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Quaternionic Hermitian spinor systems
and compatibility conditions

Alberto Damiano∗, David Eelbode† and Irene Sabadini

(Communicated by G. Gentili)

Abstract. In this paper we show that the systems introduced in [12] and [22] are equivalent,
both giving the notion of quaternionic Hermitian monogenic functions. This makes it possible to
prove that the free resolution associated to the system is linear in any dimension, and that the first
cohomology module is nontrivial, thus generalizing the results in [22]. Furthermore, exploiting the
decomposition of the spinor space into sp(m)-irreducibles, we find a certain number of “algebraic”
compatibility conditions for the system, suggesting that the usual spinor reduction is not applicable.

2000 Mathematics Subject Classification. 15A66, 16E05, 30G35

1 Introduction

Classical Clifford analysis can be seen as an elegant tool for studying (elliptic) first-order
differential operators which are invariant with respect to a suitable action of the ortho-
gonal Lie algebra so(m). Since this branch of classical analysis is nowadays to be con-
sidered as an independent field of research, we here only mention the generally accepted
standard references [3, 11, 16] or [8] for an approach through algebraic analysis methods.
Whereas most of the classical work is centered around the Dirac operator ∂x in Rm acting
on functions taking values in either the whole Clifford algebra Rm or the spinor spaces
S, Clifford analysis techniques have also successfully been used to investigate higher spin
Dirac operators such as Rarita–Schwinger operators, see [5, 26], and operators between
more general representation spaces. From a more general point of view, all these dif-
ferential operators arise as projections of the Stein–Weiss generalized gradient ∇ acting
on sections ϕ of suitable (higher) spin bundles on a Riemannian spin manifold M, see
e.g. [25].

∗When part of this research was conducted, the first author was a postdoctoral fellow at the Eduard Čech
Center and was supported by the relative grants.
†When part of this research was conducted, the second author was a postdoctoral fellow supported by the

F.W.O. Vlaanderen (Belgium).
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Recently however, the notions of complex and of quaternionic Hermitian Clifford
analysis were introduced. These are refinements of the classical orthogonal framework
in which two complex Dirac operators (respectively four quaternionic Dirac operators),
commuting with the action of the unitary algebra u(m) (respectively the real symplectic
algebra sp(m)) are studied. The key point is that the Lie algebras underlying the symme-
try of the system can be realized inside the Lie algebra C(2)

2m, allowing one to formulate the
resulting function system in terms of standard objects from the orthogonal setting such as
the Dirac operator ∂x on R2m and spinor spaces. It also means that complex (respectively
quaternionic) Hermitian Clifford analysis allows the study of irreducible sl(m)-modules
within a function theoretical context (respectively sp2m(C)-modules). This theory is still
under full development, we refer e.g. to [1, 2, 4, 14, 24] for the complex setting and
[12, 13, 22] for the quaternionic setting. In this paper, we extend the analysis started
in our paper [10] with the complex Hermitian case to the quaternionic Hermitian case.
In particular, we investigate some algebraic properties of the complex associated to the
Hermitian system which entails some analytic consequences. To this purpose, we will
combine techniques coming from algebraic analysis using computational techniques, see
reference [8], with the language of representation theory, see [15].

The results we obtain show that, despite the fact that quaternionic Hermitian mono-
genic functions in one variable are described by a system of equations (and not by a
unique equation like classical monogenic functions, which are nullsolutions of the Dirac
operator) and have a nontrivial resolution, they possess important properties of functions
in one variable, like the existence of non-removable compact singularities.

The system describing quaternionic Hermitian monogenic functions consists of four
equations which, translated into real components, have several redundancies. In the last
section we describe, at least in low dimensions, the nature of these redundancies.

Acknowledgements. The authors are grateful to the anonymous referee for the careful
reading of the manuscript and the useful comments.

2 Background material

We begin this section by recalling the basic facts which lead to the Hermitian setting. For
a more complete treatment we refer the reader to [14]. Let us consider the orthogonal
vector space R4m endowed with the symmetric real bilinear form BR( · , · ) of signature
(0, 4m). The group SOR(4m) is the real Lie group of automorphisms of R4m of unit
determinant which preserve the inner product associated to BR( · , · ). The choice of a
specific element I4m ∈ SOR(4m) such that I2

4m = −14m allows to define a complex
structure on the vector space R4m. Let us introduce the standard orthonormal basis {ep}
for which BR(ep, eq) = −δpq and let us define the complex structure

I4m = I = diag

{(
0 1
−1 0

)
, . . . ,

(
0 1
−1 0

)}
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where the 2 × 2 matrices are repeated 2m times. The so-called Witt basis in C4m =
R4m ⊗ C is defined by

fp = +
1
2

(e2p−1 − ie2p) and f†p = −1
2

(e2p−1 + ie2p), p = 1, . . . , 2m.

