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Abstract  

The population of individuals with cognitive impairment and dementia is growing rapidly, necessitating 

etiological investigation. It is clear that individual differences in cognition later in life have both genetic 

and multi-level environmental correlates. Despite significant recent progress in cellular and molecular 

research, the exact mechanisms linking genes, brains, and cognition remain elusive. In relation to 

cognition, it is unlikely that genetic and environmental risk factors function in a vacuum, but rather interact 

and cluster together. The purpose of the present study was to examine whether aspects of individual 

socioeconomic status (SES) explain the cognitive genotype-phenotype association, and whether 

neighborhood SES modifies the effects of genes and individual SES on cognitive ability. Using data from 

non-Hispanic White participants in the 2016 wave of the Health and Retirement Study, a national sample 

of United States adults, we examined links between a polygenic score for general cognition and 

performance-based cognitive functioning. In a series of weighted linear regressions and formal tests of 

mediation, we observed a significant genotype-phenotype association that was partially attenuated after 

including individual education to the baseline model, although little reductions were observed for 

household wealth or census tract-level percent poverty. These findings suggest that genetic risk for poor 

cognition is partially explained by education, and this pathway is not modified by poverty-level of the 

neighborhood.    
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Cognition in Context: Pathways and Compound Risk in a Sample of US non-Hispanic Whites  

Decades of research in behavioral genetics, with more recent evidence from molecular genetics, 

have demonstrated a genetic basis for many cognitive functions (Bouchard & McGue, 

1981; Papassotiropoulos & de Quervain, 2011). Level of general intelligence is shared among members 

of the same family (Bouchard & McGue, 1981; Briley & Tucker-Drob, 2017), and specific genetic regions 

have been identified that are associated with specific abilities such as episodic memory, for 

example (Papassotiropoulos & de Quervain, 2011). Meanwhile, the mechanisms explaining how 

genes influence these various cognitive functions remain elusive. Given the phenotypic correlations 

among specific cognitive abilities, such as memory and mental status investigated in the current study, 

and multiple other psychosocial, socioeconomic, and health factors (Briley & Tucker-Drob, 2017), the 

mechanisms explaining the cognitive genotype-phenotype association may also be represented by multi-

level factors spanning biology to broad social environments (Boardman, Daw, & Freese, 2013).   

In this paper, we focus on social ecological factors that may either explain or modify associations 

between a genetic score for general cognition and tests of mental status and memory. Neighborhood 

environments, for example, such as those with greater levels of poverty, are associated with poorer 

performance on tests of memory and mental status (Aneshensel, Ko, Chodosh, & Wight, 2011; 

Wu, Prina, & Brayne, 2015) regardless of individual or family-level socioeconomic status 

(SES). Moreover, cognitive heritability is also attenuated among children who are raised in impoverished 

home environments (Turkheimer, Haley, Waldron, D’Onofrio, & Gottesman, 2003). That is, both average 

cognition and genetic contributions to variation in cognition are reduced among those residing in relatively 

impoverished environments. To date, little research has focused specifically on neighborhood context 

and genetic contributions to cognition, and among those that have (Englehardt, Church, Harden, & 

Tucker-Drob, 2018) few have used measured genotypes and none have specifically looked at older 

adults. The purpose of the present study is to determine whether this socioeconomic status x genetic 

interaction extends to broad neighborhood environments among this unique, older cohort. To this aim, 

we analyzed a measure of general cognitive ability that is constructed from four telephone interview-



based tests of memory and mental status (immediate and delayed recall, Serial 7s, and Backward 

Counting) that have been demonstrated to predict classification of older adults into normal, cognitively 

impaired without dementia, and demented groups at 74 percent accuracy in a large population study 

when compared to a sample of adults who have undergone psychiatric evaluation (Crimmins, Kim, 

Langa, & Weir, 2011).      

Genetics of Cognition  

Longitudinal analysis of twin and family data not only suggest a genetic inheritance for cognitive ability, 

but also that heritability of cognition increases with age (Tucker-Drob et al., 2013). While the baseline 

heritability estimates among very young children suggest an important role of genetics in cognition, the 

increasing role of genetics across the life course points to two important phenomena. First, there is a 

genotype-environment transaction whereby individuals with a greater number of genotypes related to 

higher performance on standard cognitive assessments sort into environments that stimulate further 

cognitive enhancements. Because of the increase in genetic influence on many cognitive functions 

across the life course (Tucker-Drob et al., 2013), it is possible that some of the sorting may 

be evocative in which teachers, counselors, and school administrators sort children into different 

educational tracks because of observable traits that are associated with unobservable 

genotypes. Second, there remains a possibility that specific genetic regions that may not have influenced 

cognitive abilities early in life become more relevant for cognition at later points in the lifespan.   

