Risk

We develop a capital asset pricing model in which forms of an asset’s own idiosyncratic skewness

and idiosyncratic volatility are priced. The pricing of idiosyncratic risk emerges from the inter-

action between the structure of the market state space, the market short-sale constraint, and the

preferences of the representative agent.

Our representative agent exhibits two robust behavioral biases for choice under risk and un-

certainty: ambiguity aversion (Ellsberg, 1961) and positive skewness preference. One form of

ambiguity aversion is a preference for making decisions that are robust to mis-specified proba-
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bility models (Wald, 1950; Hurwicz, 1951). Ambiguity aversion and skewness preference are not

only laboratory phenomena – they provide explanations for failures of economic theory in markets:

ambiguity aversion provides an explanation for buying-selling price gaps in markets (Dow and da

Costa Werlang, 1992) and for the equity premium puzzle (e.g., Ju and Miao, 2012). Skewness pref-

erence can explain much of the risk-seeking behavior observed in markets such as the simultaneous

purchasing of lottery tickets and insurance (Friedman and Savage, 1948) and the overpricing of

long-shots in betting markets (Weitzman, 1965).

Given the strong behavioral support for ambiguity aversion and skewness preference and their

relevance in applications, it seems desirable for a model of choice under risk and uncertainty to

predict both behaviors. We observe that both behaviors are naturally accommodated by a model

of robust decision making. Robust decision models typically focus on worst-case scenarios. A less

conservative approach pioneered by Hurwicz (1951) maximizes the convex combination of the worst-

case and best-case scenarios. The Hurwicz α-criterion provides a simple approach to incorporating

a preference for robustness toward model uncertainty (by overweighting the worst outcome), and

a preference for positively skewed returns (by overweighting the best outcome).

Formally, let there be a non-empty finite set of states S, a non-empty convex set of possible

outcomes X in R, and a set of ambiguous acts F , where an act f ∈ F is a mapping f : S → X.

Denote by f(s) the outcome that occurs if act f is chosen and state s occurs. Let ∆(S) denote the

set of all possible probability distributions on S with generic (vector) element π.

We consider a representative investor who cares primarily about three features of asset returns:

(i) the expected return on an asset with respect to the investor’s prior π; (ii) risk or dispersion

of returns with respect to π; and (iii) robustness of returns to different specifications of π. The

investor is contemplating investment in n risky assets. Denote by Rj ∈ F , for j = 1, . . . , n, the act

obtained by investing in the j-th asset, where rjs := Rj(s) ∈ X is the return of asset j in state

s. Further, if the investor has subjective probability distribution π ∈ ∆(S) across states, denote

by rj := Eπ(Rj) =
∑

s∈S πsrjs the expected return on asset j across states. We assume that there

exist states s and s in S that are the “common best” and “common worst” states for all the assets,

that is,

rj := rjs = max
s∈S

rjs,

rj := rjs = min
s∈S

rjs,

for all j. There is an additional safe asset with return r0 > 0 in every state, corresponding to the

constant act R0 that maps every state to r0.

Instead of considering all possible acts, the investor concentrates on comparing acts from this

subset of F :

P :=

R ∈ F : ∃(w0, w) ∈ Rn+1, w0 +
n∑
j=1

wj = 1, R(s) =
n∑
j=0

wjRj(s),∀s ∈ S

 .
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We call an element R in P a portfolio with corresponding holdings vector (w0, w). The investor

evaluates portfolios according to risk-return-robustness preferences given by

V (R) = θ
(
µ(R)− ρσ2(R)

)
+ (1− θ)ψ(R). (1)

for R ∈ P, where

µ(R) := Eπ(R) =

n∑
j=0

wjEπ(Rj) = w0r0 +

n∑
j=1

wjrj

is the expected return of the portfolio,

σ2(R) :=
∑
s∈S

πs (R(s)− µ(R))2 =
∑
s∈S

πs

 n∑
j=1

wj(rjs − rj)