If we set W+ and W− the subspaces of C4m generated by {fp} and {f†p} respectively, we
have that C4m = W+ ⊕W−. Indeed, the operators

π+ =
1
2

(1 + iI) and π− =
1
2

(1− iI)

are mutually annihilating projection operators with fp = π+(e2p−1), f†p = −π−(e2p−1)
for all p = 1, . . . , 2m.

For X ∈ R4m, we have:

π+(X) = Z =

2m∑
p=1

fpzp ∈ C2m, zp = x2p−1 + ix2p

π−(X) = −Z† =

2m∑
p=1

f†pz
c
p ∈ C2m, zcp = x2p−1 − ix2p.

Remark 1. The subspaces W± are eigenspaces of the complex linear map IC with re-
spect to the eigenvalues ±i. Defining BC as the complex extension of BR it is immediate
to verify that W± are isotropic.

Remark 2. The real Lie algebra su(2m) and its complexification sl(2m) can be realized
inside the Lie algebra C(2)

4m of bivectors in C4m, see [14]. This fact implies the possibility
to define, starting from the Dirac operator on R4m, differential operators which are invari-
ant with respect to the action of the special unitary group and which act on functions with
values into irreducible sl(2m)-modules. Those operators are now well known in the case
of Hermitian Clifford analysis, see [1], [2], [4], [24].

In order to introduce the quaternionic Hermitian setting, one could consider the stan-
dard quaternionic Hermitian form ( · , · )H : Hm ×Hm → H as follows:

(q1, q2)H =
m∑
p=1

q̄1
pq

2
p,

where qi = (qi1, . . . , q
i
m), i = 1, 2 and q̄ = x0− ix1− jx2−kx3 denotes the conjugate of

the quaternion q = x0 + ix1 + jx2 +kx3. The subgroup of GLn(H) preserving the above
quadratic form gives rise to the symplectic group Sp(m). It is also possible to introduce
this Lie group by defining another complex structure J4m ∈ SOR(4m) as

J4m = J = diag




0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 , . . . ,


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0
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where the 4× 4 blocks are repeated m times. With this notation one has

Sp(m) ' SOI,J(4m) :=
{
A ∈ SOR(4m) | [A, I] = [A, J ] = 0

}
.

A double cover for this group will be denoted by SpinI,J(4m). Note that I , J can be

associated to two bivectors σI , σJ ∈ R(2)
4m. It turns out that the product σIσJ is a third

bivector σK which can be associated to the element K = IJ ∈ SOR(4m). The vec-
tor spaces generated by either {1, σI , σJ , σK} or {14m, I, J,K} are both isomorphic, as
algebras, to H.

According to [14] we give the following:

Definition 1. Given the complex structures I, J ∈ SOR(4m), we define the projection
operators

Π±± =
1± jJ

2
1± iI

2
: R4m → R4m ⊗H,

where the upper (respectively lower) index refers to ±I (respectively ±J).

Remark 3. The operators Π±± are mutually annihilating idempotents, thus they are pro-
jectors. The subspaces Π±±[R4m] of R4m ⊗H are invariant with respect to the symplectic
group Sp(m) and its Lie algebra sp(m).

Definition 2. We define the four quaternionic Hermitian Dirac operators as Π±±[∂X ],
where ∂X =

∑4m
p=1 ep∂Xp

is the standard Dirac operator on R4m.

The definition is a refinement of the notion of complex Hermitian operators on C2m,
indeed

Π+
+[∂X ] + Π+

−[∂X ] =
1 + iI

2
[∂X ] = +2∂†Z

Π−+[∂X ] + Π−−[∂X ] =
1− iI

2
[∂X ] = −2∂Z .

We have the following proposition:

Proposition 1. The quaternionic Hermitian Dirac operators Π±±[∂X ] commute with the
L-action of SpinI,J(4m) defined by L(s)[f ](x) = sf(s̄xs), and with the derived dL-
action of sp(m); in other words, as operators acting on functions with values in R4m⊗H
we have that

[Π±±[∂X ], L(s)] = 0 = [Π±±[∂X ], dL(B)]

for all s ∈ SpinI,J(4m) and all B ∈ sp(m).
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3 Quaternionic Hermitian monogenic functions

In this section we discuss several equivalent definitions of Hermitian monogenicity. As in
[12] we give the following

Definition 3. Let U be an open set in R4m. A real differentiable function f : U ⊆
R4m → R4m ⊗H is called quaternionic Hermitian monogenic if it satisfies the system

Π+
+[∂X ](f) = Π+

−[∂X ](f) = Π−+[∂X ](f) = Π−−[∂X ](f) = 0. (1)

Remark 4. Since we can rewrite the system as

4Π+
+[∂X ](f) = (∂X + iI[∂X ] + jJ [∂X ] + kK[∂X ])f = 0

4Π+
−[∂X ](f) = (∂X + iI[∂X ]− jJ [∂X ]− kK[∂X ])f = 0

4Π−+[∂X ](f) = (∂X − iI[∂X ] + jJ [∂X ]− kK[∂X ])f = 0

4Π−−[∂X ](f) = (∂X − iI[∂X ]− jJ [∂X ] + kK[∂X ])f = 0

by taking suitable linear combinations of the equations we have that system (1) is equiv-
alent to 

∂X(f) = 0
I[∂X ](f) = 0
J [∂X ](f) = 0
K[∂X ](f) = 0.

