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Mobile phone sensors can discern medication-related gait quality changes 
in Parkinson’s patients in the home environment 

Albert Pierce a, Niklas König Ignasiak c, Wilford K. Eiteman-Pang c, Cyril Rakovski a, 
Vincent Berardi a,b,* 

a Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange CA 92866 USA 
b Department of Psychology, Crean College of Health and Behavioral Sciences, Chapman University, 1 University Dr, Orange CA 92866 USA 
c Department of Physical Therapy, Crean College of Health and Behavioral Sciences, Rinker Health Science Campus, Chapman University, 9401 Jeronimo Rd, Irvine, CA 
92618, USA   

A R T I C L E  I N F O   
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A B S T R A C T   

Patients with Parkinson’s Disease (PD) experience daytime symptom fluctuations, which result in small ampli
tude, slow and unstable walking during times when medication attenuates. The ability to identify dysfunctional 
gait patterns throughout the day from raw mobile phone acceleration and gyroscope signals would allow the 
development of applications to provide real-time interventions to facilitate walking performance by, for example, 
providing external rhythmic cues. Patients (n = 20, mean Hoehn and Yahr: 2.25) had their ambulatory data 
recorded and were directly observed twice during one day: once after medication abstention, (OFF) and once 
approximately 30 min after intake of their medication (ON). Regularized generalized linear models (RGLM), 
neural networks (NN), and random forest (RF) classification models were individually trained for each partici
pant. Across all subjects, our best performing classifier on average achieved an accuracy of 92.5%. This study 
demonstrated that smartphone accelerometers and gyroscopes can be used to distinguish between ON versus OFF 
times, potentially making smartphones useful intervention tools.   

1. Introduction 

Parkinson’s disease (PD) is a progressive degenerative neurological 
disease that negatively affects movement ability, impacting most ac
tivities of patients’ daily living and reducing quality of life. There are 
930,000 individuals with PD in the US and demographic trends project a 
rise to 1,238,000 cases by 2030 [1,2]. PD is the second most common 
age-related disorder, after Alzheimer’s disease [3], and its prevalence 
increases with age. Even though PD symptoms vary from person to 
person, patients typically experience hypokinesia, bradykinesia, 
postural instability, rigidity and tremors [4]. As the disease progresses, 
these symptoms lead to deteriorated walking patterns characterized by 
reduced gait speed; unrhythmic, small amplitude movements; gait 
instability and freezing of gait (FOG). Such gait disturbances place pa
tients at risk for falling, which could result in injuries, fractures, hos
pitalization, and in extreme cases, death [5,6]. 

Pharmacological treatments such as levodopa, dopamine agonists or 
inhibitors of dopamine metabolism can improve PD symptoms and 

normalize gait abnormalities [7]. However, the effect of these drugs 
deteriorates with time, leading to fluctuations in medication effective
ness as a function of time since the drug was taken. Time periods during 
which the medication is effective and patients experience few symptoms 
and nearly normal gait patterns are referred to as ON states. On the other 
hand, OFF states occur when medication has worn off and patients show 
instable, shuffling, and small amplitude gait patterns [8,9]. In addition 
to pharmacological interventions, external visual, haptic, or acoustic 
cues have been successfully used to normalize poor walking perfor
mance and gait speed [10–12]. For example, rhythmic acoustic cues, like 
from a metronome or recorded sounds of footsteps on gravel can help PD 
patients to regularize step frequency, reduce gait variability and in
crease stride length [13,14]. While external cues are beneficial in 
improving gait quality, they have been limited to in-therapy settings and 
are difficult to implement in the real-world. Thus, in their current form, 
they cannot assist patients in their daily life [15]. However, migrating 
such treatments to smartphones represents an unparalleled opportunity 
to track ON versus OFF walking in the real-world and to provide 
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real-time external cues in response to deteriorated gait. 
Scaling PD treatments to real-world scenarios will inevitably require 

the use of remote sensors for gait phase detection and preliminary work 
in this area has recently been performed [13,16]. Typically, spatio
temporal gait outcomes such as step length, and step time were calcu
lated from mobile sensor data via the identification of heel strikes and 
toe-offs [17]. Gait outcomes were then used to contrast, on a group 
level, healthy versus clinical cohorts or patients in ON versus OFF 
medication states [15,18–21]. Importantly, these approaches all inves
tigated changes in ambulation at the cohort level and, therefore, 
assumed universal gait abnormalities in PD patients. Consequently, re
sults may have masked important information about individual gait 
signatures, which limited the accuracy of gait impairment detection. In 
other work, measurement from accelerometers placed around the limbs 
and pelvis have been used in unsupervised machine learning approaches 
to establish a patients’ individual motor profiles [22,23]. However, the 
number of sensors used are impractical for sustained daily use by pa
tients in a real-world gait detection scenario. 