2

is the variance of the portfolio, and

ψ(R) := αmax
s∈S
{R(s)}+ (1− α) min

s∈S
{R(s)}

= αmax
s∈S

w0r0 +

n∑
j=1

wjrjs

+ (1− α) min
s∈S

w0r0 +

n∑
j=1

wjrjs


is the robust (Hurwicz) value of the risky assets in the portfolio. The parameter ρ ≥ 0 represents

the agent’s degree of risk aversion, α ∈ [0, 1] represents the agent’s degree of optimism (the degree to

which the agent overweights the best-case scenario), and θ ∈ (0, 1] represents the agent’s confidence

in his beliefs regarding the true probability distribution over states. When θ = 1, the agent is fully

confident in his beliefs about the true distribution (he knows the means and covariances exactly),

and equation (1) reduces to the standard mean-variance preferences under objective risk. When

θ is close to zero, the agent is completely uncertain about the true distribution, and engages in

robust optimization, based on the Hurwicz criterion, which does not depend on π.

The preference function (1) spans three prominent decision models: risk-neutral subjective ex-

pected utility (ρ = 0, θ = 1), mean-variance analysis (ρ > 0, θ = 1), and a special case of prospect

theory (Tversky and Kahneman, 1992) with a textbook prospect theory probability weighting func-

tion (Wakker, 2014) that overweights the tails of the distribution (ρ = 0, θ ∈ (0, 1). Further, it

yields a separation of the investor’s beliefs (represented by π), the investor’s uncertainty (repre-

sented by θ), and the investor’s ambiguity attitudes (represented by α). A generalization of the

consumption CAPM in which the representative agent overweights the best and worst-case sce-

narios is given by Zimper (2012). Our approach extends the classical CAPM to the more general

domain of uncertainty where the probability model is not precisely known, in which case a concern

for robustness becomes important.

To set up the investor’s portfolio problem, let r denote the vector [r1, . . . , rn]T , rs denote the

vector [r1s, . . . , rns]
T for s ∈ S, and Σ denote the matrix

∑
s∈S πs(r

s − r)(rs − r)T . Matrix Σ is
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the covariance matrix of the risky assets and is assumed to be positive definite. Function V can be

re-written as

V (R) = θ
(
r0w0 + rTw − ρ(wTΣw)

)
+

(1− θ)
(
αmax

s
{w0r0 + wT rs}+ (1− α) min

s
{w0r0 + wT rs}

)
,

for all R ∈ P. The investor wishes to maximize V on P. We assume that the maximum can be

achieved at an optimal solution (w∗0, w
∗) ≥ 0, that is, short selling is not optimal in this market.

Since feasible vector holdings must satisfy w0 +eTw = 1, where e denotes the n-dimensional all-

ones vector, under our assumptions maximizing V (R) is equivalent to maximizing the unrestricted

function g : Rn → R defined as

g(w) := θ
(
r0 + (r − r0e)Tw − ρ(wTΣw)

)
+

(1− θ)
(
αmax

s
{r0 + (rs − r0e)Tw}+ (1− α) min

s
{r0 + (rs − r0e)Tw}

)
. (2)

Notice that in general g is a continuous function, but because of the Hurwicz term, it is not

necessarily differentiable at points w where there are ties for the maximum or the minimum of

wT rs across S. On the other hand, when restricted to nonnegative vectors (w ≥ 0), because of our

common best state and common worst state assumptions, we obtain

g(w) = θ
(
r0 + (r − r0e)Tw − ρ(wTΣw)

)
+

(1− θ)
(
α(r0 + (r − r0e)Tw) + (1− α)(r0 + (r − r0e)Tw)

)
,

where r := [r1, . . . , rn]T and r := [r1, . . . , rn]T . Therefore, g is differentiable and strictly concave

in the region defined by nonnegative holdings vectors, and hence the equilibrium is guaranteed to

exist in this case.