In terms of the specific genetic regions that play a role in cognitive ability, early studies yielded 

evidence implicating several candidate genes, including COMPT, GRM3, PRNP, CHRFAM7a, and 

APOE (Papassotiropoulos & de Quervain, 2011). More recently, in the context of genome-wide 

association studies, researchers have posited the polygenicity of cognition, or that individual differences 

in cognition are likely the result of many genetic regions and their correlations with one another (e.g., 

Ware, Schmitz, Gard, & Faul, 2018). Taken together, findings from both behavioral and molecular 

genetics suggest that general intelligence and its many correlates, including specific abilities such as 

memory and mental status, are at least partially heritable (Tucker-Drob, Briley, & Harden, 2013).  



Genetics of Socioeconomic Status  

SES is often operationalized by an individual’s education, income, occupation, or some 

combination. These aspects of SES, both in childhood and in midlife, are correlated with cognitive 

ability in later life (e.g., Greenfield & Moorman, 2019). The degree to which each of these aspects of SES 

has a genetic basis will be considered separately in the sections that follow. Before 

considering behavioral or molecular genetic evidence indicating the heritability of SES, social scientific 

investigation into the intergenerational transmission of SES will be considered.   

Longitudinal analysis of child-parent SES correlations suggests that offspring’s SES often 

resembles that of their parents’ (Bjorklund, Jantti, & Solon, 2007; Braun & Stuhler, 2018). This pattern 

emerges regardless of whether children are reared by their biological or adoptive parents, although 

correlations are generally higher for those raised by biological parents. These studies 

have provided evidence for both genetic and environmental transmission of education attainment, with 

some, although smaller and less stable evidence for the intergenerational transmission of earned income. 

Suggested mechanisms explaining the intergenerational transmission of SES include parental 

investment in the child’s human capital and role-modeling the performance of reliable work – both of 

which comprise an environmental influence – as well as genotypes associated with cognitive and 

education phenotypes that are passed from parent to child (Bjorklund et al., 2007). Others have observed 

that childhood human capital, including health and nutrition, cognitive abilities, and early educational 

experiences, explain up to 50 percent of the transmission of SES from parent to child (Carvalho, 2012).   

Education. In an attempt to summarize existing knowledge regarding the heritability of education 

attainment, or the number of years of education an individual completes, a meta-analysis was conducted 

using samples of twins from the United States, Australia, and Western Europe (Branigan, McCallum, & 

Freese, 2013). Results of this meta-analysis suggested significant twin similarity on education attainment, 

and that this similarity was explained by both additive genetic influences (h2 ~ .40) and shared 

environmental influences, or influences from environmental factors that were shared between members 

of the same family. Interestingly, the heritability of educational attainment varied significantly by sex, birth 



cohort, and nationality, suggesting that environmental factors likely modify the genetic influence 

on educational attainment. This modification again highlights the importance of the gene-environment 

interaction perspective in this literature.   

Years of educational attainment is among the social phenotypes for which molecular geneticists 

have contributed significant understanding, both in terms of identifying causal variants 

and in the ability to predict phenotypic variability (Plomin & von Stuum, 2018). Success in genetic 

prediction of this phenotype has been made possible given that education is commonly included as a 

covariate in genome-wide association studies, enabling the pooling of genetic effects over a large 

collection of studies. Current understanding suggests that over 10 percent of the variance in education 

attainment is explained by small genetic influences distributed over hundreds of single nucleotide 

polymorphisms (Lee et al., 2018). This finding further corroborates evidence from behavioral genetic 

methods, indicating twin similarity on educational outcomes (Branigan et al., 2013).    

Income. Given the mounting evidence suggesting familial similarity of education attainment 

(Branigan et al., 2013), and that educational degrees often afford a wider range of occupational 

opportunities, it is unsurprising that familial similarity in lifetime earnings is also heritable (e.g., Hyytinen, 

Ilmakunnas, Johansson, & Toivanen, 2019). A recent investigation of twenty years’ worth of earnings 

data yielded heritability estimates that reached 54 percent for men and 39 percent for women, with very 

little change in these estimates depending on the source of income considered (Hyytinen et al. 2019). 

The gender difference in heritability was attributed to factors such as intermittent leaves from work that 

may occur more frequently among women than men, and potential gender differences in genetically-

influenced occupational choices (Hyytinen et al., 2019).       

Findings from twin and family studies have are further supported by genome-wide association 

investigations, as a recent study observed 120 independent genetic loci, implicating 24 genes that were 

associated with income levels (Hill et al., 2019a). Further investigation demonstrated both genotypic and 

phenotypic associations between education and intelligence, an underlying latent factor thought to inform 

performance on various cognitive tasks (Hill et al., 2019b). Intelligence may not only set people’s 



trajectory toward greater education attainment (Hill et al., 2019b), which in turn enables people to obtain 

higher-paying, more prestigious occupations (Heckman, Stixrud, & Urzua, 2006). The literature indicating 

that individuals select into environments varying in levels of cognitive stimulation has already been 

discussed in the context of the genetics of cognitive development (Tucker-Drob et al., 2013). One of the 

environments most salient in the lives of adults is place of work. Evidence for genetic selection into 

specific occupations helps to clarify how genetic regions relevant for cognitive ability may systematically 

sort individuals into cognitively stimulating occupations, which in turn, afford people higher wages (van 

Ophem, Hartog, & Vijverberg, 1993).   

