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Abstract  

Objective. Motor-imagery (MI) classification base on electroencephalography (EEG) has been 

long studied in neuroscience and more recently widely used in healthcare applications such as 

mobile assistive robots and neurorehabilitation. In particular, EEG-based motor-imagery 

classification methods that rely on convolutional neural networks (CNNs) have achieved relatively 

high classification accuracy. However, naively training CNNs to classify raw EEG data from all 

channels, especially for high-density EEG, is computationally demanding and requires huge 

training sets. It often also introduces many irrelevant input features, making it difficult for the 

CNN to extract the informative ones. This problem is compounded by a dearth of training data, 

which is particularly acute for MI tasks, because these are cognitively demanding and thus fatigue 

inducing. Approach. To address these issues, we proposed an end-to-end CNN-based neural 

network with attentional mechanism together with different data augmentation (DA) techniques. 

We tested it on two benchmark MI datasets, Brain-Computer Interface (BCI) Competition IV 2a 

and 2b. In addition, we collected a new dataset, recorded using high-density EEG, and containing 

both MI and motor execution (ME) tasks, which we share with the community. Main results. Our 

proposed neural-network architecture outperformed all state-of-the-art methods that we found in 

the literature, with and without DA, reaching an average classification accuracy of 93.6% and 

87.83% on BCI 2a and 2b, respectively. We also directly compare decoding of MI and ME tasks. 

Focusing on MI classification, we find optimal channel configurations and the best DA techniques 

as well as investigate combining data across participants and the role of transfer learning.  

Significance. Our proposed approach improves the classification accuracy for MI in the 

benchmark datasets. In addition, collecting our own dataset enables us to compare MI and ME and 

investigate various aspects of EEG decoding critical for neuroscience and BCI. 

Keywords: EEG, motor imagery, CNN, Attentional mechanism, Data augmentation, Transfer 

learning 
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1. Introduction 

Advances in brain science and computer technology in the past decade have led to exciting 

developments in Brain-Computer Interfaces (BCI), thereby making BCI a key research area in 

applied neuroscience and neuro-engineering [1]. Non-invasive BCI facilitates new methods of 

neurorehabilitation for physically disabled people (e.g., paralyzed patients and amputees) and 

patients with brain injuries (e.g., stroke patients) [1]. BCI systems utilize recorded brain activity 

to directly communicate between the brain and computers to control the environment in a manner 

compatible with the individual’s intentions [2].  

However, the ability to decode intentions is also an important tool for basic neuroscientific 

research. In particular, it strongly enhances the scientific armamentarium used to investigate 

volition [3, 4]. And, more specifically, decoding intention in real time would open the door to 

interesting experimental possibilities, such as interventions to facilitate or frustrate intentions [5-

7], and intention-contingent stimulation [3]. Technological advances of recent decades—such as 

untethered, wireless recording, machine-learning-based analysis, and real-time analysis of raw 

EEG signal  have increased the interest in electroencephalography (EEG) based BCI approaches 

[8]. 

EEG has proved to be the most popular brain-imaging method for BCI because it is inexpensive, 

noninvasive, directly measures neural activity (as opposed to fMRI for example), and can facilitate 

portability to clinical use [2]. EEG signals thus serve as pathways from the brain to various external 

devices, resulting in brain-controlled assistive devices for disabled people and brain-controlled 

rehabilitation devices for patients with strokes and other neurological deficits [1, 9, 10]. One of 

the most challenging topics in BCI is finding and analyzing the relations between recorded brain 

activity and underlying models of the human body, of biomechanics, and of cognitive processing. 

The investigation of relations between EEG signals and—real and imagined—upper limb 

movement has gained more attention in recent years [11, 12].  

To implement an EEG-based BCI system for a particular application, a specific experimental 

protocol and paradigm must be chosen for all phases of the experiment. Typically, the participant 

first performs a particular task (e.g., a motor-imagery task, a visual task) to learn how to modulate 

their brain activity, while EEG signals are simultaneously recorded from their scalp. Using the 

recorded EEG as training data, a machine-learning-based neural decoder for the paradigm is then 

constructed [1]. Finally, the participant performs the task again, and the neural decoder is used for 

BCI control.  

The process for BCI systems based on motor imagery (MI) is similar. Though, in this case, the 

participant imagines the movement rather than actually executing it [11]. Previous studies have 

confirmed that imagination activates areas of the brain that are responsible for generating actual 

movement [1, 13]. The most common MI paradigms reported in literature are based on 

sensorimotor rhythms (SMR) and imagined body kinematics. In the SMR paradigm (e.g., [14, 15] 

participants imagined kinesthetic movements of some body part—such as hands, feet, or tongue—

which result in modulations of brain activity that are trackable using EEG [16]. Imagined 

movement in such SMR paradigms often causes event-related desynchronization (ERD) in mu 

(typically 8-12 Hz) and beta rhythms (roughly 12-30 Hz). In contrast, relaxing after MI results in 

event-related synchronization (ERS) [17]. The ERD and ERS modulations are most prominent in 

EEG signals acquired from electrode locations C3 and C4 (in the 10/20 international system); these 

electrodes are approximately above the motor cortices of both brain hemispheres.  
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 3 

MI classification is one of the most popular EEG-based BCI paradigms. EEG MI classification 

generally consists of four parts: signal acquisition, feature extraction, classification, and control. 

Most existing feature-extraction methods depend on manually designed features, based on human 

knowledge. Feature extraction and classification of EEG signals for MI tasks have been attempted 

in the time, frequency, and space (electrodes) domains—not necessarily mutually exclusively. 

Time-frequency feature extraction in EEG has focused mostly on short-time Fourier transform [18, 

19] or wavelets [20, 21]. In the space domain, filter-bank common spatial-patterns (FBCSP) has 

achieved notable performance [22, 23]. However, FBCSP uses a fixed temporal duration, ignoring 

difference between participants. As such, it does not make full use of time-domain information. 

Moreover, these methods generally use handcrafted features and require heuristic parameter 

setting—e.g., predefined frequency bands—which often do not generalize well across tasks and 

participants [24]. As such, they often result in limited classification accuracy [20, 25, 26].  

 

2. Related work 

Recently, researchers have successfully used deep learning (DL) to perform automatic feature 

extraction [27] and classification [24, 28-30]. DL has achieved breakthrough accuracies and 

discovered intricate structures in various complex and high-dimensional data [31, 32]. In 

particular, it has provided promising results in the analysis and decoding of EEG signals [33]. 

Thus, NN architectures, their training procedures, regularization, optimization, and hyper-

parameter settings are all active area of research in DL-based analysis of EEG, with advances often 

resulting in dramatic increases in decoding accuracy [33]. 

Recently, Zhang et al., proposed a hybrid DL architecture, which combined convolutional neural 

networks (CNNs) and long short-term memory (LSTM) models to handle sequential time domain 

data [34]. Even more recently, Dai et al., proposed an architecture composed of a CNN with a 

hybrid convolution scale (HS-CNN), which separates a signal into three frequency bands using 

bandpass filters at 4∼7 Hz, 8∼13 Hz, and 13∼32 Hz. The three frequency bands are then fed into 

the convolutional layers with different filter sizes [24]. The features, including different semantic 

information, were concatenated and then MI classification was carried out. In another study, Zhang 

et al., applied an attention module to LSTM to utilize long-range information for EEG-based hand-

movement classification [35].  

Despite their promise, these deep NN architectures are not easy to train from scratch, because they 

require large amounts of training data to achieve high classification accuracy. However, it is 

particularly challenging to obtain a large amount of training samples for MI classification. This is 

because gathering high-quality data requires training and experience as well as a state-of-the-art 

EEG machine and a noise-free environment. MI tasks are also time consuming and fatigue-

inducing for the participants. For example, during the task, participants must minimize, if not 

altogether avoid, eye movements and other muscle contractions, especially around the head. At 

the same time, they typically need to employ a great deal of concentration and attention during MI 

tasks. Thus, participants can only produce a limited amount of data at each session and must come 

in for multiple sessions to construct a large dataset of EEG MI. This often results in attrition over 

the course of multiple sessions.  

Data augmentation (DA) can lead to considerable performance gains for DL, reducing overfitting 

and increasing overall accuracy and stability. DA generates new samples to augment an existing 

dataset by transforming existing samples in some systematic manner. Exposing the classifiers to 

various transformations of the training samples, as DA does, makes the models more robust and 
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invariant to these and potentially other transformations when attempting to generalize beyond the 

training set [36-38].  

DA is an especially important technique for EEG-based BCI because of its specific combination 

of two factors: the dimensionality of EEG signals tends to be high, while the number of available 

training samples tends to be low. In a recent systematic review on DA in EEG, Lashgari et al. 

collected all the papers that used DA for NN-based analysis of EEG up to and including 2019 [33]. 

They showed that convolutional neural networks (CNN) were the most popular NN architectures 

for EEG MI classification and typically resulted in accurate decoding. This is likely because CNNs 

are well suited to end-to-end learning, scale well to large datasets, and can exploit hierarchical 

structure in natural signals. The review also found that the most common input formulation for 

motor tasks and MI was raw EEG signals [33].  

With these elements in mind, here we investigated the efficacy and generalizability of deep 

learning on EEG-based decoding of MI. We designed an end-to-end CNN with an attentional 

mechanism [39]. This is because a CNN with an attention-mechanism architecture can improve 

classification performance using EEG signals by focusing on essential, task-relevant features on 

different time-steps.  

