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A Class of N -Player Colonel Blotto Games

with Multidimensional Private Information

Christian Ewerhart* Dan Kovenock†

November 14, 2019

Abstract. We consider a class of incomplete-information Colonel Blotto

games in which N ≥ 2 agents are engaged in (N + 1) battlefields. An agent’s

vector of battlefield valuations is drawn from a generalized sphere in Lp-space.

We identify a Bayes-Nash equilibrium in which any agent’s resource allocation

to a given battlefield is strictly monotone in the agent’s valuation of that bat-

tlefield. In contrast to the single-unit case, however, agents never enjoy any

information rent. We also outline an extension to networks of Blotto games.
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1. Introduction

In a Colonel Blotto game, finitely many agents (parties in a military conflict,

say) simultaneously allocate their limited resources to a given set of battle-

fields. The agent that deploys the largest amount of the resource to a given

battlefield wins in that battlefield. Moreover, each agent’s payoff depends on

the set of battlefields won. This type of game has been among the first games

seriously studied in the literature (Borel, 1921; Borel and Ville, 1938), and has

since found widespread application in military theory, political economy, and

security analysis, for instance (cf. Roberson, 2010).

In this paper, we introduce a new class of N -player Colonel Blotto games

with (N + 1) battlefields and multidimensional incomplete information re-

garding battlefield valuations. We assume that valuation vectors are private

information and independently distributed across agents. Only the joint dis-

tribution of valuation vectors is common knowledge. Each agent maximizes

the expected sum of valuations of battlefields won, where resource budgets

are fixed and homogeneous across agents, and where unused resources do not

create any positive value. In this framework, we identify a Bayes-Nash equi-

librium in which any agent’s resource allocation to a battlefield is strictly

monotone increasing in her valuation of that battlefield. The construction of

equilibria for more than two agents relies on a new method. Specifically, we ex-

ploit the particular properties of uniform distributions on generalized spheres

in finite-dimensional vector spaces equipped with an Lp-norm. The necessary

mathematical background will be reviewed in Section 2.
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Past years have seen a rise in interest in Colonel Blotto games with in-

complete information. In a model with N ≥ 2 agents and private information

about budgets, Adamo and Matros (2009) identified a symmetric monotone

Bayes-Nash equilibrium. A higher budget allows an agent to scale up her

resource allocation, while the share of the resource allocated to individual

battlefields remains constant. This reduces the analysis to a one-dimensional

problem which is tractable.1 No general results are available, however, when

agents possess private information about battlefield valuations.2 Kovenock

and Roberson (2011) presented an example with two agents and three bat-

tlefields.3 Private valuations of battlefields are drawn independently from a

uniform distribution over a two-dimensional surface element that corresponds

to the intersection of the nonnegative orthant with the Euclidean unit sphere.

Since, in this case, marginal distributions are uniform, the budget constraint

may be kept by bidding the squared valuation on each battlefield. It turns

out that this strategy constitutes a symmetric Bayes-Nash equilibrium in the

Colonel Blotto game.

Extending this example in a substantial way, Akyol (2014) considered a

setting with two agents andN ≥ 2 battlefields, where agents’valuation vectors

are drawn from absolutely continuous, possibly heterogeneous distributions.4

1Kim and Kim (2017) considered a similar set-up for the lottery contest.
2This lack of general results contrasts with the rich theory on single-unit all-pay auctions

with incomplete information. See Weber (1985), Hillman and Riley (1989), Amann and
Leininger (1995, 1996), and Krishna and Morgan (1997), for example.

3Kovenock and Roberson (2011) note that their approach easily generalizes to any num-
ber of battlefields N that is an integer multiple of three.

4In the exceptional case of N = 2 battlefields, Akyol (2014) even allows for arbitrary
distributions and identifies a Bayes-Nash equilibrium in weakly dominant strategies.
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He constructed explicit examples using the Generalized Gamma Distribution,

the uniform distribution on a three-dimensional Eucidean ball, and the uniform

distribution on a three-dimensional volume bounded by two Euclidean spheres

of different radius. The present paper goes beyond Akyol’s (2014) important

contribution by presenting a class of examples ofN -agent Colonel Blotto games

with incomplete information about valuations.5

The remainder of the paper is structured as follows. Section 2 reviews

the necessary background on uniform spherical distributions. The set-up is

introduced in Section 3. Section 4 contains the equilibrium analysis. The

issue of information rents is discussed in Section 5. An extension to network

games is considered in Section 6. Section 7 concludes.