Cognition, Education, and Income. The review above describes work in three primary areas in 

which genetic and environmental contributions are estimated independently for cognition and two 

components of socioeconomic status: education and income. Rowe, Vesterdal, and Rodgers (1998) use 

data from the National Longitudinal Study of Youth (NLSY) to estimate the extent to which genetic 

contributions to these three traits are unique or shared. They estimated univariate heritability values of 

.64, .68, and .42 for IQ, education, and income, respectively. Importantly, each of these traits appears to 

be influenced by a common genetic factor such that 68% of the correlation between IQ and education, 

and 59% of the correlation between IQ and income appears to be due to common genetic mediation. 

Their work focused on a younger cohort of adults (ages 28-35 in 1992) and they did not specifically 

examine the mechanisms in place. That is, while genetic correlation is an important component, others 

have shown (Wedow, Zacher, Huibregtse, Harris, Domingue, & Boardman, 2018) that environmental 

moderation of genetic correlation is also a critical perspective when describing the pathways that may 

undergird correlated genotypes.  

Neighborhood selection. That environmental features may moderate genetic correlation is 

particularly important when it comes to work in the area of neighborhood effects. Neighborhood-health 

effects are often questioned, given that individual characteristics (including genetic background) may 

explain both the process through which people live in certain neighborhoods and the process through 

which people develop various health conditions (Pickett & Pearl, 2001). Indeed, researchers have 



observed that adults who had been raised in the same family live in somewhat similar neighborhoods, at 

least as far as how safe neighborhoods are perceived to be (e.g., Robinette & Beam, 2018). Moreover, 

research with large samples of unrelated adults has demonstrated that people with similar genetic 

backgrounds cluster, at least at the state level (Domingue, Rehkopf, Conley, & Boardman, 2018). These 

studies suggest at least the potential that genetic backgrounds may sort people into their neighborhoods. 

With the growing availability of genetic data in large national surveys, it is becoming possible to 

examine genetic influences on selection into more granular, neighborhood levels. For example, using a 

variety of descriptive and empirical approaches, a recent study demonstrated that people with similar 

values on a polygenic score for education attainment cluster in neighborhoods that are similar in levels 

of population density, average education level, and median home values (Laidley, Vinneau, & Boardman, 

2019). A plethora of research indicates phenotypic associations between various aspects 

of SES, whereby Individuals who earn higher educational degrees typically obtain higher-earning 

occupations, and more often than not, inhabit neighborhoods with average costs that are within their 

means. The above research suggests that common genetic influences may further elucidate correlations 

among these socioeconomic phenotypes and partially explain selection into specific neighborhoods.   

Moreover, residing in neighborhoods with more socioeconomic disadvantage during midlife is a 

risk factor for poor cognitive abilities later in life, particularly for individuals who are themselves poor 

(Aneshensel et al., 2011; Wu et al., 2015). Several mechanisms have been identified for this association, 

including less cognitive stimulation in environments with lower average education levels, built 

environmental features that stymy the ability to engage in adequate physical activity, and social stressors 

that thwart social interaction and the development of coping reserves (Besser, McDonald, Song, Kukull, 

& Rodriguez, 2017; Wight et al., 2006). This body of research suggests the possibility that genetic 

predisposition for cognition may predict the specific neighborhoods in which people live, and that 

exposure to features of one’s neighborhood (e.g., socioeconomic disadvantage) may then partially 

explain individual differences in cognitive abilities.   

 



From Genes to Cognition: Social ecological mechanisms  

Complex traits are thought to be the result of genetic influences, environmental influences, and 

correlations between the two, whereby genetic influences sort people nonrandomly into various 

environments (Boardman, Daw, & Freese, 2013; Plomin, DeFries, & Loehlin, 1977). Cognitive ability is 

not likely an exception to these posited gene-environment correlations (Briley & Tucker-Drob, 2017), and 

is likely informed by a unique form of gene-environment correlation (Tucker-Drob et al., 2013). Individual 

differences in genetic influences that predispose enhanced cognitive functioning likely also influence the 

degree to which individuals seek out cognitively stimulating experiences and environments. This unique 

form of active gene-environment correlation  is said to be transactional, as cognitively stimulating 

environments provide the necessary resources to enable genetic predisposition for cognitive ability to 

manifest. In a recent paper, Englehardt et al. (2018) examined cognition and academic achievement 

using data on twins aged 7-20 from the Texas Twin Project (n = 1,728 pairs). Their analysis suggested 

that racial/ethnic status as well as a combination of multiple family (socioeconomic status, parental 

conflict), school (teaching characteristics, school performance), and neighborhood (socioeconomic 

status, residential instability) factors explained 100 percent of the variance in cognitive ability as 

measured by tests of intelligence. They highlighted that neighborhood SES explains roughly 20% 

of the variation in cognition and academic achievement when measured as a single indicator of context 

and they highlight the centrality of neighborhoods in our understanding of how, when, and for whom 

specific genetic variants may matter. Specifically, they conclude with a call for “’polyenvironmental risk 

scores’ in an effort to better predict developmental outcomes and to quantify children's and adolescents’ 

interrelated networks of experiences.”  