We begin by testing this architecture on 2 benchmark datasets (BCI Competition IV 2a and 2b) as 

well as on the dataset that we collected, which we share with the community. Then, we compare 

MI to ME on the dataset that we collected. Next, we tackled a common question when collecting 

EEG data: how many channels to record for optimal decoding accuracy? We thus compared the 

decoding accuracy for different numbers of channels. It has also been demonstrated that DA 

techniques hold promise for EEG decoding. So, we also tested how much DA can boost the 

accuracy of our method across the datasets. How much EEG data is needed to train deep NN is 

also not well understood, especially in relation to DA techniques. We therefore next investigate 

how the accuracy of our model depends on the amount of data on which we train and the type and 

amount of DA we use. Of course, structure and anatomical features vary across brains. So, we 

further investigated what happens to the decoding accuracy when we train and test it on EEG from 

single participants, on pair of participants, triplets, and so on. In the interest of understanding how 

well models of EEG decoding generalize to previously unseen participants, we also investigated 

what happens when we train the model on all but one participant and then test on that remaining 

participant, with and without transfer learning.  

  

3. Methods 

 

3.1. Proposed CNN-based neural-network architecture 

Convolutional models have been successful in many signal processing applications, as they allow 

temporally related inputs to be processed together via a sliding-window approach (Figure 1). This 

produces shared weights, where the same weight kernel is applied across the temporal domain (for 

a 1D convolutional model over time). In our architecture (Figure 1), this reduces the number of 

parameters needed in such a model and enables the signal to maintain its spatial relations—across 

time within each electrode and across electrodes over the head. The signal from each electrode 

channel is fed through the same convolutional base to produce an output matrix of dimension 

𝐶 × 𝐸, where 𝐶 is the number of electrodes (or channels) and 𝐸 is the size of the embedding 
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 5 

dimension (Figure 1). Hence, the convolutional layers in effect reduce the dimension of the input 

to the embedding dimension, 𝐸.  

 

Now, in the self-attention part of the network [39, 40], we first initialize the weights for the Query 

(Q), Key (K), and Value (V). The magnitudes of Q, K, and V are derived by the product of the 

input (I) and the weights. The second step is to calculate the attentional score (S): 𝑆 = 𝑄𝐾𝑇. The 

shape of S will be 𝐶 × 𝐶.  The Softmax (W) of S is calculated to return a vector of C x 1. The third 

step is to find the weighted values (M), 𝑀 = 𝑊𝑉𝑇. Each input’s value for M is concatenated to 

return a shape of C x C, which will be the value for the final Attention. 𝑇𝑎𝑛ℎ was used to produce 

the alignment score. In the following, the equations show more details: 

 

 I     Input for self-attention, shape (number of channels (C) x the 

size of the embedding dimension (E)) 

Key, Value, Query Initialize weights for key, value and query with shape of input 

size (C x E) 

 

K = I x 𝐾𝑒𝑦𝑇 

V = I x 𝑉𝑎𝑙𝑢𝑒𝑇 

Q = I x 𝑄𝑢𝑒𝑟𝑦𝑇 

 

Derive key, query, and value 

Shape (C x C) 

𝑆 =  𝑄 ⋅  𝐾𝑇 Calculate attention score by dot product (C x 1) 

𝑊 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑆) Calculate Softmax (C x 1) 

 

𝑀 =  𝑊 ×  𝑉 Multiply scores with value 

𝑂 =  𝑡𝑎𝑛ℎ (𝑀 ×  𝑊𝑇)     Linear transformation of M 

 

The attention layer discussed above is added after the convolutional base (Figure 1), so that each 

electrode channel is computed with every other channel to produce a matrix of scalar values. 

Summing across rows and normalizing these scalars produces a vector of attention scores. These 

scores are used to create a linear combination of all the electrode channel vectors, which is passed 

to the fully connected layers of the network for classification. A valuable part of this model is 

therefore its interpretability [5, 41, 42]. The attention scores for each electrode channel can be 

examined to determine the importance of each electrode in the model's prediction. However, in 

this study we were not interested in the added interpretability that the attentional mechanism 

affords us. Instead, we relied on the attentional mechanism to improve the prediction accuracy of 

our architecture. This is because a CNN with attention-mechanism architecture can improve 

classification performance using EEG signals by focusing on essential, task-relevant features on 

different time-steps, via the sliding windows. Table 1 shows the summary of the proposed NN 

parameter.
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 6 

 

 

Figure 1. Our proposed CNN with attentional mechanism. (A) The sliding window (length is 1000ms and step-size is 100ms) 

applied to 64 EEG channels. (B) The 64 segments of raw EEG signal, depicted in orange in (A). Each time window and channel 

are separately sent through shared convolution layers. The embedded features I (C x E) applied to self-attention. The output of 

self-attention passes through 2 dense layers. (C) An expansion of the self-attention block. 

 

Table 1 Summary of the proposed CNN with attentional mechanism parameters (“-1” represents a flexible shape, essentially the 

batch size) 

Layer (Type) Output Shape         Param # Shared convolutional layer 

Convolution 1D             [-1, 16, 64]             816 x64 

Convolution 1D              [-1, 16, 6]  12,816 x64 

Max Pooling 1D             [-1, 16, 3]               0 x64 

1D Vector [-1, 48]              2,304 0 

Attention [[-1, 64, 48], [-1, 64, 64]] 4,608 0 

Dense [-1, 32]             98,336 0 

Dense [-1, 2]             66 0 

Total parameters 977,762   
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3.2. Hyperparameter Optimization and Training 

When implementing NN there are several choices (or hyperparameters) that must be set prior to 

training—those range from the type of architecture to the depth and width of the layers, through 

to the neuronal activation-function in the different layers, and so on. Choosing hyperparameters 

arbitrarily is likely to lead to suboptimal results. To address this, we first created a 3-way split of 

our data into a training, validation, and test sets to identify reasonable architectures and parameter 

ranges. Then, guided by those preestablished ranges, we conducted NN optimization via a 

Bayesian hyperparameter search using SHERPA [43], a Python library for hyperparameter tuning. 

The Bayesian search has the advantage of learning a distribution over the hyperparameters of the 

network architecture, in relation to the task to be optimized. By employing this procedure, we were 

able to evaluate a large space of possible models and test many configurations.  

We detail the hyperparameters of interest in Table 2, as well as the range of available options 

during the search. The hyperparameters of interest consisted of the activation function, dropout 

percentage, learning rate, learning rate decay, nodes per layer, and the optimizer. Additional 

hyperparameters for convolutional models included the number of filters and the kernel size. We 

tried 250 different hyperparameter settings for each network architecture (Dense NN, Conv Net-

Dense NN, Conv Net-Attention-Dense NN), for a total of 750 models over 3 different NN (Dense 

NN, Conv Net-Dense NN, Conv Net-Attention-Dense NN). Table 3 present the result of best 

hyperparameters tuning by SHERPA for the 3 datasets: BCI competition IV 2a (BCI 2a), BCI 

competition IV 2b (BCI 2b), and our dataset and for 3 different models (Dense, CNN-Dense, and 

CNN-Attention-Dense). 

For the 3 datasets examined in this study, we adhered to the following procedure. For each set of 

hyperparameters sampled in the search, we partitioned each subject's data into a training and 

validation set. The proposed architecture was thus trained on each subject separately. Then, to 

evaluate the architecture, we averaged the validation accuracy scores across subjects. We then 

selected the network architecture with the highest average accuracy score across all subjects. 

Critically, this process ensures that we find architectures that perform well across subjects, but 

which are not tailored to specific subjects or tasks. 

All networks were trained for 250 epochs using an early stopping condition—i.e., when the 

accuracy on the validation set did not improve for 25 epochs, training stopped. All models were 

trained using 10-fold cross-validation. The partitioning was stratified to ensure a constant ratio of 

representation amongst right and left examples—roughly 50/50—in keeping with the ratio in the 

data overall. This cross-validation procedure requires a given model to be trained 10 distinct times 

(re-initializing the network parameters each time) and ensures that, on the one hand, different 

subsets of the data are used for training and testing, while on the other hand, each datapoint serves 

as part of the training set (9 times) and in the test set (once). To be clear, when we performed cross 

validation, we used data partitions that were not used during the hyperparameter search. The 

accuracies reported below are therefore always the average accuracies across the 10 validation sets 

described above.  

To double check our results, we carried one additional train/validation/test split of 75/15/10%, 

respectively. After this train/validation/test procedure, we ended up with neural architectures that 

were the same as those selected by the cross-validation procedure above—both in terms of the 

number of layers and the kernel size. This gave us confidence that our results are not due to some 

leakage between the training and test sets. Our cross-validation procedure allowed us to report 
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 8 

confidence scores, in the form of average accuracies and standard deviations. It also demonstrated 

that we did not cherry pick a data partition in which the proposed architectures happened to 

perform well; rather, our models were robust across partitions.  

Training took place on NVIDA Titan V GPUs with 12GB of memory. Each epoch took less than 

a minute to complete. Training for a single fold typically completed within 30 minutes.  