Proposition 1 Under the assumptions in this section, it follows that at optimality we have

rj − r0 = βj (rm − r0 + γ (αrm + (1− α)rm − r0)) + γ
(
α(r0 − rj) + (1− α)(r0 − rj)

)
(3)

for all j = 1, . . . , n, where

γ :=
1− θ
θ

,

rm := r0w
∗
0 + rTw∗,

rm := r0w
∗
0 + rTw∗,

rm := r0w
∗
0 + rTw∗,

and

βj :=
Cov(Rj , R

∗)

σ2(R∗)
. (4)
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We refer to expression (3) as the IR-CAPM identity as it generalizes the CAPM to incorporate

a role for idiosyncratic risk. In addition to systematic volatility βj , the IR-CAPM accounts for

market optimism α and market uncertainty 1 − θ. From (3), we see that the IR-CAPM also

prices extreme idiosyncratic positive returns rj , idiosyncratic disaster risk rj , and consequently,

idiosyncratic volatility (which depends on both rj and rj).

3 A Heterogeneous Agent Approach to Idiosyncratic Risk

We next derive another version of the IR-CAPM from a setting with three types of market par-

ticipants: informed agents who know the true means of asset returns determined in equilibrium

and effectively serve as arbitrageurs by leveraging their information, uninformed agents who are

optimistic about the market and overestimate the returns on all assets and uninformed pessimistic

agents who underestimate the returns on all assets. The setup roughly corresponds to a market

with three different motives for trading: agents who serve as arbitrageurs, speculators who trade

hoping to make a short-term profit (optimists), and hedgers who trade to insure against a market-

downturn by selling some assets short (pessimists). Hence, the market consists of agents who are

neutral, bullish, or bearish on the stock market.

Although classical finance theory predicts that arbitrage will correct all mispricing, behavioral

finance has argued that there are limits to arbitrage (e.g., De Long et al., 1990). Pontiff (2006)

and McLean and Pontiff (2016) note that the greatest limit to arbitrage is idiosyncratic risk, which

is the largest arbitrage cost facing informed traders. This observation is further developed by

Bégin et al. (2020) who find empirically that “the normal component of idiosyncratic risk, which is

easily diversifiable, is not priced after accounting for other sources of risk. Firm-specific jump risk,

however, is priced” (p. 199). They conclude that “Tail risk thus plays a central role in the pricing

of idiosyncratic risk” (p.155). Idiosyncratic tail risk may then be priced by the market since it

cannot be fully diversified away. This observation provides a motivation for the pricing of extreme

idiosyncratic returns in the IR-CAPM.

In this section, we show that when agents have heterogeneous beliefs the pricing of idiosyn-

cratic risk directly follows when it is not assumed a priori that the average belief is “unbiased”.

Historically, a main purpose of heterogeneous agent CAPM models (e.g., Lintner, 1969; Huang and

Litzenberger, 1998; Levy et al., 2006; Chiarella et al., 2010), has been to provide a foundation for

the CAPM pricing relationship when agents have heterogeneous beliefs. Consequently, it is usually

assumed explicitly or implicitly that the heterogeneous expectations are, on average, unbiased, so

that the standard CAPM pricing relationship holds with respect to the “true” probability distri-

bution1. In contrast, we allow for a systematic bias in the aggregate beliefs of the heterogeneous

agents. We observe that any such bias leads to the pricing of idiosyncratic risk.

We consider an economy where there is one risk-free asset with return r0 and n risky assets.

Like in Section 2, we denote by Rj a random variable representing the stochastic return on asset

1Atmaz and Basak (2018) consider a market where the average belief is biased. However, they do not develop
their approach as a generalization of the CAPM and they do not consider the beta anomaly.
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j. As in the Hong and Sraer (2016) model, we assume that the investors agree in that the return

vector R := (R1, . . . , Rn) of the risky assets has a multivariate normal distribution with a positive

definite covariance matrix Σ, but they disagree on the mean vector of asset returns (location) of the

distribution. Concretely, we assume that the market consist of a finite set I of investors which is

partitioned into three mutually exclusive subgroups Ie, Io, and Ip. All investors within any of these

subgroups agree in the mean vector of asset returns. Investors in set Ie are informed agents with

correct beliefs about expected returns that are determined in equilibrium and constitute a fraction

θ of the investor population. Investors in set Io are uninformed optimistic agents who overestimate

the expected returns on all assets and constitute a fraction α := α(1−θ) of the investor population.

