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each date. The random forest uses these spatial and temporal features from the raw CNN scores plus the spatial standard
deviation to generate a prediction for the test sample and the dense prediction.

The logic behind this second stage approach is that destruction is not only serially correlated, but also spatially clustered.
We separate this step from the deep learning stage for maximum flexibility and modularity. This allows us to vary
the information set that we use in the second stage model. In particular, we experimented with using only spatial
information and different temporal lag structures and discuss their relative importance below.

Data Generation

As a final step we train the second stage on all available data and predict values for every patch-period combination
in our data. This simulates the data generation problem where the trained architecture is used to interpret all patches
at all points in time including those patches that had missing labels. The result is what we call dense predictions and
this forms the raw material for additional validation exercises. As reported in column (2) of Table 1, the result is a
panel dataset of destruction predictions at the patch level for six cities with varying time periods with over 3 million
patch-time observations.

Results

Overall Performance
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(a) Precision Using First-stage Only.
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(b) Second-stage Precision Improvement. (c) Patch-Wise Second Stage Destruction Prediction Scores for Aleppo City, Syria.

Figure 3: (Top Left) Precision-Recall Curve, Unbalanced Versus Balanced Sample. Reported performance is in the 30%
training sample either by up-sampling the positives to reach a 1:1 sample (orange curve) or by evaluating at the original
sample proportions (blue curve). (Bottom Left) Precision-recall curve, unbalanced sample. First stage model versus two
alternative second stage models. As in Figure a) blue curve shows performance after the first stage. Dashed maroon
curve shows performance after the second stage which uses training of a random forest on temporal and spatial leads
and lags in the training sample. Dotted purple curve shows performance when using only spatial lags and no additional
temporal information. (Right) Average second stage dense patch-wise destruction prediction scores for Aleppo city,
Syria. Green color indicates low prediction scores, red color indicates high prediction scores. Color bins reflect deciles
of second stage fitted values with full spatial and temporal smoothing. Sources: Google Earth/Maxar satellite imagery,
UNITAR/UNOSAT damage annotations, and author calculations.

Our first stage CNN classifier achieves an Area Under the Curve (AUC) of 0.86 in the test sample of the first stage
(i.e. with the raw output from the CNN) and an AUC of 0.92 after the second stage random forest procedure (see
Figure S4). The associated ROC curve implies a true positive rate of 0.8 is achieved a false positive rate of 0.17. At
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Table 2: Model performance when varying second-stage module in the unbalanced sample
(1) (2) (3) (4)

First- Second-stage (CNN+RF)
stage

(CNN)
City raw with

spatial
leads/lags

with
spatial &
temporal
leads/lags

with
spatial &
temporal
leads/lags

precision precision precision AUC

Aleppo 16.1 16.9 35.7 91.5
Daraa 4.2 4.6 11.7 89.0
Deir-Ez-Zor 11.0 12.1 21.7 80.0
Hama 54.5 65.2 68.0 91.0
Homs 25.8 34.9 55.2 85.7
Raqqa 12.8 17.4 32.1 87.6

All 24.5 28.7 42.5 90.7
Note: first-stage predictions from convolution neural network (CNN)
and second-stage predictions from random-forest model (CNN+RF)
with spatial leads/lags (column 2) and spatial and two temporal
leads/lags (columns 3 and 4). Columns (1) through (3) report the
average precision and column (4) the "Area Under the Curve" (AUC).
Sources: Author calculations based on Google Earth/Maxar satellite
imagery and UNITAR/UNOSAT damage annotations.

a more conservative, higher threshold for a positive classification a true positive rate of 0.5 is associated with a false
positive rate of only 0.025. However, the class imbalance is extremely relevant here. The ROC curve and its AUC are
classification performance measures which are not affected by class imbalance in the sample and therefore do not allow
us to discuss the impact of class imbalance in our sample. In what follows, we therefore focus on precision statistics to
highlight the problem of unbalanced classes in applications of automated destruction detection.

Figure 3 summarizes our main results across cities. The top left panel (a) presents two precision-recall curves from the
test sample which depict the out-of-sample performance of our classification approach. The dashed orange curve plots
the precision-recall trade-off in the balanced sample. The average precision here is 0.86 and the curve suggests a very
mild trade-off with a precision of over 0.9 at a recall rate of 0.5, for example. In contrast, the solid blue line depicts the
performance of the same model when taking into account unbalanced classes that the automated destruction detection
would face in the actual application in the test sample. Clearly precision is much lower with the average precision being
a mere 0.24. For a recall rate of 0.5 the first stage reaches a precision of below 0.2. This illustrates impressively how
class imbalance in real application can change the precision-recall trade-off in this exercise.