 

Table 2. The hyperparameter space 

Name Range Type 

Activation (ReLU, ELU) Choice 

Dropout (0, 0.9) Continuous 

Kernel Size (25, 50, 75) Choice 

Learning Rate (0.0001, 0.1) Continuous 

Learning Rate Decay (0.5, 1.0) Continuous 

Number of Dense Nodes (8, 512) Discrete 

Number of Filters (16, 32, 64) Choice 

Optimizer Adam, SGD, RMSProp Choice 
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Table 3 Hyperparameter tuning by SHERPA for 3 the datasets (BCI 2a, BCI 2b and our experimental dataset) for 3 different 

models (Dense, CNN dense, and CNN attention dense) 

dataset Model 

K
er

n
el

 S
iz

e
 

A
ct

iv
a

ti
o
n

 

D
ro

p
o

u
t 

L
ea

rn
in

g
 R

a
te

 

L
ea

rn
in

g
 R

a
te

 

D
ec

a
y

 

N
u

m
b

er
 o

f 
fi

lt
er

s 

D
en

se
 N

o
d

es
 

O
p

ti
m

iz
er

 

BCI 2a 

Dense NN NAN ReLU 0.171 0.017 1 NAN 27 Adam 

Conv Net-Dense NN 25 ELU 0.092 0.052 1 64 303 SGD 

Conv Net-Attention-Dense NN 25 ELU 0.9 0.1 1 32 91 SGD 

BCI 2b 

Dense NN NAN ReLU 0.845 0.001 0.864 NAN 289 Adam 

Conv Net-Dense NN 50 ReLU 0 0.1 1 16 15 SGD 

Conv Net-Attention-Dense NN 25 ELU 0 0.1 1 64 263 SGD 

Our dataset 

Dense NN NAN ReLU 0.687 0.037 1 NAN 369 SGD 

Conv Net-Dense NN 25 ReLU 0.68 0.034 0.989 32 196 SGD 

Conv Net-Attention-Dense NN 50 ELU 0.807 0.1 0.978 32 183 SGD 

 

3.3. Data augmentation 

Generally, in machine learning, but especially for NN, the classification accuracy tends to critically 

depend on the amount of training data; limited training data typically leads to low accuracy. DA 

comprises the systematic generation of new samples to augment an existing dataset by 

transforming existing samples in a manner that increases the accuracy and stability of classification 

[33]. Exposing the classifiers to varied representations of its training samples typically makes the 

model more invariant and robust to such transformations when attempting to generalize the model 

to new datasets. DA for the MI task fell into 5 categories in our analysis: noise addition [44, 45], 

GAN [46-49], sliding window [30, 50, 51], Fourier transform [38], and recombination of 

segmentation [24]. Table 4 shows more details about each of these methods. We evaluate all DA 

techniques with a magnification factor 𝑚 = (2, 5, 10, 15, 20, 30, 50) for our proposed CNN. 
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Table 4. DA techniques that are used on the MI task 

DA methods Details of the method 

Sliding window 

[30, 50, 51] 

Sliding window over the input of each trial, which leads to many more training examples for 

the network compared to using than the entire. More formally, given an original trial 𝑋𝑗 ∈
ℝ𝐸×𝑇, with 𝐸 electrodes and 𝑇 timesteps, we create a set of crops with crop size 𝑇′ as time 

slices of the trial: 𝐶𝑗 = (𝑋
1,…,𝐸; 𝑡,…𝑡+𝑇′
𝑗

|𝑡 ∈ 1, … 𝑇 − 𝑇′). All of these 𝑇 − 𝑇′ crops then 

become training examples for our CNN and will get the same label, 𝑦𝑗, as the original trial. 

The best results in the BCI dataset are for 1s window length. In this study, we tried to evaluate 

this technique with different 𝑚 and 100 ms step-size. 

Noise Addition 

[44, 45] 

We found two main categories for adding noise to the EEG signals in purpose of DA: (1) 

Add various types of noise such as Gaussian, Poisson, Salt and pepper noise, etc. with 

different parameters (for instance: mean (𝜇) and standard deviation (𝜎) to the raw signal (2) 

Convert EEG signals to sequences of images and add noise to the images [33]. Our 

proposed end-to-end CNN is for raw EEG. Therefore, we add noise just on the raw EEG 

signal. We add Gaussian noise with different parameters (mean = 0, standard deviation 𝜎 =
(0.01, 0.1, 0.2, 0.5) to all channels of raw EEG signal.  

GANs 

[46-49]s 

The GAN framework consists of two opposing networks trying to outplay each other [52]. 

The discriminator (𝐷) is trained to distinguish between real and fake input data. The 

generator (𝐺) takes a latent noise variable 𝑧 as input and tries to generate fake samples that 

would not be recognized as fake by the discriminator. To learn a generator distribution 𝑝𝑔 

over data 𝑥, the generator builds a mapping function from a prior noise distribution 𝑝𝑧(𝑧) to 

data space as 𝐺(𝑧; 𝜃𝑔). And the discriminator, 𝐷(𝑥; 𝜃𝑑), outputs a single scalar representing 

the probability that 𝑥 came from training data rather than 𝑝𝑔.  𝐺 and 𝐷 are both trained 

simultaneously: we adjust parameters for 𝐺 to minimize 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)) and adjust 

parameters for 𝐷 to minimize 𝑙𝑜𝑔𝐷(𝑥) [52]. This results in a minimax game in which the 

generator is forced by the discriminator to produce ever better samples with value function 

𝑉(𝐺, 𝐷): 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷 𝑉(𝐷, 𝐺) =  𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] +  𝔼𝑧~𝑝𝑧(𝑧)[log (1 − 𝐷(𝐺(𝑧)))]. 

GAN can be extended to a conditional model if both generator and discriminator are 

conditioned on some extra information such as 𝑦. In conditional generative adversarial nets 

(cGANs) 𝑦 could be any kind of auxiliary information, such as class labels or data from other 

modalities. We can perform the conditioning by feeding 𝑦 into the both the discriminator and 

generator as additional input layer. In the generator the prior input noise 𝑝𝑧(𝑧), and 𝑦 are 

combined in joint hidden representation, and the adversarial training framework allows for 

considerable flexibly in how this hidden representation is composed. In the discriminator 𝑥 

and 𝑦 are presented as inputs and to a discriminative function. The objective function of a 

two-player minmax game would be as: 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷 𝑉(𝐷, 𝐺) =  𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥|𝑦)] +  𝔼𝑧~𝑝𝑧(𝑧)[log (1 − 𝐷(𝐺(𝑧|𝑦)))]. 
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Recombination of 

segmentation 

[24] 

Perform segmentation on the input trials (i.e., left-/right-hand MI) with the same label. Each 

trial is segmented into three crops. The crops with the same labels are then recombined to 

generate new trials. For the same person and the same class, the crops at the same position 

from multiple trials are randomly swapped and recombined in the time/frequency domain to 

generate recombined trials [24].  

Fourier 

Transform/Wavelet 

[38] 

Apply the empirical mode-decomposition algorithm on the EEG frames and mixed their 

intrinsic mode functions to create new, artificial EEG frames [38]. The algorithm decomposes 

the original EEG signals into a finite number of functions called “intrinsic mode functions” 

(IMFs). Once the signal has been decomposed, we can recover it by adding all the IMFs and 

the residue without loss. To generate the new samples, we swapped the IMFs of the 

decompositions. Moreover, the intrinsic characteristics of each class (left/right) will be 

preserved because we mixed the IMFs of the same class. We randomly select the trials that 

contribute with their IMFs to generate samples for specific class. 

 

3.4. Dataset and experimental protocol 

We used three datasets in this study: (1) A dataset that we collected ourselves, (2) the BCI 2a 

dataset [53], and (3) the BCI 2b dataset [54] (Figure 2). 

Our dataset: Seven healthy volunteers (3 male and 4 female) participated in the study, all were 

right-handed and between the ages of 23 to 30 (mean age 28). All participants gave written, 

informed consent to participate in the study. Participants were seated in a chair at a distance of 80 

cm from an LCD screen with both hands resting on a Table. They held a tennis ball in each hand 

and were told to remain relaxed and strive to minimize movement and eye blinks. When required 

to respond, they were to squeeze the tennis ball in their hand but try to avoid tensing their arms or 

shoulders. Each session (ME and MI—Figure 2) was repeated twice. The whole experiment thus 

consisted of four sessions. Every session lasted 30–40 minutes with 10 to 15 minutes breaks 

between sessions. The duration of the whole experiment, including setup, was kept below 3 hours 

to minimize fatigue. EEG data was recorded and sampled at 250 Hz using 64 active electrodes 

(BrainVision actiCHamp) placed according to the 10/20 montage. Bipolar electromyography 

(EMG) electrodes were placed on the Brachioradialis for both hands as a sanity check for any 

movement in MI session. 

Sessions 1 and 3 were designed to identify EEG signals related to ME. Participants were instructed 

to squeeze the tennis ball with their right or left hand while fixating on the cross displayed on the 

screen. They were encouraged to minimize all other movement and to only use the designated 

hand. One hundred trials were collected for each hand.  

Session 2 and 4 aimed to show that a decoding model based on actual ME, derived from the first 

session, could be used to decode EEG activity in the absence of execution. Participants were 

instructed to carry out MI of the repetitive hand movement instructed in session 1 while fixating 

on the cross displayed on the screen. One hundred trials were collected for both left and right 

imagination per each session. All other aspects of the task were identical to session 1. This session 

also allowed us to screen participants for the presence of motor-related EEG oscillations, and at 

least minimal voluntary control over these oscillations. Hence, overall, we collected 200 trials of 
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ME and 200 trials of MI for each subject. The data underlying this study have been uploaded to 

figshare.  

Data are available from the following link: https://doi.org/10.6084/m9.figshare.14721297.v1 

 

BCI 2a: BCI 2a contains EEG data from 9 healthy participants [53], 2 sessions per participant. 

Each session is made up of 288 trials, resulting in 5184 trials overall. No feedback was provided. 