2. Lp-norm uniform distributions

The results of this section are essentially well-known in the mathematical lit-

erature. We will follow the exposition in Song and Gupta (1997).6

For an integer n ≥ 3, and a real parameter p > 0, we consider Euclidean

5There are a number of less closely related papers. Powell (2007) studied a signaling
game with private information about vulnerability. Paarporn et al. (2019) assumed one-
sided incomplete information in a Colonel Blotto game with a finite state space. Finally, in
a model of price setting with menu costs for multiproduct firms, Alvarez and Lippi (2014)
made use of the marginals of a uniform distribution on a higher-dimensional Euclidean
sphere that represents a vector of price changes. They, however, studied the problem of a
monopolist, i.e., there is no Colonel Blotto game.

6A helpful overview is given in the recent paper by Ahmadi-Javid and Moeini (2019),
even though we caution the reader that their definition of the uniform distribution on the
generalized sphere as a conditional probability measure on a set of measure zero might be
subject to the Borel-Kolmogorov paradox. Another recent contribution in this literature is
Richter (2019).
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n-space equipped with the Lp-norm

‖y‖p = (|y1|p + . . .+ |yn|p)1/p (y ∈ Rn). (1)

The generalized sphere Sn−1p is defined as the subset

Sn−1p = {(y1, y2, . . . , yn) ∈ Rn : ‖y‖p = 1} (2)

of vectors of Lp-norm one in Rn. Provided that p > 1, which will be assumed

below, the set Sn−1p is a smooth (n−1)-dimensional submanifold embedded in

Rn.7 Figure 1 illustrates this property for the case where n = p = 3.

Figure 1. The generalized sphere Sn−1p .

To construct a uniform distribution on Sn−1p , we define a particular Lp-norm

spherical distribution on Rn and consider its projection to the generalized

sphere. Let

X = (X1, . . . , Xn), (3)

where the components Xj are i.i.d. random variables with p.d.f.

fp(x) =
p1−1/p

2Γ(1
p
)

exp

(
−|x|

p

p

)
(x ∈ R), (4)

7For p ≤ 1, there may be kinks, and the generalized sphere corresponds to a union of
bordered manifolds.
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with Γ(.) denoting the Gamma function. Let Uj = Xj/ ‖X‖p, where j =

1, . . . , n. Then,
∑n

j=1 |Uj|
p = 1, and the joint distribution of the vector

U = (U1, . . . , Un) (5)

is known as the Lp-norm uniform distribution. For p = 2, this probability

distribution corresponds to the uniform distribution on the Euclidean unit

sphere. We have the following result.

Lemma 1 (Song and Gupta, 1997). The joint p.d.f. of U = (U1, . . . , Un)

is given by

g(u1, . . . , un−1) =
pn−1Γ(n

p
)

2n−1
(

Γ(1
p
)
)n
(

1−
n−1∑
j=1

|uj|p
) 1−p

p

, (6)

( − 1 < uj < 1; j = 1, 2, . . . , n− 1;
n−1∑
j=1

|uj|p < 1).

Proof. See Song and Gupta (1997, Theorem 1.1). �

Since the spherical distribution is multidimensional, it is of interest to know

if a stochastic representation in terms of simpler distributions exists. In addi-

tion to the definition in terms of a collection of independent one-dimensional

exponential distributions, stochastic representations may be derived from a

collection of independent one-dimensional uniform distributions, and from a

Dirichlet distribution (which may be decomposed using Beta distributions).

For further details, we refer the reader to Song and Gupta (1997, Theorem

2.1, part (2) and (3)).
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The marginal distribution of the j-th component Uj may be determined

using the Jacobi integral formula. The corresponding calculation leads to the

following result.

Lemma 2 (Song and Gupta, 1997). The univariate marginal density of g

with respect to any of the components u1, . . . , un is given as

mj(uj) =
pΓ(n

p
)

2Γ(1
p
)Γ(n−1

p
)

(1− |uj|p)
n−1
p
−1 ( j = 1, . . . , n;−1 < uj < 1). (7)

In particular, if p = n− 1, then the univariate marginal is uniform.