Similarly, Investors in set Ip are uninformed pessimistic agents who underestimate the expected

returns on all assets and constitute a fraction α := (1−α)(1−θ) of the investor population. Observe

that θ = |Ie|/|I|, α = |Io|/|I|, and α = |Ip|/|I|. We assume that these subgroups are nonempty, so

that 0 < α, θ < 1.

Corresponding to the investor partition into three groups, we let rj denote the true expected

return on asset j upon which all investors in set Ie agree. Similarly, we denote by rj and rj the

agreed perceived optimistic and pessimistic expected returns on asset j for all investors in sets Io

and Ip, respectively, with rj ≤ rj ≤ rj . We also use notation r, r, and r to refer to the corresponding

n-dimensional vectors with coordinates rj , rj , and rj , 1 ≤ j ≤ n, respectively.

We apply the general CAPM with heterogeneous beliefs from Chiarella et al. (2010) to our

stylized market structure. Let vi0 denote the initial wealth of agent i ∈ I and let wij ≥ 0 be the

proportion of agent i’s initial wealth invested in asset j. The wealth Wi of agent i’s portfolio is a

random variable given by

Wi = vi0
(
1 + r0 + wTi (R− r0e)

)
, (5)

where wi is the n-dimensional vector with coordinates wij , j = 1, . . . , n. We assume that agent i

has a utility function ui that is twice differentiable, concave, and strictly increasing. The investors

solve the following choice problem:

max
ω

Ei[ui(Wi)], (6)

where Ei represents the conditional expectation with respect to the believed risky-assets probability

distribution of investor i, for all i ∈ I.

We denote by w∗i an optimal solution to (6), that is, w∗i is the vector of proportions of the

wealth allocations invested in risky assets of investor i when the market is in equilibrium. Similarly

to Huang and Litzenberger (1998), let vm :=
∑

i∈I v
i
0 denote the total wealth in the economy at

the beginning of the investing period, and Wm :=
∑

i∈IWi be the random variable representing the

end-of-period wealth in the economy, where Wi is computed using (5) evaluated on w∗i . Let Rm

denote the return on the aggregate market wealth when in equilibrium. These variables are related

by the following equation:

Rm =
Wm − vm

vm
,
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or

Wm = vm (1 +Rm) .

Following Huang and Litzenberger (1998), if we replace Wi by the expression on the right-hand-side

of (5) and add with respect to i ∈ I to compute Wm, we obtain

Rm = r0 + wTa (R− r0e) ,

where

wa :=
1

vm

∑
i∈I

vi0w
∗
i . (7)

From this, it follows that the conditional expectation of the aggregate market return satisfies

Ei[Rm] =


rm := r0 + wTa (r − r0e) if i ∈ Ie,
rm := r0 + wTa (r − r0e) if i ∈ Io,
rm := r0 + wTa (r − r0e) if i ∈ Ip,

for all i ∈ I, and hence, the unconditional expectation of the aggregate market return across

investors is

E[Rm] = θrm + αrm + αrm = r0 + wTa (ra − r0e) , (8)

where

ra := θr + αr + αr. (9)

From (8), it follows that E[Rm] is the aggregate belief about the unconditional mean market

return, which is based on the correct beliefs of the informed agents and the optimistic and pessimistic

expectations of the uninformed agents. In general, the bias in the aggregate market belief is

systematic: it overestimates risk premia in optimistic periods and it underestimates risk premia in

pessimistic periods.