Twenty-two Ag/AGCL channels were used to record EEG. The signals were sampled with 250 Hz 

and bandpass filtered between 0.5-100 Hz. To compare our results with previous studies ([24], 

[55], [56] etc.)we focused on the C3, CZ, and C4 electrodes. 

BCI 2b: BCI 2b contains EEG data from another 9 healthy participants [54]. For each participant, 

5 sessions of data are collected. Each of the first 2 sessions has 120 trials and each of the last 3 

sessions has 160 trials. The total number of trials is thus 6480. Two types of trials are included in 

these datasets: left- and right-hand MI. The first 2 sessions contain training data without feedback, 

while the last three sessions gave a smiley face as feedback. The EEG data is again collected over 

the C3, CZ, and C4 electrodes, which were placed following the international 10–20 system. The 

sampling frequency was 250 Hz. Table 5 presents the summary of three datasets. 

 

Table 5. Summary of the 3 datasets used in this study: Our experimental dataset, BCI 2a, and BCI 2b 

  
Experimental 
dataset BCI 2a BCI 2b 

The dataset provided by The Institute for 
Interdisciplinary Brain and 
Behavioral Sciences, 
Chapman University 

The Institute for Knowledge 
Discovery (Laboratory of Brain-
Computer Interfaces), Graz 
University of Technology 

The Institute for Knowledge Discovery 
(Laboratory of Brain-Computer 
Interfaces), Graz University of 
Technology 

Open-source dataset Yes Yes Yes 

Description of dataset 2-class MI and ME (left 
hand and right hand). 
Session 1 and 3 are ME and 
2and 4 MI, No feedback. 

4-class MI (left hand, right hand, 
both feet, and tongue.                                      
No feedback 

2-class MI (right hand, left hand). The 
first two sessions contain training data 
without feedback, and the last three 
sessions with smiley feedback. 

# Channels 64 EEG channels (0.5-100Hz 
-BrainVision actiCHamp 

22 bipolar EEG channels (0.5-
100Hz; notch filtered) 

3 bipolar EEG channels (0.5-100Hz; 
notch filtered) 

Sampling frequency 250 Hz 250 Hz 250 Hz 

# Subjects 7 9 9 

# Sessions per subject 4 2 5 

# Trials per session 100 288 120 for first 2 sessions and 160 trials 
for last 3 session 

Total trials for each subject 400 576 720 

Total trials in the dataset 2800 5184 6480 
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Figure 2 The experimental paradigms for our experimental dataset, BCI 2a, and BCI 2b. 

  

3.5 Channel selection 

Analyzing dense-array EEG is computationally expensive and complex; it also typically requires 

more expensive EEG systems than those with sparser electrodes. We therefore tested 4 different 

electrode configurations on our participants—which included 3, 7, 18, or all 64 electrodes (see 

Methods)—to further test the effect of channel selection on classification accuracy for MI in our 

own dataset.  

Configuration (1) C3, CZ, and C4 electrodes were chosen in accordance with the 10-20 framework 

[57] since these electrodes have been shown to be especially discriminatory in hand and foot 

movements data [58]. It should be noted that right (left) hand's MI operation is usually detected 

above the left (right) motor cortex underneath the C3 (C4) electrode, and the foot's MI action is 

typically captured by the CZ electrode.  

Configuration (2) The brain's frontal, central and parietal lobes are important from a neurological 

perspective for MI commands. We therefore also focused on these 7 electrodes (i.e. F3, F4, C3, 

CZ, C4, P3 and P4), which reside above these lobes of interest according to the 10-20 standard are 

considered in criteria 2 [57].  
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Configuration (3) Electrodes that are generally placed around the left and right motor cortices are 

included in this configuration because they are related to MI. According to 10-20 electrode 

montage [57], 18 electrodes lie around motor cortex. These are labelled C5, C3, C1, C2, C4, C6, 

CP5, CP3, CP1, CP2, CP4, CP6, P5, P3, P1, P2, P4 and P6 [59, 60].   

Configuration (4) We used all 64 EEG channels.  

In Figure 3, we showed these four configurations. 

 

  

Figure 3. Four different electrode configurations on the actiCAP—which included 3, 7, 18, and all 64 electrodes 

 

4. Results 

 

4.1- Performance of the proposed CNN (Neural architectures 

vs. Neural architectures) 

To evaluate the performance of our proposed CNN, we conducted comparisons between the Dense 

NN, Conv Net-Dense NN, Dai et al. (2020), and Conv Net-Attention-Dense NN (Figure 4). The 

baseline Conv Net is identical to the Conv Net-Attention-Dense NN but lacks the attention module 

(see Methods, Figure 1, Table 1). The dense network sends all channels through 2 dense layers, 

then it concatenates all the vectors into a single one and sends that through 2 more dense layers. 

We used SHERPA for hyperparameter optimization for all 4 types of networks [43].  We also 

reproduced the proposed NN in Dai et al. (2020) [24] without the use of DA to compare it with the 

proposed CNN with the attentional mechanism.   
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Figure 4 Comparison the average validation accuracy (±SE) on the BCI 2a and BCI 2b datasets with Dense, CNN, Dai et al. 

(2020), and CNN-Attention-Dense (See section 2.1 and 2.2). 

Table 6 represents the classification results of our proposed CNN (with the attentional mechanism) 

without DA and with DA, which resulted in the highest accuracy for both datasets. Those are 

further compared against the results of Dai et al. [24]. All classifications were carried out on the 

BCI 2a and BCI 2b datasets. The average accuracy in Dai et al. (2020) for BCI 2a and BCI 2b 

were 91.57% (±5.73) and 87.6% (±8.48), respectively. In comparison, our proposed method with 

DA (GAN and m=15) achieved an average accuracy of 93.6% (±2.59) for BCI 2a and 87.83% 

(±6.34) for BCI 2b. Hence, our method has a higher average accuracy than Dai et al. (2020) while 

maintaining less variability in the accuracy across participants for both datasets. For the BCI 2a, 

our proposed method was 90.54% or higher for all participants while Dai et al. (2020) got this 

accuracy just for 5 of 9 participants (56%). Furthermore, we reproduced the NN described in [24] 

without the use of DA to compare with our proposed CNN with the attentional mechanism without 

DA. Our results on the BCI 2a and 2b datasets were 89.11% (±3.77) and 86.28% (±7.41), 

respectively, outperforming those of [24] at 75.61% (±14.63) and 78.88% (±11.42), respectively. 

Again, our results were also less variable than theirs.  

Table 7 further compares our results with various other state-of-the-art methods. As is apparent 

from the Table, our results outperform all others, typically by a wide margin. On average, our 

method is 16.44 % and 7.21% more accurate than the other method for the 2a and 2b datasets, 

respectively. What is more, even without DA, our method has a higher average accuracy than all 

other methods except for Dai et al. (2020). And, with DA, our method beats all other methods, 

including Da. et al.’s.  
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Table 6. Participant-by participant comparison of the proposed CNN with attentional mechanism—with and without DA—

against Dai et al. [24] results on the BCI 2a and BCI 2b datasets. 

 BCI 2a BCI 2b 

Participant 
Dai et al. 

(2020)[24] 

 Reproduced 
the result  in 
[24] (without 

DA) 

Proposed method 
without DA 

Proposed method 
with DA (GAN 

m=15) 
[24] 

 Reproduced 
the result 
(without 

DA) 

Proposed 
method 

without DA 

Proposed 
method with DA 
(sliding window 

m=2) 

1 90.07% 69.77% 91.58% 95.38% 80.50% 70.83% 81.64% 84.13% 

2 80.28% 65.62% 89.67% 91.25% 70.60% 63.24% 73.17% 77.92% 

3 97.08% 97.91% 91.89% 91.25% 85.60% 62.64% 81.50% 83.64% 

4 89.66% 69.45% 90.05% 96.12% 94.60% 97.84% 98.61% 99.18% 

5 97.04% 62.51% 91.28% 95.05% 98.30% 80.95% 93.83% 94.97% 

6 87.04% 62.48% 90.97% 94.62% 86.60% 80.28% 85.22% 85.83% 

7 92.14% 66.66% 81.38% 91.22% 89.60% 84.58% 86.57% 86.57% 

8 98.51% 90.64% 91.20% 90.54% 95.60% 86.05% 89.90% 90.50% 

9 92.31% 95.46% 83.95% 97.50% 87.40% 83.47% 86.05% 87.73% 

AVG 91.57% 75.61% 89.11% 93.60% 87.60% 78.88% 86.28% 87.83% 

S.D. 5.73 14.63 3.77 2.59 8.48 11.42 7.41 6.34 

S.E. 1.91 4.87 1.26 0.87 2.83 3.81 2.47 2.11 
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Table 7. Comparison of our proposed method (with and without data augmentation) with other state-of-the-art methods. All 
methods were run on the same dataset (BCI 2a and/or BCI 2b). 