The transactional nature of genotypic and environmental influences on cognition described above, 

whereby genotypes for higher general cognitive performance sort people into cognitively stimulating 

environments, helps clarify both the development of cognitive abilities in youth (Tucker-Drob et al., 2013) 

as well as observed cognitive gene-by-environment interactions (G x E; e.g., Scarr-Salapatek, 1971; 

Turkheimer et al., 2003). Specifically, cognitive heritability may not be observed unless adequate 



environmental resources are available to support genetic potential. For example, individuals from high 

SES backgrounds enjoy exposure to cognitively-stimulating resources that are largely unavailable to their 

lower SES counterparts. Furthermore, a study of nearly 2000 adult twins demonstrated that this gene x 

socioeconomic status interaction extends to intelligence in adulthood (Bates, Lewis, & Weiss, 2013).   

Investigations of G x E often define the ‘environment’ as health behaviors or school and family 

characteristics (i.e., anything outside the genome), and these investigations rarely extend to 

neighborhoods (Boardman et al., 2013), although one influential example assessed neighborhood gene 

x socioeconomic status interaction in a sample of nearly 1000 twin pairs attending Philadelphia 

schools (Scarr-Salapatek, 1971). Results of the study yielded several conclusions. First, the degree of 

genetic relatedness was positively correlated with twin similarity on tests of intelligence (i.e., genetic 

influences). Second, intelligence was significantly higher among whites and those living in higher 

socioeconomic status census tracts compared to blacks and those living in lower socioeconomic status 

census tracts (i.e., environmental influences). Third, there was stronger evidence for heritability of 

intelligence among whites and those living in more advantaged, relative to blacks and those living 

in disadvantaged census tracts (i.e., differential heritability).  Similar results were presented by Boardman 

et al. (2012) who show that the effect of the e4 allele in APOE had little to nothing to do with cognitive 

decline among residents of the most socially disorganized and disorderly neighborhoods in Chicago. The 

authors argue that the social environment is ‘pushing’ the phenotype in these communities and small 

genetic associations are nearly impossible to detect in light of the large amount of social ‘noise.’ 

The scant existing research that does define the environment in G x E investigations at the 

neighborhood-level (Laidley et al., 2019; Scarr-Salapatek, 1971) has focused on cognitive and 

educational outcomes in youth, a portion of the lifespan characterized by growth and development. Even 

less attention has been afforded to cognitive outcomes in older adulthood when the focus is on 

maintenance, and perhaps decline in cognitive ability. The degree to which individuals are sorted into 

neighborhoods based on genotypes related to cognitive ability remains uncertain. This sorting is 

plausible, given that cognitive ability may predict years of education attainment, which then predicts 



higher wage-earning occupations. Indeed, findings yielded from neighborhood-health research are often 

questioned, as it remains unclear how much of the published findings are better explained by 

characteristics of the residents (e.g., genes), rather than characteristic of a true contextual effect (Diez 

Roux & Mair, 2010).   

As previously stated, the exact mechanisms linking cognitive genotypes to cognitive performance 

are far from fully described. Extrapolating from previously described investigation of educational 

genotypes (Laidley et al., 2019), there exists a potential that shared genetic regions predict not just 

general cognitive ability, education attainment, and then selection into broader, neighborhood 

environments. In the absence of more empirical investigations, it remains possible that exposure to 

various neighborhood environments may either partially explain (via a transactional model) or even 

modify (differential heritability across neighborhoods varying in socioeconomic status) the cognitive 

genotype-phenotype association.  

The present study  

In the present study, we situate our aims under the transactional gene-environment correlation framework 

(Tucker-Drob et al., 2013), whereby genetic influences on cognitive abilities predict socioeconomic 

characteristics such as education attainment that enable people to move into higher socioeconomic 

environments that in and of themselves, further modulate cognitive ability. We consider the degree to 

which genetic influences on cognition may systematically distribute individuals along the socioeconomic 

spectrum (via individual education and household wealth) and into socioeconomically-varying 

neighborhoods. We compare alternative scenarios in which neighborhood socioeconomic status either 

explains or modifies the cognitive genotype-phenotype association. The present study aims to further 

understanding by evaluating the following questions that are summarized in Figure 1:  

1. Mediation: to what extent do aspects of socioeconomics status explain the association between 

the cognition polygenic risk score and cognition performance in later life?  

2. Moderation: does the strength of the cognitive genotype-phenotype association differ for 

individuals residing in neighborhoods with low, average, or high rates of poverty?  



3. Moderated mediation: are the hypothesized socioeconomic pathways between cognitive 

polygenic risk score and later life cognition comparable across neighborhoods with low, average, 

or high rates of poverty?  