(2)

In the paper [22] it has been introduced a notion of quaternionic Hermitian monogenic
functions which turns out to be equivalent to the one given in Definition 3, as we will see
in a while. To this purpose, let us briefly recall some definition from [22]. We first
introduce the quaternionic Witt basis.

Definition 4. The quaternionic Witt basis of H4m := R4m⊗RH, is given by {f`, fα` , f
β
` ,

fγ` }, where

f` = e1+4(`−1) − ie2+4(`−1) − je3+4(`−1) − ke4`

fα` = e1+4(`−1) − ie2+4(`−1) + je3+4(`−1) + ke4`

fβ` = e1+4(`−1) + ie2+4(`−1) − je3+4(`−1) + ke4`

fγ` = e1+4(`−1) + ie2+4(`−1) + je3+4(`−1) − ke4`

for ` = 1, . . . ,m.

We introduce the operator (so-called quaternionic Hermitian vector derivative)

∂q =

m∑
`=1

f`∂q`
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where

∂q` = ∂x1+4(`−1) + i∂x2+4(`−1) + j∂x3+4(`−1) + k∂x4` , for ` = 1, . . . ,m

and its variations

(∂q)
α =

m∑
`=1

(f`∂q`)
α =

m∑
`=1

fα` (∂q`)
α

=
m∑
`=1

(e4`−3 − ie4`−2 + je4`−1 + ke4`)(∂x4`−3 + i∂x4`−2 − j∂x4`−1 − k∂x4`),

(∂q)β =
m∑
`=1

(f`∂q`)
β =

m∑
`=1

fβ` (∂q`)
β

=

m∑
`=1

(e4`−3 + ie4`−2 − je4`−1 + ke4`)(∂x4`−3 − i∂x4`−2 + j∂x4`−1 − k∂x4`),

(∂q)
γ =

m∑
`=1

(f`∂q`)
γ =

m∑
`=1

fγ` (∂q`)
γ

=

m∑
`=1

(e4`−3 + ie4`−2 + je4`−1 − ke4`)(∂x4`−3 − i∂x4`−2 − j∂x4`−1 + k∂x4`).

We can introduce another notation. Let us write

∂q =0 ∂q + i1∂q + j2∂q + k3∂q,

where

0∂q =
m∑
l=1

(e4l−3∂x4l−3 + e4l−2∂x4l−2 + e4l−1∂x4l−1 + e4l∂x4l)

1∂q =
m∑
l=1

(e4l−3∂x4l−2 − e4l−2∂x4l−3 − e4l−1∂x4l + e4l∂x4l−1)

2∂q =
m∑
l=1

(e4l−3∂x4l−1 + e4l−2∂x4l − e4l−1∂x4l−3 − e4l∂x4l−2) (3)

3∂q =
m∑
l=1

(e4l−3∂x4l − e4l−2∂x4l−1 + e4l−1∂x4l−2 − e4l∂x4l−3).

It is immediate to verify that

0∂q =
1
4
(
∂q + ∂αq + ∂βq + ∂γq

)
1∂q = − i

4
(
∂q + ∂αq − ∂βq − ∂γq

)
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2∂q = − j
4
(
∂q − ∂αq + ∂βq − ∂γq

)
3∂q = −k

4
(
∂q − ∂αq − ∂βq + ∂γq

)
.

Definition 5. Let U be an open set in R4m. A real differentiable function f : U ⊆
R4m → H4m is called q-Hermitian monogenic if it satisfies all the four equations

∂qf = ∂αq f = ∂βq f = ∂γq f = 0,

or, equivalently,
0∂qf =1 ∂qf =2 ∂qf =3 ∂qf = 0. (4)

Proposition 2. By choosing suitable complex structures, Definitions 3 and 5 are equiva-
lent.