As usual, the global absolute risk aversion for agent i is defined as:

λi := −Ei[u
′′
i (Wi)]

Ei[u
′
i(Wi)]

,

for all i ∈ I. We denote the aggregate risk aversion in the market by λa = (
∑

i∈I λ
−1
i )−1. This

setup imposes minimal restrictions on investor preferences. We build on this approach to construct

a market with asymmetric information and heterogeneity in optimism and pessimism. To derive a

more specific asset pricing formula, we assume that all investors have the same global (constant)

absolute risk aversion, i.e., λi = λ > 0 for all i ∈ I, so that λa = λ/|I|. In the following proposition,

we present a new characterization of equilibrium risk premia that generalizes the CAPM.
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Proposition 2 Under the assumptions in this section and when the market is in equilibrium:

ra − r0e = β (E[Rm]− r0) , (10)

where

β :=
Σwa

wTa Σwa
=

cov (R,Rm)

var (Rm)
, (11)

and so, the risk premium on any asset j for j = 1, . . . , n is given by

rj − r0 = βj

(
E[Rm]− r0

θ

)
+ α

(
r0 − rj
θ

)
+ α

(
r0 − rj
θ

)
. (12)

Formula (12) allows for the pricing of systematic volatility (βj), market sentiment (α) and

market uncertainty (1−θ), as well as the market expectations about positive idiosyncratic skewness

(rj), negative idiosyncratic skewness (rj) and idiosyncratic volatility (which depends in part on rj

and rj). Market sentiment is quantified in (12) as the fraction of optimistic agents in the market

as compared to the fraction of pessimistic agents, while market uncertainty is quantified as the

fraction of uninformed agents in the market as compared to the fraction of informed agents.

4 The Beta Anomaly

One of the most fundamental empirical limitations of the CAPM is the beta anomaly (Black

et al., 1972), in which assets with high systematic volatility (beta) do not necessarily earn higher

expected returns. Bali et al. (2017) remark “The positive (negative) abnormal returns of portfolios

composed of low-beta (high-beta) stocks, which we refer to as the beta anomaly, is one of the

most persistent and widely studied anomalies in empirical research of security returns” (p. 2370).

The beta anomaly challenges the central empirical prediction of the CAPM that investors demand

higher expected returns for assets with higher systematic risk. Corollary 1 provides necessary and

sufficient conditions for the beta anomaly and predicts its main conditional relationships. For a

high beta stock, H, and a low beta stock, L, we say the beta anomaly holds if rH < rL.

Corollary 1 (Beta Anomaly) Consider two stocks H and L with βH > βL. Then,

(i) (Beta anomaly) Under (12), for all α, θ ∈ (0, 1), rH < rL if and only if α(1− θ) (rH − rL) >

(βH − βL)E[Rm] + (1− α)(1− θ) (rL − rH).

(ii) (Beta and high MAX stocks) The beta anomaly holds if and only if rH is sufficiently high2.

(iii) (Beta, IVOL, and market sentiment) If the Beta-IVOL correlation is sufficiently strong such

that rH > rL + (βH − βL)rm and rH < rL + (βH − βL)rm, then rH − rL is decreasing in α.

(iv) (Beta and market uncertainty) If the beta anomaly holds, then rH − rL is increasing in θ.

2In particular, the beta anomaly holds if and only if rH >
(βH−βL)E[Rm]+(1−α)(1−θ)(rL−rH)

α(1−θ) + rL.
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(v) Let E[Rm] > 0 and rL ≥ rH . Then the positive relation between beta and expected return

(rH > rL) holds if α is sufficiently close to 0, or if θ is sufficiently close to 1, or if rH is

sufficiently close to rL.

In Corollary 1, the beta anomaly occurs if a high beta stock earns lower expected returns than

a low beta stock. This definition is consistent with the empirical finding by Frazzini and Pedersen

(2014) that “a betting against beta (BAB) factor, which is long leveraged low-beta assets and

short high-beta assets, produces significant positive risk-adjusted returns” (p. 1). Corollary 1 (ii)

predicts that the beta anomaly will be concentrated in high beta stocks with high maximum returns.

Consistent with this prediction, Bali et al. (2017) find that the beta anomaly is concentrated in

high beta stocks with high maximum returns.