Proof. See Song and Gupta (1997, Theorem 2.1, part (1)) for k = 1. �

For example, in the special case where n = 3 and p = 2, the marginal density

of the j’s component Uj is given as

mj(uj) =
2Γ(3

2
)

2Γ(1
2
)Γ(1)

=
1

2
, (8)

hence constant, so that the marginal distribution is uniform on [−1, 1]. This

special case of Lemma 2 has been used by Kovenock and Roberson (2011).

Below, we will exploit Lemma 2 more generally.

3. Set-up

There are N ≥ 2 risk-neutral agents, denoted by i ∈ {1, . . . , N}, and (N + 1)

battlefields, denoted by j ∈ {1, . . . , N + 1}.8 Each agent is endowed with an
8Thus, the number of battlefields exceeds the number of agents by precisely one. This

specific assumption will be relaxed in Section 6.
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identical budget of a perfectly divisible resource. For convenience, we normal-

ize budgets to one. An agent’s resource allocation is a vector

b = (b1, . . . , bN+1) ∈ RN+1+ , (9)

where bj ∈ R+ = [0,∞) denotes the amount of the resource allocated to

battlefield j. We call a resource allocation b = (b1, . . . , bN+1) feasible if

N+1∑
j=1

bj ≤ 1. (10)

Denote by BN+1 the set of feasible resource allocations over N + 1 battlefields.

The N agents simultaneously and independently choose feasible resource al-

locations. In each battlefield, the agent that allocates the largest amount of

the resource wins. In the case of a tie, each of the agents that allocated the

largest amount of the resource to a battlefield wins in that battlefield with

equal probability. Each agent’s payoff equals the sum of the valuations of the

battlefields won.

Agents are ex-ante identical but privately learn, before deciding about

the resource allocation, their respective vector of battlefield valuations, v =

(v1, v2, . . . , vN+1). The vector v is commonly known to be drawn, indepen-

dently across agents, from a given (N + 1)-variate probability distribution.

Since, as discussed in the Introduction, a general solution of Colonel Blotto

games with incomplete information about valuations is presently out of reach,

we will work under parametric assumptions. The type space for an agent is

given as the intersection of the nonnegative orthant RN+1+ with a generalized

sphere Sn−1p , where the parameters are given by n = N + 1 and p = N (cf.
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Section 2). Thus,

VN = RN+1+ ∩ Sn−1p (11)

= {(v1, v2, . . . , vN+1) ∈ RN+1+ : vN1 + . . .+ vNN+1 = 1}. (12)

For example, in the special case N = 2, the type space V2 corresponds to

the intersection of R3+ with the two-dimensional Euclidean unit sphere. For

general N ≥ 2, the dimension of the bordered type manifold VN is N , and

the dimension of the embedding space is N + 1. It will be assumed that each

agent’s valuation vector v is drawn from the Lp-norm uniform distribution on

Sn−1p , conditional on v ∈ RN+1+ . The corresponding probability measure on

the Borel subsets of VN will be denoted by µN .

4. Equilibrium analysis

A pure strategy is a measurable mapping b : VN → BN+1. Suppose that an

agent’s type is

v = (v1, v2, . . . , vN+1) ∈ VN . (13)

When adhering to strategy b, type v’s resource allocation is

b(v) = (b1(v), . . . , bN+1(v)) ∈ RN+1+ . (14)

Clearly, any strategy of an opponent induces a probability measure over feasi-

ble resource allocations. Therefore, given strategies for the (N−1) opponents,

type v’s resource allocation translates into a vector of winning probabilities,

and hence, into an expected payoff for type v. A strategy b∗ is called a

8



symmetric Bayes-Nash equilibrium strategy in the Colonel Blotto game with

incomplete information if, for any type realization v ∈ VN , the resource allo-

cation b∗(v) maximizes the expected payoff of type v under the assumption

that the other (N − 1) agents individually adhere to strategy b∗. We will say

that an equilibrium strategy b∗ is strict if each type v ∈ VN even has a strict

incentive to choose the resource allocation b∗(v).

Proposition 1. Suppose that each agent’s (N + 1)-vector of battlefield valua-

tions is independently drawn according to the probability measure µN on VN .

Then, the pure strategy b∗ defined through

b∗(v) = ((v1)
N , . . . , (vN+1)

N) (15)

is a strict symmetric Bayes-Nash equilibrium strategy in the Colonel Blotto

game with incomplete information.

The strictness property contrasts with the case of Colonel Blotto games with

complete information where Nash equilibria are typically non-strict.