Built-in smartphone sensors might be an excellent alternative for 
every-day, real-world gait tracking in PD patients. A large, and 
increasing number of older people report using such a devices regularly 
[2]. Furthermore, smartphones can easily provide external auditory or 
haptic cues, potentially making them an ideal tool to intervene upon 
deteriorated gait [24]. While products such as STAT-ON from Sense4
Care and PDMonitor from PD Neurotechnology are capable of moni
toring Parkinsonian gait, they require patients to buy additional 
equipment, which we aim to avoid by implementing our study on con
sumer smartphone devices. Previous research has developed 
smartphone-based gait classification rules based on the observation of 
differences in the walking behavior of cohorts, as opposed to a 
single-subject. Additionally, the learning approaches previously imple
mented typically functioned over extracted gait outcomes and/or signal 
features, rather than raw signals; transitioning to the latter is likely 
advantageous for a future real-time intervention application. Therefore, 
this study aims to investigate if raw accelerometer and gyroscope signals 
from a single smartphone are sufficient to identify ON and OFF gait 
patterns in individual PD patients. 

In contrast with other studies, our methodology creates a custom, 
individualized, classifier for each patient, rather than using an aggregate 
approach. This allows us to precisely study participants’ gait and 
movement on an individual basis rather than using sample averages. 
This approach is consistent with personalized medicine that recognizes 
between-patient heterogeneity and seeks to move away from “one-size- 
fits all” treatments [25]. With a future real-time application in mind, we 
aim to minimize computational requirements by investigating raw and 
smoothed sensor signals and avoiding the prior identification of gait 
events, spatiotemporal gait measures and signal feature extraction. Our 
approach’s focus on ON vs. OFF outcomes, the use of a smartphone as a 
measurement device, the utilization of raw data rather than extracted 
features, and the prioritization of computationally efficient methodol
ogies that have the greatest potential for incorporation into real-time 
systems represent novel and valuable contributions to the field that 
we hope will help PD patients fully benefit from the current big data 
paradigm. 

2. Methods 

2.1. Participants & experiment 

The inclusion criteria for this study were (i) diagnosis with PD and 
(ii.) a Hoehn and Yahr score between 1 and 5. Twenty PD patients were 
recruited by public announcement in local patient support groups. 
Before inclusion, all participants received detailed information about 
the study in a telephone call and were provided written, informed 
consent, in accordance with a protocol approved by Chapman Uni
versity’s Institutional Review Board. The study sample consisted of 11 

males and 9 females and the average (standard deviation) age, height, 
weight, and years since diagnosis score was 69 (9) years, 170 (9) cm, 77 
(23) kg, and 8 (5) years, respectively. Hoehn and Yahr scores ranged 
from 1 to 4 with a mean of 2.25 and standard deviation of 3. While the 
sample size was relatively small, the large data volume collected from 
every individual allowed us to pursue a single case design (SCD) strategy 
that identified unique outcomes for each participant. Within SCDs, a 
large number of measures per participant leads to small standard errors 
for observations, which compensates for the modest power associated 
with a small sample. 

To begin the measurement collection procedure, patients were 
visited at their homes, typically early in morning after an overnight 
abstinence of their prescribed anti-Parkinson medication (i.e. during an 
OFF time). A second measurement period was arranged the same day, 
typically 30 min after intake of their regular medication (i.e. ON), in 
order to remain within the interval of the short-duration response of the 
medication [26]. Since patients’ medication doses and intake routines 
varied and were not changed for this study, there were likely differences 
in the amount of active drug during the ON and OFF observation periods 
for each patient. Not all patients experience equivalent 
medication-related symptom fluctuations, making ON versus OFF times 
difficult to visually observe, but, as shown below, ADPM measurements 
confirmed these differences. To account for this phenomenon, partici
pants were also asked to rate the severity of their motor symptoms 
throughout the day, using a 10 cm visual analog scale. 