In doing so, we attempt to contextualize the meaning of polygenetic associations with their respective 

phenotypes. We feel that this is critical to work in this area that goes beyond the traditional gene-

environment interaction perspective and it is very much aligned with recent calls to make this approach 

the norm. A recent publication summarizes this by stating that “[t]he expression of ‘intelligence genes’ 

may cluster inside the head, but this expression profile cannot be meaningfully evaluated without first 

considering the prior contributions of cumulative culture, which are invisible to standard methods within 

behavioral genetics” (Uchiyama, Spicer, & Muthukrishna, 2020). While this point highlights sociocultural 

mechanisms specifically, we feel that contextualizing genetic associations is consistent with current 

scientific thinking and much more in-line with individuals’ day-to-day experiences.  

Method  

Participants and Procedures  

Data for the present study came from the 2016 wave of the Health and Retirement Study (HRS), a 

national survey of men and women aged 51 years or more residing in the United States. Through 

telephone interviews, self-administered questionnaires, and biological sample collection, Health and 

Retirement Study researchers have observed mental and physical health, cognitive and physical 

functioning, and behavioral, demographic, and economic well-being every two years since 1992. Starting 

in 2006, saliva samples have been collected from which DNA has been extracted. Genotyping was 

conducted by the Center for Inherited Disease Research (CIDR) in 2011, 2012, and 2015 (RC2 

AG0336495 and RC4 AG039029). Genotype data on over 19,000 Health and Retirement Study 

participants was obtained using the llumina HumanOmni2.5 BeadChips (HumanOmni2.5-4v1, 

HumanOmni2.5-8v1, HumanOmni2.5-8v1.1), which measures ~2.4 million single nucleotide 

polymorphisms. Individuals with missing call rates >2%, SNPs with call rates <98%, Hardy-Weinberg 

Equilibrium p-value < 0.0001, chromosomal anomalies, and first-degree relatives in the Health and 



Retirement Study were removed. Health and Retirement Study researchers have constructed polygenic 

scores for a myriad of complex traits, including general cognition, from this genetic data (for detailed 

information about polygenic risk score construction in the Health and Retirement Study data see Ware et 

al., [2018]). The RAND Institute has constructed various economic measures to track household-level 

wealth. Additionally, Health and Retirement Study respondent records, including all genetic, health, and 

sociodemographic information, can be linked with administrative data available in the Health and 

Retirement Study Contextual Data Resource (CDR). The Contextual Data Resource includes information 

about census tract-level poverty. The analytic sample used in the present analyses was restricted to 

home-dwelling individuals who identify as non-Hispanic White (n = 7,493) to adjust for potential genetic 

population stratification (Novembre & Stephens, 2008).   

Measures  

General cognition phenotype. Four cognitive tests conducted via the 2016 telephone interview 

were used in the present analyses (Ofstedal, Fisher, & Herzog, 2005). Memory was assessed with two 

tasks, immediate and delayed recall. These tasks, each yielding scores ranging from 0-10, ask 

participants to remember a list of 20 nouns right after hearing them for the first time, and again five 

minutes later. Working memory was assessed with the Serial 7’s task, which requires participants to 

subtract increments of 7 from 100 with a final score ranging from 0-5. As a measure of mental status, 

Health and Retirement Study participants completed the Backwards Counting task. This task is 

completed by counting backwards one continuous number at a time starting at the number 20, and yields 

a score ranging from 0-2. A composite measure representing general cognitive ability, ranging from 0-27 

with higher scores representing better cognition, was constructed by summing scores on these four 

individual scales (Crimmins et al., 2011). Descriptive statistics for all variables used in the analyses are 

presented in Table 1.  

 

[Table 1 about here] 

 



General cognition polygenic score. Health and Retirement Study researchers have 

constructed a polygenic risk score for general cognition, provided to the public in standardized form with 

a mean of 0 and a standard deviation of 1 (Ware et al., 2018). Positive values represent greater genetic 

predisposition for higher cognitive performance. Using data from a large meta-analysis (Davies et al., 

2015), the score was constructed by calculating a weighted sum of single nucleotide polymorphisms 

reaching genome-wide significance with general cognitive ability.     

Mediators. First, years of schooling was obtained from the Health and Retirement Study tracker 

file, coded continuously in years. Second, the RAND Institute has constructed a measure of household-

level wealth that sums all sources of income from both participant and spouse (e.g., earnings, social 

security payments, Medicare Part B, pension and retirement, interest, rents, educational assistance, 

alimony), and subtracts from this all sources of debt (e.g., mortgages from primary and secondary homes, 

other home loans, and sources of debt not asked) (Bugliari et al., 2016).   

Moderator. Census tract-level poverty was obtained from the Health and Retirement Study 

Contextual Data Resources. The Contextual Data Resource contains the American Community Survey 

five-year (2012-2016) estimate of the proportion of households within the census tract with income 

levels at or below the federal poverty threshold. For the purposes of conducting stratified models, a tertile 

variable was constructed that classified each participant into groups of equal size representing those 

living in low, moderate, and high poverty areas.      