Proposition 1 extends known equilibrium characterizations for Colonel Blotto

games with incomplete information about valuations. The analysis of Kovenock

and Roberson (2011) is contained as a special case where N = 2. Akyol (2014)

allowed for any finite number of battlefields, but restricted attention to the

case of two agents. In addition, to account for his assumption that the distri-

butions of valuation vectors are absolutely continuous, his characterization of

the equilibrium strategy entails a normalization factor, which would be one in

Proposition 1.
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In comparison with the analysis of Adamo and Matros (2009), who con-

sidered incomplete information about budgets, we find that their Corollaries

1 and 2 hold likewise in the present setting, i.e., all agents compete for all

prizes, and each agent spends more on prizes she values higher. However,

their Corollaries 3 and 4 do not transfer to the present setting. Indeed, there

is no highest type in our setting and, as will be shown in the next section, the

expected payoff is constant across types in our model.

Proof of Proposition 1. For each battlefield j ∈ {1, . . . , N + 1}, we denote

by Fj(.) the cumulative distribution function describing the marginal distri-

bution of the component vj. Thus, Fj(z) = µN
{
VNj (z)

}
, where VNj (z) ={

v ∈ VN : vj ≤ z
}
denotes the set of valuation vectors whose j-th component

does not exceed a given z ∈ [0, 1]. Suppose that all agents i ∈ {2, . . . , N}

adhere to strategy b∗. Then, any agent i ∈ {2, . . . , N} of type

v(i) = (v
(i)
1 , . . . , v

(i)
N+1) ∈ VN (16)

allocates an amount b∗j(v
(i)
j ) of the resource to battlefield j ∈ {1, . . . , N + 1}.

Suppose further that agent 1 is of type

v(1) = (v
(1)
1 , . . . , v

(1)
N+1) ∈ VN .

Then, since there are no mass points, agent 1’s optimization problem may be

written as

max
(b
(1)
1 ,...,b

(1)
N+1)∈BN+1

N+1∑
j=1

Pr
{
b
(1)
j ≥ max

i∈{2,...,N}

(
b∗j(v

(i)
j )
)}

v
(1)
j . (17)
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Now, for any resource allocation (b
(1)
1 , . . . , b

(1)
N+1) ∈ BN+1, and for any battle-

field j ∈ {1, . . . , N + 1}, the independence of type distributions across agents

yields

Pr
{
b
(1)
j ≥ max

i∈{2,...,N}

(
b∗j(v

(i)
j )
)}

=
∏N

i=2
Pr
{
b
(1)
j ≥ b∗j(v

(i)
j )
}
. (18)

Moreover, for any i ∈ {2, . . . , N},

Pr
{
b
(1)
j ≥ b∗j(v

(i)
j )
}

= Pr
{
b
(1)
j ≥

(
v
(i)
j

)N}
(19)

= Pr
{(

b
(1)
j

)1/N
≥ v

(i)
j

}
(20)

= Fj

{(
b
(1)
j

)1/N}
. (21)

Applying Lemma 2 with n = N + 1 and p = N , we see that

Fj(z) = 2

∫ z

0

mj(uj)duj (22)

=
pΓ(n

p
)

Γ(1
p
)Γ(n−1

p
)

∫ z

0

(1− |uj|p)
n−1
p
−1
duj (23)

=
NΓ( 1

N
+ 1)

Γ( 1
N

)Γ(1)

∫ z

0

duj (24)

= z, (25)

for any z ∈ [0, 1]. Hence, Fj(.) is uniform. Putting the pieces together, we find

that

Pr
{
b
(1)
j ≥ max

i∈{2,...,N}

(
b∗j(v

(i)
j )
)}

=
∏N

i=2

(
b
(1)
j

)1/N
=
(
b
(1)
j

)(N−1)/N
. (26)

Let λ ≡ λ(v(1)) denote the shadow cost of the budget constraint in agent

1’s problem. Using the calculation above, agent 1’s problem in battlefield
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j ∈ {1, . . . , N + 1} may be written as

max
b
(1)
j ∈[0,1]

(
b
(1)
j

)(N−1)/N
v
(1)
j − λb

(1)
j . (27)

Note that agent 1’s objective function in (17) is strictly concave since N ≥ 2.