During both observation periods, patients were asked to perform 
short bouts of indoor and outdoor walking, which allowed consecutive 
intervals of relatively long walking patterns to be observed. Depending 
on the ability of the patient and local factors, such as available space in 
their homes, the walking protocol slightly varied between patients. 
However, all patients were asked to perform a minimum of 10 short 
indoor walking bouts. During these time periods, patients wore a 
smartphone (Galaxy S6, Samsung, South Korea) attached to the right 
side of the pelvis using a common smartphone belt-pouch. The smart
phone contained triaxial accelerometer and gyroscopes and was 
mounted such that the x, y and z axes of these instruments approxi
mately aligned with the cranio-caudal, anterior-posterior and medio- 
lateral movement direction, respectively. Patients also wore a vali
dated six inertial-measurement unit (IMU) system (Mobility lab, APDM 
Inc., USA) [27], attached to both feet, wrists and around the pelvis and 
trunk, that recorded typical gait outcomes such as gait velocity and 
stride length. 

The duration of each visit was approximately 45 min, during which 
the patient’s walking behavior was directly observed by project 
personnel. This was done to ensure initial proper placement of IMU 
sensors and smartphones, accurate readings from our devices, and to 
record when protocol walking activities were performed. A researcher 
recorded the times (HH:MM:SS) at which the patient performed walking 
activities, which allowed intervals of smartphone and IMU recorded 
signals to be labeled as walking versus non-walking. By recording the 
exact times when protocol activities were performed, we were able to 
discard all non-walking signals and gain ground truth walking measures 
during ON/OFF periods that allowed us to train our classification model. 

Between the two observation sessions (i.e. OFF vs ON), patients were 
instructed to wear all sensors so that they could continue to record data 
during their daily living. Between-visit time periods ranged from 30 min 
to 6 h, depending on subjects’ medication schedule, which varied due to 
differences in when patients felt least affected by PD. After all data was 
collected, smartphone acceleration and gyroscopic signals were 
temporally aligned with the recorded protocolled walking times ac
cording to the common Android OS times. 

2.2. Processing 

Time-stamped three-axial acceleration (m/s2) and gyroscope (rad/s) 
signals were recorded at 80Hz while the IMU devices had an acquisition 
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frequency of 128 Hz. These measures were collected along with the 
classification state (ON vs. OFF) of each measurement. Raw acceler
ometer data can be noisy, which can affect the accuracy of gait perfor
mance classification in machine learning algorithms [28]. So, both 
non-smoothed and smoothed versions of the data were used, which 
allowed us to determine if the additional preprocessing was justified by 
an improved learning accuracy. A windowing method was used to 
smooth the data, whereby the original dataset was divided into n sets 
consisting of non-overlapping, 2 s windows. Local Polynomial Regres
sion (Loess) [29] was performed individually on each window to smooth 
excessive noise produced by the sensors. We considered several values 
for the Loess span parameter, with a final value of 0.16 selected, based 
on visual inspection. Both the smoothed and non-smoothed data in all 
channels were normalized using a sigmoidal function. Fig. 1 illustrate 
representative examples of non-smoothed and smoothed data for each of 
the data channels. Fig. 2 illustrates the densities of ON versus OFF 
accelerometer and gyroscope signals, respectively. 

2.3. Supervised learning algorithms 

Three popular supervised learning algorithms, regularized general
ized linear model (RGLM), neural network (NN), and random forest 

(RF), were used to predict ON versus OFF states based on the six chan
nels of accelerometer and gyroscope mobile phone data (three di
mensions for each device). Due to its simplicity and popularity for 
binary classifications, RGLM was selected as our baseline algorithm 
[30]. 

RF was used because of its reputation as a robust, versatile algorithm 
[31] and NN was chosen due to its ability to handle cyclical data [32]. 
Each model was trained on each patient individually for both smoothed 
and non-smoothed versions of the data. All machine learning analyses 
were repeated using only tri-axial acceleration and only gyroscopic 
signals. 

As is commonly done, a holdout method was used, where, at random, 
70% of the data was split into a training set and 30% was considered a 
testing set [33]. To avoid overfitting, k-fold cross validation with k=10 
was used for model training. This method divided the training set into k 
subsets and then performed k rounds of training, each of which used one 
the k subsets as testing data and the other k-1 subsets as training data. 
The output was combined into a composite model that was used to make 
predictions about the 30% testing set that was portioned via the holdout 
method. Importantly, every observation in the 70% training set was used 
as both training and test data and the 30% testing set used for prediction 
accuracy played no role in model training. Hyper-parameters were 

Fig. 1.. Comparison of smooth versus non-smooth three-axial accelerometer (A) and Gyroscope (B) Signals of Subject 8, representative of a typical participant.  
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tuned using tuning grids, which are described in Table 1. The optimal 
model was selected based on which tuning grid hyper-parameter com
bination resulted in the highest accuracy. The accuracies of each pa
tients’ best models were averaged for comparison of the three 
supervised machine learning approaches. All work was performed using 
the Caret package in the R Statistical Software [34]. 