 [61] [62] [63] [56] [64] [29] [18] [65] [66] [67] [55] [68] [24] 

Proposed 

method 

(without 

DA) 

Proposed 

method 

(with DA) 

Dataset 2b 2b 2b 2a/2b 2b 2b 2b 2b 2a 2a/2b 2a/2b 2a 2a/2b 2a/2b 2a/2b 

S1 77.0 70.0 80.0 63.69/73.2 84.6 81.0 76.0 72.5 88.9 90.28/70.3 66.7/62.8 91.5 90.07/80.5 91.58/81.64 95.38/84.13 

S2 64.5 60.0 66.0 61.97/67.5 66.3 65.0 65.8 56.4 51.4 57.64/50.6 63.9/67.1 60.6 80.28/70.6 89.67/73.17 91.25/77.92 

S3 61.0 61.0 53.0 91.09/63 62.9 66.0 75.3 55.6 96.5 95.14/52.8 77.8/98.7 94.2 97.08/85.6 91.89/81.50 91.25/83.64 

S4 96.5 97.5 98.5 61.72/97.4 95.8 98.0 95.3 97.2 70.1 65.97/93.8 63.2/88.4 76.7 89.66/94.6 90.05/98.61 96.12/99.18 

S5 82.0 92.8 93.5 63.41/95.5 89.2 93.0 83.0 88.4 54.9 61.11/63.8 72.2/96.3 58.5 97.04/98.3 91.28/93.83 95.05/94.97 

S6 84.5 81.0 89.0 66.11/86.7 97.9 88.0 79.5 78.7 71.5 65.28/74.1 70.1/75.3 68.5 87.04/86.6 90.97/85.22 94.62/85.83 

S7 75.0 77.5 81.5 59.57/84.7 82.1 82.0 74.5 77.5 81.3 61.11/61.9 64.6/72.2 78.6 92.14/89.6 81.38/86.57 91.22/86.57 

S8 91.0 92.5 94.0 62.84/95.9 86.3 94.0 75.3 91.9 93.8 91.67/83.1 76.4/87.8 97.0 98.51/95.6 91.20/89.90 90.54/90.50 

S9 87.0 87.2 90.5 84.46/92.6 97.1 91.0 73.3 83.4 93.8 86.11/77.2 77.1/85.3 93.9 92.31/87.4 83.95/86.05 97.50/87.73 

AVG 80 80 83 68.32/84.1 84.7 84 77.6 78 78.01 74.92/69.7 70.2/81.6 79.93 91.57/87.6 89.11/86.28 93.60/87.83 

S.D. 1.3 1.5 1.6 1.3/1.5 1.4 1.3 0.9 1.6 1.9 1.7/1.6 0.7/1.4 1.7 0.6/0.9 0.4/0.8 0.3/0.7 

 

4.2- Properties of our collected dataset 

There are several available BCI datasets [53, 54, 69]. However, we wanted to investigate several 

open questions in neuroscience and BCI that were outside the scope of the available datasets. So, 

we took the time and effort to collect our own dataset, which we are now sharing with the 

community. First, we wanted to test and directly compare the performance of our proposed 

attentional CNN on ME, MI, and their combination. In particular, we wanted to track the decoding 

accuracy over time via a sliding-window approach. We therefore increased the duration of the 

motor-imagination period from 2-3s to 4-6s to gain more insight and track the changes in decoding 

accuracy over time.  

Second, BCI datasets typically instruct subjects to make trivial movements, such as pressing a 

button. We wanted to test our subjects on a less trivial paradigm, that requires them to exert some 

force. We therefore had our subjects squeeze a tennis ball (ME) or imagine doing that (MI). We 

expected this to make our classifier more robust against variety of MI tasks. This is vindicated by 

recent evidence that decoding attempted handwriting movements results in much higher accuracy 

than attempted typing [70]. 

Third, most of the BCI datasets for MI focused on electrodes above the motor region—such as C3, 

C4, and Cz [54].  We wanted to test to what degree general, high-density EEG recordings across 

the cortex (to the extent that those brain regions are accessible to EEG) contribute to the 

performance of an MI classifier. This also let us investigate the extent to which channel selection 

is useful in MI classification. Forth, an additional goal of our study was to evaluate the role of DA 

in MI classification. So, we needed a large enough dataset to be able to compare classification 

results when training our classifier on only a portion of the dataset. Altogether we recorded 400 

trials pers subject (200 each for ME and MI, see Methods).  
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4.3- Motor Imagery vs. Motor Execution  

MI could be described as kinesthetic anticipation of corresponding overt ME without producing 

an actual motor output. Jeannerod  stated that MI is functionally equivalent to its ME counterpart 

[71]. More specifically, MI is related to the preparation of ME and represents meaningful 

neurophysiological dynamics of human motor functions [72]. Consequently, both MI and ME are 

accompanied by activation in common sensorimotor areas, such as the primary motor area (M1), 

supplementary motor area (SMA), and premotor cortex (PMC) [71, 72]. The neurophysiology 

underlying MI may differ in healthy people and patients with motor-impairing conditions [73]. 

MI-based BCI may further augment the motor learning process in healthy participants [74]. What 

is more, in patients with impaired motor functions, MI is often the only viable option to drive 

rehabilitative BCI, because these patients cannot perform overt ME [73]. The individuality and 

severity of motor impairments impact the underlying neurophysiology; for example, post-stroke 

neurophysiology relies on lesion locations [75]. Additional work is needed to further delineate the 

roles of MI and ME in motor learning or relearning for both healthy and impaired participants to 

refine the design of BCI for supplementing the motor learning process.  

Our own dataset enables us to directly compare ME and MI within each participant. In our task, 

the participants were presented with the cue for 1 s, then saw a blank screen for 1 s, and finally 

began ME or MI for 4 s (see Methods). However, Dai et al. (2020), only used 2 s of MI. To better 

compare our results to theirs, we ran a sliding window analysis only for the first 2 s of the 4-s-long 

ME or MI period. We used window sizes of 100 ms, 300 ms, 500 ms, 1 s, and 2 s, with the step 

size fixed at 100 ms (see Figure 4 and Methods) on the data from all 64 channels. With this 

analysis, we would expect to see a rise in the accuracy leading up to the moment when the 

participants needed to begin ME or MI. Further, as participants were supposed to execute or 

imagine the movement for 4s, we expected the accuracy to then generally plateau over this after 

the above rise (similarly to Salvaris & Haggard, 2014 for example).  

The left column in Figure 5 represents the average validation accuracy over all 7 participants and 

the right column is specifically for Participant 4. Both show the accuracy of the running-window 

analysis and over the first 4 s after cue onset for 3 analyses: ME only, MI only, and the combination 

of ME and MI trials. The window shown at the 4 s mark is from 3900 to 4000 ms for the 100 ms 

window, for 3700 to 4000 ms for the 300 ms window, and so on. 

Our method’s accuracy on ME is greater than on MI (Figure 5), which is consistent with previous 

findings about ME versus MI [76]. The average validation accuracy for the combination of MI and 

ME (All) is also greater than MI. Looking at the variability among the different window sizes, we 

see more variability in the ME condition than the MI or combined condition, on average. Our 

averaged results over all participants also align with our expectations, in that the accuracy rises 

from chance toward the beginning of the ME and MI periods and then generally plateaus (again, 

compare with Salvaris & Haggard, 2014).  
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Figure 5. Validation accuracy of sliding-window analysis in ME (top), MI (middle), and ME and MI combined (bottom). The left 

column is the accuracy over time averaged across all 7 participants. The right column depicts the accuracy for the participant 

with the highest overall accuracy in the ME condition (Participant 4).  

 

4.4- Channel selection 

Analyzing dense-array EEG is computationally expensive and complex; it also typically requires 

more expensive EEG systems than those with sparser electrodes. Therefore, in this study we tested 

4 different electrode configurations on our participants—which included 3, 7, 18, or all 64 

electrodes (see Methods)—to further test the effect of channel selection on classification accuracy 

for MI in our own dataset.  

The validation accuracy of the 7 participants for the 4 different channel-configurations are shown 

in Figure 6. In Table 8, the validation accuracy for each participant and the average accuracy 

across all participants are shown. The 18-channel layout had the highest accuracy, at 81.73% 

(±2.5).  
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Figure 6. Validation accuracy for different channel configurations on the 7 participants of our dataset 

 

Table 8. Validation accuracy for different channel selections on our dataset for single participants and the average over all 

participants. For each participant, we present mean ± SE over trials. In the bottom row, we present mean ± SE over participants.  

Participant 3 channels 7 channels 18 channels 64 channels 

1 74.75(±4.3) 75.25(±2.2) 83.25(±4.1) 81.18(±8.9) 

2 72.25(±4.2) 72.50(±4.9) 71.75(±4.1) 75.22(±4.3) 

3 68.01(±3.9) 70.01(±4.1) 74.75(±4.3) 72.05(±3.2) 

4 87.69(±5.4) 89.62(±3.2) 92.31(±3.6) 70.03(±3.1) 

5 83.50(±6.3) 85.01(±3.3) 84.50(±5.7) 68.08(±2.2) 

6 83.00(±4.2) 83.50(±6.7) 83.51(±5.8) 67.33(±1.6) 

7 83.50(±3.4) 82.01(±6.7) 82.01(±5.9) 66.41(±2.4) 

AVG (±𝑺. 𝑬. ) 78.95(±𝟐. 𝟕) 79.70(±𝟐. 𝟕) 81.73(±𝟐. 𝟓) 71.47(±𝟏. 𝟗) 

 

 

4.5- Data augmentation 

We used 5 types of DA for the MI task: noise addition [44, 45], GAN [46-49], sliding window [30, 

50, 51], Fourier transform [38], and recombination of segmentation [24]. Table 9 represents the 

result of different DA techniques on the BCI 2a, BCI 2b and our dataset for 64 channels and 18 

channels. We evaluate all DA techniques with magnification factor 𝑚 = (2, 5, 10, 15, 20, 30, 50) 

for the proposed CNN. For Fourier transform, we used the same technique as in  [38]. For noise 

addition, we opted for Gaussian noise with 𝜇 = 0, 𝜎 = (0.1, 0.2, 0.5).  

cGANs allow generation based on a class assignment [43]. In this study, the GAN had 2 different 

conditions that were implemented: In order to provide context about the task, the first GAN model 

Page 20 of 36AUTHOR SUBMITTED MANUSCRIPT - JNE-104598.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 21 

generates a sample conditioned on the participant’s decision—i.e., left vs. right. The second GAN 

model applies finer granularity by conditioning not only on left vs right but also the electrode 

channel. When generating data, the conditional inputs provide additional information and allow 

the model to tailor its outputs with greater detail (see Table 4). Figure 7 illustrates the architecture 

of cGAN in our work:  

 

Figure 7 Our proposed cGAN model. In the generator (G), the prior input noise and label are combined into a hidden 

representation. In the discriminator (D), Real Data (i.e., raw EEG data) and the Label are presented as inputs to a 

discriminative function. The contents of all purple boxes in the architecture are the same and are expanded at the bottom left. 