Covariates. Age was coded in years and gender was coded 0 = male, 1 = female. To further 

adjust for potential population stratification, genetic principle components were included as covariates 

(Ware et al., 2018). Principle component analysis is conducted by Health and Retirement Study 

researchers (Ware et al., 2018), and the resulting sample eigenvectors are provided to outside 

researchers for inclusion in statistical models to adjust for potential population stratification.  

 

 

 



Statistical Analysis  

All linear regression analyses were conducted in SAS version 9.4. For Question 1, coefficients 

representing the association between the cognitive polygenic risk score and telephone-based general 

cognitive performance were examined in a baseline model (Model 1) and models that introduced, one at 

a time, education (Model 2), household wealth (Model 3), and census tract poverty rate (Model 4). Model 

5 included each of these potential mediators simultaneously. The Hayes Process macro was utilized to 

enable formal tests of mediation (Question 1), and moderated mediation (Question 3; Hayes, 2013). In 

models stratified by low, average, and high census tract poverty rate, coefficients representing the direct 

(Question 2) and indirect (Question 3) effects between the cognitive polygenic risk score and cognitive 

performance were examined. All models adjusted for age, gender, and genetic principle components 

(PCs; Novembre & Stephens, 2008).  

 

Results  

[Table 2 about here] 

The results presented in Table 2 address one of the primary questions of our analyses. Specifically, of 

the three domains of socioeconomic status that we consider (e.g., education, wealth, and neighborhood 

poverty), to what extent is each factor implicated in the pathways between cognitive polygenic risk score 

and later life cognition (e.g., Mediation). Model 1 presents the baseline estimate of the Cognition 

polygenic risk score on later life cognition (b= .419, p<.0001) and it includes controls for age, sex, and 

the top 10 principle components. The second model adjusts for years of education which is strongly 

associated with later life cognition (b = .562, p<.001) and reduces the effect of the Cognition polygenic 

risk score by nearly 28% to b = .302 (p<.001). Thus, years of educational attainment mediates a 

significant portion of the Cognitive polygenic risk score – Cognition association in our study. Models 3 

and 4 introduce controls for household wealth and neighborhood poverty, respectively. While each SES 

indicator is strongly related to later life cognition in the anticipated direction, neither reduced the baseline 

effect of the cognitive polygenic risk score in any meaningful way. That is, the association between the 



genetic variants linked to cognition and later life cognitive function does not appear to operate through 

the accumulation of wealth or the selection into different types of neighborhoods. Model 5 includes the 

three measures of SES together; the effects of wealth and neighborhood poverty are both significantly 

reduced in magnitude suggesting that a large portion of the associations in Models 3 and 4 are operating 

through completed years of education. Likewise, the effect of the Cognitive polygenic risk score is virtually 

identical to the effect from Model 2 providing further evidence that any SES mediation is operating through 

educational attainment.  

 

[Table 3 about here] 

 

 The results presented in Table 3 address our second and third questions. The second question 

focused on the extent to which the Cognitive polygenic risk score and later life cognition association is 

comparable across neighborhoods varying in poverty (e.g., moderation). While the direction of the effect 

sizes is in line with previous research in which genetic associations for cognition are more pronounced 

among residents of less impoverished communities (Boardman et al. 2012), the post-hoc tests for the 

differences in these associations indicate that they are not statistically different from zero. This is the 

case for the total and direct effect of the Cognitive polygenic risk score. In ancillary analyses, we also 

evaluated this same association with a cross-level interaction term between neighborhood poverty and 

cognitive polygenic risk score and, as with our results, this interaction term was negative (again indicating 

a weaker effect of the polygenic risk score in poor neighborhoods), but it was not statistically significant 

at the traditional .05 level.  

 Our final question has to do with neighborhood-level differences in the socioeconomic pathways 

of education and wealth (e.g., moderated mediation). That is, our results in Table 2 suggested that the 

bulk of the mediation was taking place though years of completed education, but it is possible that the 

relative influence of education or wealth may depend on the type of community in which one lives. With 

respect to education, we find no evidence that the extent to which education mediates the relationship 



between Cognitive polygenic risk score and cognition depends on the poverty rate of one’s neighborhood. 

The indirect effects of .119, .094, and .113 are all significantly different from zero but they are not 

significantly different from one another. However, we find some tentative evidence that wealth may be 

implicated in the linkage between Cognitive polygenic risk score and later life cognition, but only among 

those in neighborhoods with average poverty rates. This is shown in two ways. First, the indirect effect 

estimate (b=.015, p<.0498) is statistically significant and second, this estimate is significantly different 

from the estimate in High Poverty neighborhoods (p<.0406). These results are in line with the social push 

GxE perspective described in greater detail below.  