2.4. Statistics 

The overall change in gait performance (i.e. gait speed and step 
length) based on the IMU sensor gait outcomes and self-perceived motor 

impairment was investigated by comparing measures from ON and OFF 
walking periods using a paired samples t-test. Prior to performing these 
tests, normality was assessed via Kolmogorov-Smirnov and Shapiro 
Wilks test for normality. With the exception of stride length during the 
OFF condition in the Shapiro-Wilk test, all distributions were normal. As 
a result, we replicated the t-test that compared stride length using a 
Wilcoxon-Mann-Whitney test, which does not assume a normal distri
bution, and found qualitatively similar results to the ones outlined below 
(not shown). 

Confusion matrices were created for each participant’s optimal 
model and the average accuracies, F1 and Area Under the Curve (AUC) 
on both the raw dataset and the smoothed dataset were calculated. 
Receiver Operating Characteristic (ROC) curves were created to inves
tigate the balance between sensitivity and specificity. Sensitivity refers 
to the proportion of ON periods that were correctly identified as ON, 
while specificity is the proportion of OFF periods that were correctly 
predicted as OFF. The relative importance of each predictor was calcu
lated via the ‘varImp’ function, which removes each variable one at a 
time and calculates the change in prediction accuracy; larger changes 
are associated with more important variables. Importance was ranked 
on a 0 (low) to 100 (high) scale with the most important variable always 
having a score of 100 [35]. These values were also averaged over all 20 

Fig. 2.. Density of ON vs OFF three-axial accelerometer (A) & Gyroscope (B) Signal.  

Table 1. 
Input parameters and tuning grid design for three machine learning approaches.   

Parameter Description Range Step 

RGLM α  Elastic-net penalty 0.1 – 1.0 0.01 
λ  Shrinkage parameter 0.0001 – 1.0 0.0101 

NN size Number of hidden layers 1.0 – 15.0 1 
decay Regularization 0.1 – 0.5 0.1 

RF mtry Number of variables at each 
node 

1.0 – 6.0 1.0  
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participants. 

3. Results 

3.1. Validated gait performance 

Paired samples t-tests on the validated gait speed and stride length 
measures taken from the IMU sensor system revealed that patients 
walked significantly faster (t(19) = 2.23, p = 0.04) and with longer 
strides (t(19) = 2.4, p = 0.03) during the ON times (see Fig. 3). Patients 
performed different numbers of walking bouts based on their ability and 
medication status. On average, they walked for 10 min in ON intervals 
and 8 min during OFF intervals. The IMU sensor system recorded, on 

average, 697 and 620 valid gait cycles during ON and OFF, respectively. 
Also, self-perceived motor impairments significantly decreased by on 
average 24% (t(19) = 6.89, p < 0.001). We do not use the IMU data as a 
classification parameter or input, but rather to validate that there is a 
difference between gait during ON vs. OFF periods. Since the t-tests 
indicate a significant difference, we aim for our supervised machine 
learning algorithm using smartphone (and not IMU data) to be able to do 
the same. 

3.2. Supervised machine learning 

RF had the highest classification accuracy for both the smoothed and 
raw data with an average accuracy of 86.8% and 92.5%, respectively 
(Table 2). Smoothed signals resulted in consistently higher classification 
results, with generally larger AUC (Table 3). 

The ROC curve in Fig. 4 represents one patient from all raw and 
smooth machine learning models indicates a general well-balanced 
sensitivity and specificity in all approaches and an overall advantage 
of smooth data compared to raw signals. 

Table 4 presents the sensitivity, specificity, area under the curve as 
well as the 95% confidence intervals for each signal, raw and smooth. 
The confidence intervals units are in percentages and values are in re
gard to the three algorithms we used RGLM, NN, and RF. 