We also evaluated sliding-window technique (lengths 𝑙 = 1000 𝑚𝑠 with sampling frequency 250 

Hz and step-size 100 𝑚𝑠). Table 9 demonstrated that GAN (conditional left vs. right and channels) 

with m=15 resulted in the best accuracy (93.6%) for BCI 2a dataset while Sliding Window (500 

ms windows and 100 ms step size) with m=2 achieved the best accuracy (87.83%) for BCI 2b 

dataset. For our dataset, Fourier Transform with m=15 for 64 (86.61%) and 18 (83.42%) channels, 

respectively. The BCI 2a dataset had a magnification factor of 15 for the best result compared to 

a magnification factor of only 2 for BCI 2b. This might be because we did not include 

neurofeedback within our experimental paradigm. Decoding neurofeedback dataset has less 

complexity which is why BCI 2b dataset was seen to have a smaller magnification factor of 2. Our 

dataset did not include neurofeedback in the paradigm similarly to the BCI 2a dataset.  
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Table 9. Comparison of different DA techniques with different magnification factors and hyperparameters for BCI 2a, BCI 2b, 

and our experimental dataset (for 64 channels and 18 channels) 

  
DA 

techniques 

Fourier-

Transform  
Noise Addition GAN 

Sliding 

Window 

Dataset 

parameter 

for each 

DA 

(EMD) σ =0.1 σ =0.2 σ =0.5 
Conditional 

(left vs. right) 

Conditional 

(left vs. right 

and 

channels) 

 Sliding 

window of 

length 1s 

(step-size: 

100 ms) 

BCI 2a 

M
a

g
n

if
ic

a
ti

o
n

 f
a

ct
o

r 2 0.8671 0.9056 0.8982 0.8768 0.9133 0.9025 0.8948 

5 0.8652 0.8999 0.8849 0.8908 0.9240 0.9092 0.8904 

10 0.8822 0.8902 0.8920 0.8721 0.9087 0.9217 0.8992 

15 0.8858 0.8988 0.8756 0.8750 0.9358 0.9360 0.8949 

20 0.8932 0.8898 0.8975 0.8904 0.9193 0.9300 0.9092 

BCI 2b 

M
a

g
n

if
ic

a
ti

o
n

 f
a

ct
o

r 2 0.8535 0.8647 0.8614 0.8575 0.7939 0.8511 0.8783 

5 0.8391 0.8746 0.8696 0.8558 0.7747 0.8624 0.8747 

10 0.8339 0.8677 0.8668 0.8560 0.7733 0.8582 0.8726 

15 0.8228 0.8660 0.8717 0.8551 0.7601 0.8646 0.8749 

20 0.8217 0.8736 0.8677 0.8535 0.7611 0.8708 0.8691 

Our dataset 

(64 channels) 
 

M
a

g
n

if
ic

a
ti

o
n

 f
a

ct
o

r 2 0.8442 0.8146 0.7548 0.7720 0.7914 0.8159 0.7904 

5 0.8305 0.7743 0.7844 0.7897 0.8377 0.7945 0.7933 

10 0.8377 0.7907 0.7885 0.7793 0.8024 0.8044 0.8033 

15 0.8661 0.7775 0.7541 0.7556 0.8184 0.7824 0.8362 

20 0.8560 0.7521 0.7826 0.7886 0.7994 0.8052 0.7990 

Our dataset 

(18 channels) 

 

M
a

g
n

if
ic

a
ti

o
n

 f
a

ct
o

r 2 0.8124 0.8051 0.8056 0.8079 0.8045 0.8174 0.8190 

5 0.8010 0.8179 0.8121 0.8090 0.7969 0.8156 0.8224 

10 0.7988 0.8123 0.8162 0.8048 0.7965 0.8020 0.8312 

15 0.7954 0.8203 0.8141 0.8047 0.7842 0.8015 0.8342 

20 0.7963 0.8209 0.8051 0.8048 0.7875 0.8102 0.8277 

 

 

4.6- Different portions of dataset 

 

A dearth of data is a common problem when training machine-learning models on neuroimaging 

data. We therefore wanted to systematically test to what degree DA can compensate for the reduced 

availability of data. We thus randomly selected 100%, 75%, 50%, or 25% of the samples in our 

dataset. And we tested the accuracy of DA on these different proportions of our dataset for different 

DA techniques and magnification factors (Table 10). Fourier transform resulted in the best 

accuracy for 100%, 75%, and 50% of the data, with 86.61%, 88.26%, and 86.18% accuracy, under 
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magnification factors 15, 5, and 10, respectively. When using only 25% of the data, GAN 

(conditional left vs. right and channels) was the best DA technique in terms of accuracy, with 

82.18% and a magnification factor of 15. 

 

Table 10. Accuracies for different proportion of our dataset with different DA techniques  

  
  

DA 

techniques 

Fourier-

Transform  
Noise Addition GAN 

Sliding 

window 

Proportion 

of dataset 

 
Parameter 

for each 

DA 

(EMD) σ =0.1 σ =0.2 σ =0.5 

Conditional 

(left vs. 

right) 

Conditional 

(left vs. 

right and 

channels) 

 Sliding  

window  

of length  

125 

100% 

M
a

g
n

if
ic

a
ti

o
n

 f
a

ct
o

r 2 0.8442 0.8146 0.7548 0.772 0.7914 0.8159 0.7904 

5 0.8305 0.7743 0.7844 0.7897 0.8377 0.7945 0.7933 

10 0.8377 0.7907 0.7885 0.7793 0.8024 0.8044 0.8033 

15 0.8661 0.7775 0.7541 0.7556 0.8184 0.7824 0.8362 

20 0.856 0.7521 0.7826 0.7886 0.7994 0.8052 0.799 

75% 

M
a

g
n

if
ic

a
ti

o
n

 f
a

ct
o

r 2 0.8644 0.7975 0.7886 0.8129 0.7772 0.7927 0.7695 

5 0.8826 0.7856 0.7877 0.7987 0.7997 0.8045 0.7998 

10 0.8707 0.8096 0.7743 0.7921 0.804 0.795 0.798 

15 0.8732 0.7735 0.8013 0.7741 0.778 0.8057 0.8104 

20 0.8625 0.8066 0.7838 0.7814 0.8223 0.8159 0.8158 

50% 

M
a

g
n

if
ic

a
ti

o
n

 f
a

ct
o

r 2 0.8346 0.8116 0.7957 0.7909 0.7743 0.756 0.7669 

5 0.8536 0.7672 0.7687 0.782 0.7754 0.8063 0.7656 

10 0.8618 0.8067 0.8222 0.7695 0.8034 0.7943 0.7503 

15 0.8474 0.8037 0.7969 0.7687 0.7671 0.8151 0.7426 

20 0.8128 0.756 0.801 0.7539 0.8247 0.8069 0.8039 

25% 

M
a

g
n

if
ic

a
ti

o
n

 f
a

ct
o

r 2 0.7422 0.798 0.7868 0.8057 0.7595 0.7731 0.7387 

5 0.7683 0.8016 0.7569 0.7755 0.7714 0.7821 0.7202 

10 0.7417 0.7838 0.7767 0.8087 0.7643 0.8204 0.7256 

15 0.7909 0.7643 0.8187 0.7584 0.7737 0.8218 0.7138 

20 0.7826 0.7643 0.7814 0.7513 0.7731 0.7982 0.7501 

 

4.7- Combination of participants’ EEG signals 

The variability in brain anatomy and even more so functionality among different individuals is 

well known [e.g., 77]. Strong structure-function correspondences is therefore typically derived 

only at the aggregate level [78]. For example, Smith et al. delineated structural differences, 

suggesting that the number of folds and thickness of the cortex could be associated with whole-
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brain functional network [79]. Furthermore, inter-participant variability in brain topography may 

also occurs due to participant-specific cognitive styles and the strategies that different participants 

use to perform the task [80]. This might augment the underlying learning processes—e.g., motor 

and perceptual learning [81]. Intra- and inter-participant variability might be explained by scale-

dependent brain networks in spatial, temporal and topological domains [82].  

Motor variability due to variability in human kinematic parameters—e.g., force field adaptation, 

speed and trajectory, and motivational factors such as level of user engagement, arousal and 

feelings of competence, necessary for performing a motor task—is an integral part of the motor 

learning process [83-85]. What is more, EEG signals are of course measured from the scalp rather 

than directly inside the brain, so they suffer from various signal distortions and technical 

limitations [86]. Given the above, the extent to which machine-learning models can be transferred 

between participants is not completely understood. The EEG patterns associated with motor 

variability could partly explain intra-individual variability in SMR-based BCI [87]. The 

neurophysiological processes underpinning the SMR often vary over time and across participants. 