Solving the first-order condition,

N − 1

N

(
b
(1)
j

)−(1/N)
v
(1)
j − λ = 0, (28)

delivers

b
(1)
j =

(
N − 1

Nλ

)N
·
(
v
(1)
j

)N
. (29)

Clearly, in an optimal allocation, no resources remain unused, i.e.,

b
(1)
1 + . . .+ b

(1)
N+1 = 1. (30)

Moreover, since v(1) is drawn from VN , we have

(
v
(1)
1

)N
+ . . .+

(
v
(1)
N+1

)N
= 1. (31)

Therefore, summing Eq. (29) over all battlefields j ∈ {1, . . . , N + 1}, we find

that λ = (N − 1)/N and, hence,

b
(1)
j =

(
v
(1)
j

)N
. (32)

Thus, it is indeed optimal for type v(1) of agent 1 to allocate the resource as

prescribed by the symmetric equilibrium strategy b∗. Obviously, the same is

true for agents i ∈ {2, . . . , N}. This concludes the proof of Proposition 1. �
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5. Information rents

The symmetric equilibrium strategy identified above has the property that

the amount of the resource deployed in any given battlefield increases strictly

in the agent’s valuation of that battlefield. Thus, the identified Bayes-Nash

equilibrium leads to an effi cient selection of battlefield winners, just as in the

symmetric single-unit all-pay auction with independent types.9

It is noteworthy, however, that the expected payoff of an agent does not

depend on the type realization. Indeed, using our intermediary result (26),

the expected payoff of type v(1) ∈ VN of agent 1, say, is given by

R =
∑N+1

j=1
Pr
{
b∗j(v

(1)
j ) ≥ max

i∈{2,...,N}

(
b∗j(v

(i)
j )
)}
· v(1)j (33)

=
∑N+1

j=1

(
b∗j(v

(1)
j )
)(N−1)/N

· v(1)j (34)

=
∑N+1

j=1

(
v
(1)
j

)N−1
· v(1)j (35)

=
∑N+1

j=1

(
v
(1)
j

)N
(36)

= 1. (37)

We have shown the following.

Proposition 2. In the considered class of Colonel Blotto games with incom-

plete information, all types realize the same expected payoff.

Thus, in contrast to the single-unit auction, where higher types realize positive

information rents as a consequence of incentive compatibility, any such benefits

net out over battlefields in the considered class of Colonel Blotto games.10

9This conclusion is not robust, however, with respect to a rescaling of the valuation
vector for a single player.
10Clearly, this is so because the set of possible realizations of valuation vectors forms an

13



6. Networks of Blotto games

As an extension, we consider networks of Colonel Blotto games with N · K

agents and (N + 1) · K battlefields, where K ≥ 1 is an integer. Each agent

is restricted to be active in (N + 1) given battlefields, and draws a type from

VN . For example, any triangulation of a globe, say, may be understood as a

network of Blotto games, where each triangle represents an agent, and each

edge shared with a neighboring triangle represents a battlefield. In this case,

N = 2 and K ≥ 2. Figure 2(a) illustrates this for K = 5. Another example is

a cube where each side represents an agent, and each adjacent node represents

a battlefield. In this case, N = 3 and K = 2. See Figure 2(b) for illustration.

It is immediate to see that examples exist for any combination of N ≥ 2 and

K ≥ 2. The equilibrium analysis extends in a straightforward way. Intuitively,

an agent does not care whether she is facing, in any two distinct battlefields,

the same opponent or two different opponents. This is so because the marginal

distribution of resource bids in each battlefield does not depend on this.

Figure 2. Networks of Blotto games

antichain with respect to the product order on RN+1.
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7. Concluding remark

The methods of this paper may be used to construct also new classes of mixed-

strategy equilibria in two-player Colonel Blotto games with complete informa-

tion and 2(N + 1) homogeneous battlefields. These may be understood as

further generalizations of the disc solution (Borel and Ville, 1938; Gross and

Wagner, 1950; Laslier and Picard, 2002; Thomas, 2018). However, since the

number of battlefields is even, such new solutions in the case of complete infor-

mation would ultimately be of limited interest, for the same reasons discussed

by Laslier and Picard (2002), viz. that agents partition battlefields into pairs,

and perfectly negatively correlate within each pair of battlefields.11

By combining the insights of Akyol (2014) and the result of the present

paper, it seems feasible to construct additional examples involving any finite

number of agents and any finite number of battlefields. We leave that extension

for future work.
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