Variable importance measures indicate that acceleration signals are 
more important than gyroscope signals for the classification of walking 
patterns. In particular, accelerations along superior-inferior and medio- 
lateral directions (i.e y and z directions) provide the most information 
about change of gait quality  directions (Table 4). 

When re-running the models with just the tri-axial accelerometer 
data (i.e.excluding the gyroscopic signals), the average accuracy fell by 
2.0%, 3.5%, 9.8% for RGLM, NN, and RF, respectively. When using 
smoothed data, RGLM, NN and RF accuracy fell on average 2.0%, 4.0%, 
and 8.5%, respectively. 

4. Discussion 

Patients with PD experience fluctuations in their ability to walk 
safely throughout the day. Conventional smartphones contain acceler
ometers and gyroscopes that might allow to continually track dysregu
lated gait patterns, potentially enabling mobile phones to serve as a 
platform for providing patients with real-time feedback and external 
cues to maintain safer walking patterns. As a first step in this process, 
this study aimed to identify if smartphone-recorded raw three- 
dimensional accelerometer and gyroscope signals are sufficient to 
distinguish between ON medication and OFF medication walking pat
terns. Our results indicate that machine learning algorithms can identify 
ON versus OFF walking patterns from waist-mounted smartphone data 
without the need for time-consuming preprocessing. The RF approach 
was particularly promising, with an average correct classification rate of 
92.5%. 

Previous studies have placed multiple, non-smartphone accelerom
eters on the body and used the data to construct artificial neural net
works to evaluate ON versus OFF, as well as dyskinesia, for PD patients 

Fig. 3.. Difference in stride length, gait speed, symptom severity stratified by 
ON versus OFF. 

Table 2. 
Average accuracy (95% Confidence Intervals) and F1 score of three machine 
learning approaches for raw and smoothed signals.   

RGLM NN RF  
Accuracy F1  Accuracy F1  Accuracy F1  

Raw 72.4% 
(67.7; 
77.2) 

89.9% 80.2% 
(76.6; 
84.0) 

92.5% 86.8% 
(84.2; 
89.6) 

97.0% 

Smooth 77.0% 
(71.5; 
82.5) 

93.9% 86.8% 
(83.0; 
90.7) 

92.4% 92.5% 
(90.4; 
94.7) 

96.8%  
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in their homes [23,36,37]. In contrast to the approach presented here, 
those studies also included upper extremity function, but nevertheless 
found considerable lower classification accuracy of 84% for [36] and 
sensitivity/specificity of 51% / 87% [37]. A study by Keijsers et al found 
excellent sensitivity and specificity of both 97%, but data from six 
triaxial accelerometers mounted at various body locations were used 
[23]. Such an approach is not only impractical, but the additional 
burden is not justified by the gain in accuracy compared to this study. 

Another study had participants wear a single waist-mounted acceler
ometer and used machine learning methods to calculate bradykinesia 
severity [21]. In this study, a support vector machine (SVM) algorithm 
was used to detect gait and then frequency features were extracted from 
strides. Two epsilon-support vector regression (SVR) models were used 
to calculate a threshold that characterized bradykinesia severity. For a 
real-time application, this complex procedure would likely be too 
computationally expensive to compute on the fly. This stands in contrast 

Table 3. 
Sensitivity (Sn), Specificity (Sp), Area Under the Curve (AUC) and (95% Confidence Intervals) for three machine learning algorithms applied to raw and smoothed 
signals.   

RGLM NN RF  
Sn Sp AUC Sn Sp AUC Sn Sp AUC 

Raw 0.88 (0.750; 
0.777) 

0.78 (0.879; 
0.890) 

91.1 (90.8; 
91.4) 

0.93 (0.870; 
0.887) 

0.81 (0.932; 
0.940) 

95.6 (95.4; 
95.8) 

0.97 (0.979; 
0.985) 

0.93 (0.977; 
0.981) 

99.1 (98.9; 
99.1) 

Smooth 0.93 (0.901; 
0.915) 

0.87 (0.902; 
0.913) 

95.7 (95.5; 
95.9) 

0.94 (0.993; 
0.996) 

0.80 (0.994; 
0.996) 

99.6 (99.4; 
99.5) 

0.97 (0.998; 
0.999) 

0.92 (0.996; 
0.998) 

99.8 (99.8; 
99.8)  

Fig. 4.. Raw and Smooth ROC Curve Comparison.  

Table 4. 
Accelerometer and gyroscope signal importance.   