Inherent intra- and inter-participant variability causes covariate shift in data distributions that 

impede the transferability of model parameters among sessions/participants.  

Given the above, we evaluate the performance of the proposed NN on combinations of data across 

participants. The validation accuracy was averaged over every possible combination for each 

dataset—e.g., all participant pairs, all triplets, etc. After finding all the possible combinations, the 

data was split into training and test for each combination to compute the validation accuracy. The 

averages of the validation accuracy over all the states for the three datasets are reported in Figure 

8 (Top) and differences between group (bottom). As we add more participants, the accuracy 

decreases—but the decreases become smaller. In Figure 8 (bottom), for the BCI 2a and 2b datasets, 

after combining 6 or more participants, we can see the curves plateau. This suggest that our 

proposed CNN was able to learn the important variations of the different EEG signals among the 

different subjects thus achieving stable accuracy.  
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Figure 8. (Top)Validation accuracies for combinations of participants for BCI 2a, BCI 2b, and our experimental dataset. 

(Bottom) line plots of differences between mean validation accuracies of consecutive groups for the 3 datasets. The x axis labels 

are the smaller groups; so, differences between 2 participants and one are plotted above the label “1 participant”, between 3 

and 2 participants above “2 participants”, and so on. 

4.8- Leave-one-participant out and transfer learning 

 

This subsection addresses two separates but closely related tasks. The first, leave-one-out, trains a 

NN on n-1 participants and tests on the remaining nth participant. This task addresses the question 

of how information is shared between different participants’ EEG signals (see section 3.7 Figure 

6, on the x-axis, 8 participants for BCI 2a, BCI 2b and 6 participants for our dataset).  

The second task, transfer learning, pretrains a NN on 𝑛 − 1 participants and fine-tunes to the 𝑛th 

participant [88]. The pre-training phase orients the network weights to extract meaningful 

representations from the data. Then the fine-tuning, where the learning rate is decreased, adjusts 

to the task of interest, the nth participant. For transfer learning, 10-fold cross validation over the nth 

participant was used. Each fold fine-tunes on 9 folds and tests on the held-out 10th fold. Table 11 

shows the result of transfer learning on the BCI 2a, BCI 2b, and our dataset (64 channels and 18 

channels). Figure 9 compared the result with and without transfer learning for all 3 datasets. For 

instance, the validation accuracy without transfer learning on participant 𝑛  is defined by the 

trained model based on combination of the other 𝑛 − 1 participants and is tested on the complete 

dataset of participant 9. However, the validation accuracy with transfer learning on participant 𝑛 

is tuned to the trained model based on combination of the other 𝑛 − 1 participants based on 10% 

of the 𝑛th participant and is tested on 90% of participant 𝑛. 
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Table 11. Leave-one-out and transfer-learning validation accuracy for BCI 2a, BCI 2b, and our dataset (64 and 18 channels) 

Train (participants index) Finetune 

(participant 

index) 

BCI 2a (with transfer learning 

for different participants) 

BCI 2b (with transfer 

learning for different 

participants) 

2-3-4-5-6-7-8-9 1 78.12 78.75 

3-4-5-6-7-8-9-1 2 76.38 71.62 

4-5-6-7-8-9-1-2 3 89.53 79.17 

5-6-7-8-9-1-2-3 4 77.77 97.02 

6-7-8-9-1-2-3-4 5 77.41 83.10 

7-8-9-1-2-3-4-5 6 78.83 81.94 

8-9-1-2-3-4-5-6 7 80.58 81.67 

9-1-2-3-4-5-6-7 8 81.60 87.36 

1-2-3-4-5-6-7-8 9 90.63 84.44 

Train (participants index) Finetune 

(participant 

index) 

Our dataset, 64 channels Our dataset, 18 channels 

2-3-4-5-7-6 1 83.25 83.75 

3-4-5-6-7-1 2 73.01 87.25 

4-5-6-7-1-2 3 76.50 77.50 

5-6-7-1-2-3 4 91.15 92.70 

6-7-1-2-3-4 5 91.01 85.50 

1-2-3-4-5-7 6 82.10 82.50 

1-2-3-4-5-6 7 84.50 86.50 

 

 
 

Figure 9. Validation accuracy for BCI 2a, BCI 2b, and our dataset (64 and 18 channels) with and without transfer learning  
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5. Discussion 

In this study we proposed an end-to-end CNN architecture for EEG-based MI classification. This 

proposed mechanism is used to automatically extract features from raw EEG data (Figure 1 and 

Table 1). The NN optimization used the SHERPA Bayesian hyperparameter search on 3 datasets: 

the BCI Competition IV 2a and BCI Competition IV 2b, which have become benchmarks in the 

field, and a dataset that we collected ourselves (Figure 2; see Methods).  

We began by comparing the architecture we favored, Conv Net-Attention-Dense NN, to two other 

baseline architectures—a Dense NN and Conv Net-Dense NN —as well as to what was, to the best 

of our knowledge, the top result in the field on the benchmark datasets—the architecture described 

in Dai et al. (2020) (see Figure 4). Our CNN-Attention-Dense achieved 93.6% (S.E.: 0.87) and 

87.8% (S.E.: 2.11) accuracy over the BCI 2a and 2b datasets, respectively (Table 6). That is 

6.4% to 13.5% and 4.03% to 5% better than the other architectures for BCI 2a and 2b, respectively 

(Figure 4). We further compared our results with all the papers we could find that classified the 

BCI 2a and 2b datasets and reported participant-by-participant results. For the BCI 2a dataset, our 

proposed EEG MI classification method achieved an improvement of 2.03% to 25.28% over all 

other methods (Table 7). For the BCI 2b dataset, our proposed method achieved an average 

improvement of 0.23% to 18.13% over previous methods (Table 7).  

To the best of our knowledge, our CNN-Attention-Dense architecture achieved the highest 

accuracy thus far for the 2 benchmark datasets—BCI 2a and 2b. On top of that, an additional 

strength of our approach is its automated features extraction, directly from raw EEG. This contrasts 

with most methods, which tend to use handcrafted features and require heuristic parameter setting 

(e.g., predefined frequency bands). Automated features have the advantage of often generalizing 

better across tasks and participants [24]. Another potential advantage of our architecture is that the 

attentional mechanism could potentially lead to more interpretable results. However, we leave the 

explainable-AI facet of our architecture for further, future research. 

The dataset that we collected for this study used 64 electrodes (according to the 10/20 montage; 

Figure 3). It included both ME and MI tasks and enabled us to compare the two tasks. Having all 

3 datasets further enabled us to compare MI with and without neuro-feedback training (datasets 2b 

and 2a, respectively) as well as imagining button presses versus squeezing tennis balls (datasets 

2a and 2b versus our own dataset, respectively).  

A long-standing question in neuroscience and motor control is the extent of shared neural 

mechanisms between MI and ME [76]; though there is a general consensus that MI and ME at 

least share some important neural mechanisms. This similarity has been used in the MI-decoding 

literature, where some attempts to decode MI have relied on ME as training data [3]. Our results 

suggest that it is easier to decode ME than MI, at least when using EEG and relying on our 

decoding methods (Figure 5). Furthermore, we found that, on average, the decoding accuracy 

started at chance and then rose toward the time that participants were required to move or to 

imagine moving. After that it more or less plateaued. Interestingly, though perhaps not 

surprisingly, the accuracy level at the plateau, when using sliding windows, was lower than the 

accuracy for the full 4 s of ME (compare Figures 5 and 6). A likely contributing factor to this is 

that the sliding-window analysis decoded the EEG over shorter time windows than the full 4 s. 

Another long-standing question when decoding EEG, and especially dense-array EEG, relates to 

how many and which electrodes (or channels) to use when recording the task. On the one hand, 

when using all channels (64, in our case), the set-up time for the task is longer, analyzing the larger 

dataset is more complex and computationally expensive, and brain signals unrelated to the task 
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and noise are perhaps more often introduced. On the other hand, using only a limited number of 

channels, there may not be full coverage of brain regions that may be involved in the decision-

making and action-preparation processes. We therefore wanted to identify the appropriate channels 

relevant to the MI task. We thus selected different combinations of channels, according to 10-20 

system standard, based on what is known about the neurophysiology of decision making and action 

formation, [3, 5, 89]. Hence we included different EEG configurations in our study (see Results), 

with 3, 7, or 18, channels around the motor cortex (see Methods), or with all 64 channels [57]. Our 

analysis suggests that, without DA, the 18-channels configuration had the best average accuracy 

(81.73±2.5), at least on our dataset (Figure 6, Table 8), while using all 64 channels resulted in the 

worse accuracy (71.47±1.9). Our results therefore suggest that, for MI decoding, it may be best to 

use only the 18 channels around the left and right motor region rather than all the channels. 

However, that result should be taken with a grain of salt, because when including DA, the tables 

were flipped, and it was the 64-channel configuration that did best, as described above. 

One of the EEG configurations we tested included only 3 channels (C3, Cz, and C4)—this thus let 

us more directly compare our dataset to the two benchmark ones and the results of other studies. 

On those 3 electrodes, we achieved a mean accuracy of 79.95% for our dataset, while our analysis 

resulted in an accuracy of 89.11% and 86.28% for BCI 2a and 2b, respectively—all without DA. 

The higher accuracy for the benchmark datasets over our dataset might be due to the difference in 

tasks, the inclusion of neurofeedback (in BCI 2b), or that they perhaps ran participants who were 

better able to elicit good EEG data. 