 

Discussion  

In the past, researchers have rarely had access to data rich enough to test the possibility of 

neighborhood gene-environment interplay in relation to cognition in a nationally representative sample of 

older adults. With such data at hand, the present study set out 1) to further characterize potential social 

ecological mechanisms underlying the cognitive genotype-phenotype association, 2) to examine the 

degree to which genetic influences on general cognitive ability sort people into their socioeconomic 

environments, and 3) to examine whether G x SES on cognition observed in the literature (Turkheimer 

et al., 2003) extends to neighborhood SES.   

Results from the present study confirmed and replicated the cognitive genotype-phenotype 

association (Papassotiropoulos & de Quervain, 2011; Tucker-Drob et al., 2013), with individuals with 

higher polygenic risk score for general cognition performing better on telephone-administered tests 

of memory and mental status. Moreover, and regarding the first goal listed above, this cognitive 

genotype-phenotype association was partially explained by individual education 

attainment, with no evidence that household wealth further explains this association. These results 

suggest a social ecological mechanism linking genes to cognition, whereby higher polygenic scores for 

general cognition set individuals on trajectories towards obtaining more years of education, which may 

in turn stimulate greater maintenance of memory and mental status in older adulthood.  



G x Neighborhood Socioeconomic Status  

A large literature attests to associations between neighborhood SES and health, spanning 

psychosocial, physical, and cognitive outcomes (Diez Roux & Mair, 2010). This literature is often 

criticized for insufficient attention to potential selection bias (Picket & Pearl, 2001). Specifically, observed 

neighborhood SES-health associations may be spurious, and better explained by individual difference 

characteristics. Examples of studies in which individual-level SES and other sociodemographic 

characteristics that may bias observed neighborhood effects are adjusted abound, but to our knowledge, 

genetic risk for the outcome of interest has yet to be included as a potential covariate. Individuals in the 

present study living in higher poverty areas performed significantly worse on tests of memory and mental 

status, and this association persisted after including years of education and household poverty in the 

model (Model 5 in Table 2). A unique contribution of the present findings, however, and in support of our 

second goal listed above, is that the neighborhood-cognition association also persisted with the 

polygenic risk score for general cognitive functioning in the model. At least when it comes to cognitive 

outcomes associated with memory, the present results suggest there is little reason to assume that 

neighborhood-cognitive associations are an artifact of individual differences in genetic risk.  

With regard to cognitive health and well-being, neighborhoods are broad environments 

that can offer opportunities for social interaction and engagement. In disadvantaged neighborhoods, 

however, such social interaction is impeded by social and physical deterioration which elicits mistrust and 

fear, often resulting in social withdrawal (Massey & Denton, 1993). With regard to the present results, it 

is possible that such social withdrawal may isolate residents from the benefits of informational and 

socioemotional exchanges which may boost cognitive functioning. In the present study, maintaining a 

residence in a neighborhood with a higher poverty rate was directly related to poorer cognitive 

ability. Finally, and in relation to our third goal listed above, neither the direct effect of cognitive genotypes 

on cognitive performance, nor the indirect effect of cognitive genotypes on cognitive performance through 

individual education, however, were modified by poverty rate of the census tract. It is likely that the 

neighborhood effects observed in the present study are better explained by other contextual features.   



Limitations and Future Directions   

Both the genetics (Harris & Deary, 2011; Levine, Harrati, & Crimmins, 2018) and the 

environmental influences on cognition may differ depending on whether one considers 

cognitive level versus cognitive change. With an ambitious set of hypotheses stated at the outset, the 

present study was focused on a single cross-section of memory and mental status among a nationally 

representative sample of older men and women. Future investigations should 

explore whether current results may differ when compared to models predicting cognitive change over 

longer periods of time. In a similar vein, the present analyses examined a polygenic score for general 

cognition, both its main and interactive effects, on performance on tests of memory and mental status. 

This polygenic score takes into account participants’ genotypes only, and not also potential differential 

patterns of DNA methylation, or epigenetic effects, across individuals residing in neighborhoods varying 

in poverty level. Inclusion of such epigenetic effects will be an important direction for future research. 

Additionally, our theoretical model was driven by the hypothesis that social ecological factors (e.g., 

education attainment, household wealth, and neighborhood poverty) may mediate or moderate the 

general cognition genotype-phenotype association. Meanwhile, we are aware that associations also exist 

among these social ecological factors (i.e., individuals with more education likely accrue more wealth 

through higher wage-earning occupations). These more nuanced pathways were not specifically 

examined in the current analyses which focused on 1) individual socioeconomic mediators of the general 

cognition genotype-phenotype association, 2) gene-environment correlation, and 3) gene x environment 

interactions. Lastly, given the potential for population stratification to bias estimates, we followed standard 

procedures (Novembre & Stephens, 2008) and limited our analytic sample to non-Hispanic Whites. As 

such, results cannot be generalized to members of other, particularly marginalized racial/ethnic groups. 

Future research should investigate cross-racial comparisons.    