AccelAnterior-Posterior AccelMedio-Lateral AccelSuperior-Inferior GyroAnterior-Posterior GyroMedio-Lateral GyroSuperior-Inferior 

Raw 26.8 60.4 63.4 13.4 22.4 11.6 
Smooth 32.5 57.8 78.4 6.42 12.5 8.0  
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to our approach which used minimal feature extraction to detect gait 
abnormality (ON vs OFF) at a high accuracy. Furthermore, rather than 
introducing a stand-alone device, we use a smartphone to detect gait, 
which has been shown to be a reliable approach [38,39]. 

A real-time ON versus OFF classification scheme needs to analyze 
data as it streams into the device. This stands in contrast to the work 
outlined within this paper, which operated over complete data sets that 
were built after all data collection had ended. Therefore, transitioning to 
real-time analyses will require major modifications to the approaches 
presented herein, potentially including the consideration of data in 
windows as it streams in, feature extraction and a blend of labeled 
training data based on group averages and individual calibration. Many 
decisions remain to be explored in this framework, including an inves
tigation into the processing power required to complete such a task and 
a more formal comparison of machine learning approaches. But the 
benchmarking results outlined in this study, along with the existence of 
other systems explicitly designed to sense, analyze, and act on streaming 
data collected by smartphones, makes us optimistic that it will be 
possible to build a real-time classification/response system. For 
example, a smartphone-based platform aiming at providing real-time 
feedback from embedded sensors, was able to process about 9000 
samples/second. In the current project, the maximal sample rate was 80 
Hz, which given the six sensor channels, would require processing of 
only 480 samples/second [40]. Future work will focus on defining the 
specifics of ON versus OFF machine learning classification within this 
context in a manner that balances accuracy versus computational con
cerns. We will also focus on the presentation of external cues to deter
mine how quickly they can be activated, for how long they should be 
provided, and what the best topography is for these alerts. Furthermore, 
the acceptability of wearing a waist-mounted mobile phone in one’s 
natural environment for extended periods of time among a PD popula
tion is unknown. Future work will explicitly assess this issue and will 
aim to use a design that is most likely to lead to high compliance rates. 

This work represents a large departure from traditional approaches 
that evaluate gait function based on spatiotemporal outcomes (e.g. step 
length) extracted from accelerometer and gyroscope signals [41]. An 
important limitation of this deviation is that our classification algorithm 
acts as a “black-box,” which does not provide information on how ON 
versus OFF walking times differ [42], which may restrict the ability of 
clinicians to adjust PD treatment protocol as a function of ON versus OFF 
spatiotemporal outcomes. Additionally, the results only detail a binary 
classification of ON versus OFF state, but do not allow for the identifi
cation of differences in disease severity or progression. The positioning 
of the smartphone with respect to the human physiognomy can also act 
as a limitation in a real time application. More precisely, patients would 
have to be mindful that the smartphone with its attachment must be 
placed correctly on the body. Patients might have the potential to 
misposition the smartphone which can have an impact of algorithm 
performance. In our data gathering process, we ensured that this 
placement was ideal and correct to further maximize the performance of 
our algorithms. We also feel that positioning of the smartphone on the 
hip helps combat asymmetrical walking patterns in patients. It is note
worthy that we did not build a single, generalized model capable of 
processing pooled data and simultaneously making predictions about all 
participants since, due to the idiosyncratic nature of individual’s pre
sentation of PD, we expect all future applications to use subject-specific 
models. Future studies could also monitor and detect changes in disease 
severity over time, which would likely have clinical significance. In 
addition to these technical issues, our sample size of 20 participants 
limits generalizability to a wider population. Furthermore, broad 
recruitment criteria were used and participants were not assessed and 
included/excluded based on features such as cognitive/physical disor
ders, freezing-of-gait occurrences, or the stability of drug regimen. 
Consequently, there is the potential for heterogeneity in the sample, 
which is appropriate for this proof-of-concept stage and should not affect 
the individual-level classifiers that were built, but limits the 

appropriateness of cohort-based statistics. 
In conclusion, this study shows that a single waist-mounted smart

phone can identify ON versus OFF gait patterns in individual patients, 
with the best classifier, a RF approach, providing an average accuracy of 
93%. By avoiding common gait outcome calculations or feature 
extraction and focusing on minimally-processed acceleration and gyro
scope signals, the approach represents a promising first step for the 
development of a real-time feedback smartphone application that pro
vides corrective cues to deficient walking patterns in PD patients. 
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