One general challenge of EEG decoding, especially with deep NNs, is obtaining enough data to 

train the numerous parameters in these large statistical models. The problem is compounded for 

MI tasks, because they are highly cognitively demanding. So, participants are easily fatigued and 

thus cannot produce a large amount of data in each experimental session. Bringing participants in 

for multiple sessions runs into issues of participant attrition for example. Another issue with 

collecting EEG over multiple session is the non-stationary nature of EEG signals [90]—i.e., the 

statistics of the EEG signals vary across time. As a result, a classifier trained at a specific time 

would tend to generalize increasingly poorly to data recorded at another time that was increasingly 

temporally removed—even for the same participant. This is a challenge for real-life applications 

of EEG, which must often work train on only limited amounts of data.  

Some studies indeed strived for very lengthy data collection paradigms. One study, investigating 

MI control of 3D movement, had participants come back for up to 50 experimental sessions, which 

amounted to more than 20 hours of training per participant in some cases [91]. In another study, 

focusing on an EEG-based stroke-rehabilitation system [92], it took 12 weeks to collect enough 

data for three MI tasks, with each participant participating in 2 sessions per week [92]. While these 

are extreme examples, they highlight how common it is for participants to become fatigued after 

as little as 1 hour or less of data collection [93-95].  

A promising solution to this dearth of data is to use DA, especially when using DL models on EEG 

data [33]. We therefore tested 5 disfferent DA techniques: sliding window, noise addition, GAN, 

Recombination of segmentation, and Fourier transform/wavelet. We further tested different 

magnification factors and hyperparameters (e.g., different window sizes for sliding window, 

various standard deviations for noise addition) for each technique we evaluated. Based on the 

guidelines in Lashgari et al. (2020) we evaluated the accuracy of the proposed method before and 

after DA. Our main objective was to find the best DA technique for each of the 3 datasets above. 

As far as we know, this is the first study to compare these various DA techniques as well as the 

different hyperparameters of the various techniques on benchmark datasets BCI 2a and 2b (see 

Table 9). We found that different techniques work best for different datasets. For BCI 2a, GAN 
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(conditional left vs. right and channels, m = 15) achieved the best accuracy, 93.6%. In contrast, 

sliding window (m = 2) gave the best accuracy for BCI 2b, at 87.83%. The DA step thus clearly 

boosted the performance of our proposed CNN (Table 6) as discussed below.  

Interestingly, the BCI 2a dataset did not include neurofeedback training for the participants, while 

BCI 2b did. At the same time, the DA method that worked best for BCI 2a was a highly complex 

GAN with a large magnification factor, while that for BCI 2b it was a simple sliding window with 

a small magnification factor. So, one possible conclusion is that the neurofeedback training in BCI 

2b, which effectively trained the participants to emit neural activity that would be better classified 

by the classifier, may have led to the superior accuracy from a simpler DA technique.  

We also tested different DA techniques on our own dataset, which included 64 channels (see 

Methods). This achieved an accuracy of 86.61% (m = 15) with Fourier transform (Table 9). Using 

only 18 channels and the sliding-window DA technique (m = 15), we achieved an accuracy of 

83.42%. Hence, using DA, we achieved higher accuracy with 64 channels than with 18 channels. 

Interestingly, without DA, the situation was flipped: the 64-channel data had lower accuracy 

71.47(±1.9) than the 18-channel data 81.73(±2.5) (see Table 8). This suggests that, if one dataset 

has lower accuracy than another without DA, it does not necessarily mean that the first dataset 

would also have lower accuracy than the second after DA. 

As noted above, our accuracies were higher than those of Dai et al. (2020) (Table 6)—which was 

the top result in the field. Besides higher accuracies on average, our accuracies for individual 

participants were 90.54% or higher (Table 6), while Dai et al. (2020) achieved this accuracy or 

higher for just for 5 of the 9 participants. Further, we were interested in the effect of DA on the 

accuracy of their results. But they did not report that for BCI 2a. And we were unable to obtain 

their code. What is more, they did not specify the details of their DA techniques. We therefore 

reimplemented their architecture from their paper, as per the details in their methods, without DA, 

to compare it with our architecture without DA. The accuracy of our proposed CNN without 

DA at 89.11% (±3.8; SE here and below) and 86.28% (±7.4)  outperformed the NN reproduced 

from Dai et al. (2020) at 75.61% (±14.6) and 78.88% (±11.4) for BCI 2a and 2b datasets, 

respectively.   

Following the above, an exciting potential use of DA is to replace lengthy, multi-session data-

acquisition efforts [91, 92]. For brain-imaging studies, it would decrease the time and funds that 

researchers need to spend on data collection and reduce the inconvenience of participants. This is 

especially pertinent for situations where gathering additional data is financially, ethically, or 

otherwise difficult. Though DA would of course come at the expense of additional training time 

for the statistical models. We tested this by training on only some of the training set—25, 50, 75, 

or 100% (see Table 10)—while testing different DA techniques on the remaining data. 

We therefore tested the extent to which data augmentation could replace gathering more data, at 

least for the dataset that we collected (Table 10). More specifically, we collected 400 trials from 

each participant (see Methods) and used different proportions of the MI dataset (100%, 75%, 50% 

and 25%) to train the model. We then augmented those different proportions of the dataset with 

various DA techniques that have different magnification factors. Our aim was to test the effects of 

those DA parameters on classification accuracy (Table 10). With 100%, 75% and 50% of the data, 

m =15, 5, and 10, using Fourier transform achieved the highest accuracies, that were overall 

similar, at 86.61%, 88.26%, and 86.18% accuracy. Yet, classification based on just 25% of the 

data, m=15 and GAN (conditional left vs. right and channels) resulted in a lower accuracy, 82.18%. 

It might be that the smaller dataset required a more sophisticated DA technique that for the other 
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proportions was needed to achieve its best accuracy. Though this accuracy was clearly lower than 

for the other proportions of data. This hints at the limits of DA for EEG.  

 

It is well known that there is general anatomical similarity as well as structure-function 

correspondence among humans. But the anatomy of different brains also differs, at least to some 

extent, as does the structure-function correspondence. So, brain science typically operates at the 

aggregate level [78]. In particular, Smith et al. delineated structural differences, suggesting that 

the number of folds and thickness of the cortex could be associated with whole-brain functional 

networks [79]. Furthermore, inter-participant variability in topography occurs due to participant-

specific cognitive style and strategy to perform a task over time [96], which could augment the 

underlying learning processes, e.g., motor and perceptual learning [81]. 

This question has clear implications for the analysis of EEG over groups of participants. We 

therefore wanted to investigate to what extent the number of participants over which we trained 

and tested our machine-learning model reduced the classification accuracy of the statistical model 

over that group. We thus trained and tested our model on all individual participants, on all pairs of 

participants, all triplets, quadruplets, and so on (Figure 8). It appears that, for all 3 datasets, the 

accuracy dropped most markedly between training and testing on individual participants to training 

and testing on pairs. Then there were diminishing decreases going from pairs to triplets, triplets to 

quadruplets, and so on, leading to roughly a plateau from groups of 6 participants and on. This 

suggests that the costs associated with inter-individual differences in brain structure and activity 

outweigh the benefits of the additional data when training over a group of participants. Though the 

decoding accuracy appeared to stop decreasing and reached somewhat of a plateau after around 6 

participants. Future work, with a larger number of participants, could test the hypothesis that the 

accuracy would begin to rise again when training and testing over enough additional participants. 

One reason that this could happen is that the introduction of an ever-increasing number of 

additional participants might end up more than compensating for the neural variability between 

different brains. In other words, the advantages of the increasingly larger data available to train the 

model would outweigh the disadvantages of the variability across additional brains. Testing this 

hypothesis is left for future studies.  

Following the discussion of inter-participant brain variability above, another key question in EEG 

analysis and especially for classification using DL is the extent to which a machine-learning model 

that was training on one group of participants could be generalized to new participants [97]. Put 

differently, we were wondering to what extent transfer learning, which has been increasingly used 

in the machine-learning literature, especially of late [98-100], would be useful for EEG 

classification using DL. We tested this by directly comparing two analyses. In the first, we trained 

a model on all but one participant and then tested it on that remaining participant (i.e., leave-one-

participant-out classification). The second analysis comprised of again training on all but one 

participant, but then using transfer learning and finetuning the model on one part of the left-out 

participant. Finally, we tested the model on independent data from that participant (see Results 

3.7). Our results clearly indicated that transfer learning led to higher accuracy than leave one out 

(Figure 9)—an increase in accuracy of 16.66%, 11.35%, and 18.6% for BCI 2a, BCI 2b, and for 

our dataset, respectively. This demonstrates the clear advantages of transfer learning for EEG 

analysis using DL. With DL models getting increasingly complex, the ability to finetune them for 

new participants rather than retrain them from scratch becomes increasingly important. In addition, 

our results suggest that the BCI community could use transfer learning with EEG to train a model 

on an existing dataset and then improve its performance for a new participant using only finetuning 
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of the model [98, 101]. According to our results, this could markedly improve the performance of 

BCI classifiers.  

Due to the good classification performance of our proposed neural-network architecture and the 

relatively simple data processing, without prior manual feature extraction, our method holds 

promise for online, real-time, EEG-based classification of MI. It is left to future work to test how 

well the system will work in real time. Further, based on our results, it seems useful to use transfer 

learning between participants in a real-time paradigm. Furthermore, our neural-network 

architecture uses an attentional mechanism that helps identify the most salient brain regions that 

drive the network’s classification ability. However, we leave the analysis of these brain regions 

for future work.  
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