Bali et al. (2011) finds correlations between high maximum returns and idiosyncratic volatility

and between low minimum returns and idiosyncratic volatility to each be approximately 0.75. Since

high maximum returns and low minimum returns are highly correlated with idiosyncratic volatility,

Corollary 1 (iii) predicts that the beta anomaly holds in high sentiment (i.e., high α) periods when

the correlation between beta and idiosyncratic volatility is high (i.e., when high beta stocks have

high maximum returns and low minimum returns). Consistent with this prediction, Liu et al. (2018)

find that the beta anomaly holds in high sentiment periods when the correlation between beta and

idiosyncratic volatility are simultaneously high, but does not hold in low sentiment periods or in

periods where the beta-IVOL correlation is low.

Corollary 1 (iv) predicts that the beta anomaly will be stronger in periods of higher market

uncertainty. Consistent with this prediction, Hong and Sraer (2016) find that the beta anomaly is

stronger when there is greater market uncertainty.

Corollary 1 (v) predicts that the traditional positive relation between beta and expected return

will hold in pessimistic periods (as observed by Antoniou et al. (2016)), or in periods with low

uncertainty (as observed by Hong and Sraer (2016)) or among stocks with low maximum returns

(as observed by Bali et al. (2017)).

5 Conclusion

We derived a generalization of the capital asset pricing model that accounts for model uncertainty,

positive skewness, disaster risk, and market sentiment, thereby linking four strands of the asset

pricing literature. The resulting IR-CAPM can be expressed as a three-factor asset pricing model

for the cross-section of returns.

We applied the IR-CAPM to provide a unified theoretical explanation of the beta anomaly and

its main conditional effects documented in the literature. More broadly, our approach provides a

theoretical foundation for the pricing of idiosyncratic risk in the cross-section of returns.
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Appendix

Proof of Proposition 1: Since g from (2) is differentiable at w∗ ≥ 0 and attains its maximum

at that point, it satisfies the first order necessary condition ∇g(w∗) = 0. Hence, w∗ satisfies the

following equation

θ (r − r0e) + (1− θ) (α(r − r0e) + (1− α)(r − r0e)) = 2θρCw. (13)

Multiplying by w∗ on both sides of (13), we obtain

θ (rm − r0) + (1− θ) (α(rm − r0) + (1− α)(rm − r0)) = 2θρw∗TCw∗. (14)

Multiplying by ej on both sides of (13), where ej is the j-th canonical vector in Rn, we obtain

θ (rj − r0) + (1− θ)
(
α(rj − r0) + (1− α)(rj − r0)

)
= 2θρej

TCw∗. (15)

Dividing the left-hand side of (15) by the left-hand side of (14), we obtain

θ (rj − r0) + (1− θ)
(
α(rj − r0) + (1− α)(rj − r0)

)
θ (rm − r0) + (1− θ) (α(rm − r0) + (1− α)(rm − r0))

=
w∗Cej

w∗TCw∗
= βj ,

from which

rj − r0 +
1− θ
θ

(
αrj + (1− α)rj − r0

)
= βj

(
rm − r0 +

1− θ
θ

(αrm + (1− α)rm − r0)
)
,

and (3) follows.

Proof of Proposition 2: Following Huang and Litzenberger (1998), in equilibrium we have

w∗i =
1

λvi0
Σ−1Ei [R− r0e] .

It follows from (7) and (9) that

wa =
1

vm

∑
i∈I

vi0w
∗
i =

1

λvm
Σ−1

∑
i∈I

Ei [R− r0e] =
1

λavm
Σ−1 (ra − r0e) .

This implies

Σwa =
1

λavm
(ra − r0e) ,

wTa Σwa =
1

λavm
wTa (ra − r0e) .
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Using (8), we obtain

E[Rm] = r0 + λavmw
T
a Σwa,

and so

λavm =
1

wTa Σwa
(E[Rm]− r0) .

Therefore, using (11), we get

ra − r0e = λavmΣwa =
1

wTa Σwa
(E[Rm]− r0) Σwa = β (E[Rm]− r0) ,

and (10) follows. By re-arranging terms in (10), we also obtain (12).
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