Statistical geneticists often advise restricting an analytic sample to non-Hispanic Whites when 

using polygenic scores that are constructed among non-Hispanic whites to address ancestrally-

distinct genetic architecture (Martin et al., 2017). Indeed, the Health and Retirement Study polygenic 



score data provides separate polygenic risk score information for European and African ancestry 

respondents. Meanwhile, exposure to environmental hazards, which is more descriptive of the 

racial/ethnic minority experience when compared to non-Hispanic Whites (Roca, Ellen, & Oregan, 2013), 

may masque genetic effects on traits such as general cognitive ability among racial/ethnic 

minorities. Coupled with the fact that DNA samples are not collected from Health and Retirement 

Study respondents whose cognitive data are provided by proxy informants, precluding inclusion of the 

most cognitively-impaired individuals from analysis, the resulting sample is likely a select group of 

cognitively-intact, somewhat wealthier, racially/ethnically homogeneous individuals. More work is needed 

to address the potential of environmental moderation of genotype-phenotype associations across 

racially/ethnically diverse samples.    

One additional limitation was our inability to differentiate between different models of gene-

environment correlation which are critical with regards to issues of selection. That is, the three forms of 

gene-environment correlation include active, in which individuals with a particular genotype actively 

select into specific environments, evocative in which individuals are sorted into different environments 

because of observable traits that are linked to genotype, and passive in which individuals inherent both 

their genes and their environments from their parents. In this manuscript, we use a general language of 

selection which may give undo weight to the notion that selection is active on the behalf of the 

individual when, as others have shown (Boardman et al. 2012) evocative gene-environment correlation 

points to broad sorting processes that are outside of the individual’s control. Readers should consider 

this distinction when considering the implications of our findings and we encourage researchers to 

explore these questions in their future work. 
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Figure 1. Conceptual Model for the Relationship between Polygenic Scores for Cognition, SES, and 

Cognition.  

 

  



 
    

Table 1. Description of non-Hispanic White analytic sample (n=7,493)   
  Mean 

(sd) 
Range 

Cognitive Performance  15.71 0-27 
 (4.25)  
Cognitive polygenic risk score 0.00 -3.96-4.03 
 (1.00)  
Individual Education (in years)  13.57 0-17 
 (2.40)  
Household Wealth  $539,201 $-999,870-31,016,883 
 ($1,331,845)  
Census Tract Poverty  0.15 0.04-0.39 
 (0.05)  
Age  71.17 36-101 
 (10.26)  
Sex at Birth (%)  

  

     Men  41% 
 

 3072  
     Women  59% 

 

 4421  
Note: All data from the Health and Retirement Study.   
  

  



Table 2.  Socioeconomic pathways for the genetic association to later life cognition (coefficient, p).  

  Model 1 Model 2 Model 3 Model 4 Model 5 

Intercept  26.868 <.0001  17.907 <.0001  26.769 <.0001  27.633 <.0001  18.599 <.0001  

Polygenic risk score 
 

0.419 <.0001  0.302 <.0001  0.410 <.0001  0.421 <.0001  0.305 <.0001  

Years of Education   0.562 <.0001      0.543 <.0001  

Wealth (Millions$)     0.315 <.0001    0.128 <.0001  

Neighborhood Poverty       -4.944 <.0001  -2.710 <.0006  

Age (2016) -0.161 <.0001  -0.144 <.0001  -0.162 <.0001  -0.161 <.0001  -0.145 <.0001  

Sex [Female = 1] 0.550 <.0001  0.763 <.0001  0.588 <.0001  0.526 <.0001  0.754 <.0001  

           

R squared 0.167 0.263 0.176 0.171 0.266 
Note: All data from the Health and Retirement Study (n = 7,493). All coefficients were yielded from simple linear regressions.  

  

  

  

  

  

  

 



Table 3. Neighborhood moderation of polygenic influences on cognition and mediated pathways 

      Neighborhood Poverty Rate T-test difference in effects 

 Full Sample Low Poverty Avg. Poverty High Poverty    Low-Avg. Low-Hi    Hi-Avg.                 

Total Effect 0.419 <.0001 0.475 <.0001 0.349 <.0001 0.413 <.0001 0.283 0.602 0.604 

Direct Effect 0.305 <.0001 0.353 <.0001 0.240 <.0025 0.301 <.0003 0.307 0.644 0.597 

Indirect Effect  0.114 <.0001 0.122 <.0001 0.109 <.0004 0.112 <.0005 0.746 0.803 0.951 

   Education 0.111 <.0001 0.118 <.0001 0.094 <.0009 0.113 <.0003 0.526 0.907 0.643 

   Wealth 0.003 <.0731 0.004 <.1486 0.015 <.0498 -0.002 <.5535 0.195 0.237 0.041 

   Neighborhood Poverty 0.000 <.8745       
   

% Mediated 0.272 0.257 0.312 0.271 
   

R squared 0.266 0.252 0.273 0.269 
   

N 7493 2534 2501 2458       
Note: All data from the Health and Retirement Study (n = 7,493). A tertile variable was constructed that classified each participant into 
groups of equal size representing those living in low, moderate, and high poverty areas. 
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