In the bottom left panel (b) we illustrate the improvement in precision that we achieve by applying the second stage.
The figure compares precision-recall curves for the first stage (solid blue line), as in panel (a), with the improvements
from the second stage models, all evaluated in the unbalanced test sample. The second stage average precision increases
to 0.29 with only spatial smoothing (dotted purple line) and 0.43 with temporal and spatial smoothing (dashed maroon
line). This highlights a key insight from our experiments with the modular second stage. The use of temporal smoothing
is absolutely crucial for reaching better precision in the second stage. The gains of the spatial smoothing are relevant in
some cases but the real boost in performance arises when using temporal information to validate predictions coming out
of the first stage.

In panel (c) of Figure 3, we show an example of the final output of our methodology - the continuous dense prediction
scores generated from the second stage. The figure shows the average patch-wise dense predictions across the entire
city of Aleppo, including no-analysis zones. Red color indicates high predicted scores and green indicates low scores.
Generally, the red areas coincide with the destruction annotations in Figure 1. In addition, roads and parks are clearly
visible as dark green (lowest destruction probability) or yellow patches. This is not only evidence of the power of our
approach in picking up housing destruction, but it also shows how the classifier has learned that roads and parks are
never destroyed buildings.
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(a) Raw Satellite Image 06/12/2016 (b) Continuous Prediction Scores 06/12/2016 (c) Binary Predictions 06/12/2016

(d) Raw Satellite Image 09/18/2016 (e) Continuous Prediction Scores 09/18/2016 (f) Binary Predictions 09/18/2016

Figure 4: Example of Raw Satellite Images (left panel) and Second-stage Patch-wise Continuous Predictions Scores
(middle panel) and Binary Classification (right panel) for Ramouse Neighborhood of Aleppo, Syria. Before (first row)
and after (second row) heavy weaponry attacks. Green color indicates low prediction scores, red color indicates high
prediction scores. Color bins reflect deciles of fitted values. Binary classification cutoff optimized to reach 50 percent
recall in the test sample. Satellite image recording dates: 06/12/2016 (before) and 09/18/2016 (after). Approximate
image centroid location: 36.1525 decimal degrees North and 37.1332 East. Sources: Google Earth/Maxar satellite
imagery and author calculations.

The Role of the Second Stage Module

The second stage plays a key role for boosting performance to levels that imply practical gains from automatizing
destruction monitoring in our sample. It is important to consider that, while the cities in our sample are all in the same
country, they are of different size, have different building types and are situated in different landscapes with a variety of
vegetation and seasonal changes. In addition, label and image availability differ dramatically. As shown in Table 1 the
vast majority of images in our sample comes from Aleppo due to its large size and elevated image availability - less than
one third of all images come from other cities (Table S3 summarizes the results from training on Aleppo exclusively). If
our approach can adapt to these very different conditions it means we can be optimistic about applications elsewhere.

Table 2 provides details on the performance improvements through the second stage procedure by city. In column
(1) we report performance of the first stage by city. This reveals strong differences in performance across cities with
average precision ranging from a mere 4.2 percent for Daraa to an impressive 54.5 percent for Hama (for corresponding
precision-recall curves, see Figure S5). To a large degree this is driven by sample imbalances where Daraa suffered
only 1 percent of destroyed patches on average whereas Hama suffered almost four times as much.

The second stage boosts this performance substantially. This is most notable for the worst performing cities for which
precision improves two- to threefold in the full model (column 3). How does the full model achieve this improvement
in performance? Table 2 confirms the role of the temporal smoothing shown in Figure 3. However, the city-by-city
analysis also reveals interesting differences across cities where Homs and Hama seem to benefit more from the spatial
smoothing. In both cities, destruction is indeed clustered heavily in some neighborhoods so that this clustering might be
useful in reinforcing patch-wise predictions in the second stage. Our predictions for Daraa, Deir-Ez-Zor and Aleppo
rely much more on repetition and temporal smoothing. We confirm the role of temporal smoothing in Table S5 by
varying temporal lags and providing performance estimates without spatial smoothing.
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