Proof. If we choose the complex structures I ′, J ′ ∈ SO(4m) defined by

I ′4m = I ′ = diag




0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

 , . . . ,


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0




J ′4m = J ′ = diag




0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 , . . . ,


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0




andK ′ = I ′J ′, the corresponding system (2) written with I ′, J ′,K ′ coincides with (4). 2

Another useful characterization of quaternionic Hermitian functions (in short q-Her-
mitian functions) can be given by introducing in C4m the Witt basis {fp, f†p} with p =
1, . . . , 2m. We define the operators (see [13]):

∂Z =
2m∑
p=1

f†p∂zp J [∂Z ] = i
2m∑
p=1

f2p−1∂z2p − f2p∂z2p−1

∂†Z =
2m∑
p=1

fp∂zcp J [∂†Z ] = i
2m∑
p=1

f†2p∂zc2p−1
− f†2p−1∂zc2p

(5)

where zp = x2p−1 + ix2p and zc denotes its conjugate. We have (see [13]):

Proposition 3. A C4m-valued function f is q-Hermitian monogenic if and only if it satis-
fies the system

∂Zf = ∂†Zf = J [∂Z ]f = J [∂†Z ]f = 0. (6)
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Remark 5. Note that the four operators in (6) are invariant with respect to the action of
the complex symplectic algebra sp2m(C).

Let us now introduce the following notation:

Definition 6. For all 0 ≤ j ≤ 2m, we define the space Sj of homogeneous spinors of
degree j as Sj = Λ†jI, where Λ†j is the subspace generated by the products of j-vectors
f†k ∈W− and I = f1f

†
1 . . . f2mf†2m.

We have the following:

Proposition 4. With respect to the decomposition S =
⊕2m

j=0 Sj we can represent the
Dirac operators appearing in system (6) as the following block matrices with entries in
C[Z,Z†]

∂Z =


0 0 · · · 0 0
d1 0 · · · 0 0

0 d2
. . . 0 0

...
...

. . .
. . .

...
0 0 · · · d2m 0

 (7)

where the i, j-th block is a
(2m
i

)
times

(2m
j

)
matrix of either zeroes or given by the restric-

tion of the Dirac operator di := πSi ◦ [∂Z ]|Si−1
: Si−1 → Si, and

∂†Z =


0 δ0 0 · · · 0
0 0 δ1 · · · 0
...

...
. . .

. . .
...

0 0 0
. . . δ2m−1

0 0 0 · · · 0

 (8)

where δi := πSi ◦ [∂†Z ]|Si+1
: Si+1 → Si. Similarly we have

J [∂†Z ] =


0 0 · · · 0 0
d′1 0 · · · 0 0

0 d′2
. . . 0 0

...
...

. . .
. . .

...
0 0 · · · d′2m 0

 (9)

and

J [∂Z ] =


0 δ′0 0 · · · 0
0 0 δ′1 · · · 0
...

...
. . .

. . .
...

0 0 0
. . . δ′2m−1

0 0 0 · · · 0

 (10)
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in which the blocks d′i, δ
′
i can be obtained from di, δi by the substitutions z2p−1 → −zc2p,

z2p → zc2p−1, zc2p−1 → z2p, zc2p → −z2p−1.

Proof. It is an immediate consequence of the preceding discussion. 2

Proposition 5. The operators ∂Z , ∂†Z , J [∂Z ], J [∂†Z ] satisfy the relations

(∂Z)2 = (∂†Z)2 = (J [∂Z ])2 = (J [∂†Z ])2 = 0
∂ZJ [∂Z ] + J [∂Z ] ∂Z = 0

∂†ZJ [∂Z ] + J [∂Z ] ∂†Z = 0

∂Z J [∂†Z ] + J [∂†Z ] ∂Z = 0

∂†Z J [∂†Z ] + J [∂†Z ] ∂†Z = 0

4(∂Z ∂
†
Z + ∂†Z ∂Z) = 4(J [∂Z ] J [∂†Z ] + J [∂†Z ] J [∂Z ]) = ∆.

Proof. The first and the last relations are well known (see e.g. [10]). The remaining
relations can be proved by direct computation by writing the various operators as in (5). 2

Proposition 6. The relations of the previous proposition translate into the following

di+1di = 0, i = 1, . . . , 2m− 1
δiδi+1 = 0, i = 0, . . . , 2m− 2

di+1δ
′
i + δ′i+1di+2 = 0, i = 0, . . . , 2m− 2,

δ′0d1 = 0,
d2mδ

′
2m−1 = 0,

δiδ
′
i+1 + δ′iδi+1 = 0, i = 0, . . . , 2m− 2

did
′
i−1 + d′idi−1 = 0, i = 2, . . . , 2m

δi+1d
′
i+2 + d′i+1δi = 0, i = 0, . . . , 2m− 2,

δ0d
′
1 = 0,

d′2mδ2m−1 = 0.

Furthermore, setting a and b to be any two symbols within the set {d, δ, d′, δ′}, and choos-
ing any two indices i, j such that j 6= i± 1, we have aibj = 0.

Proof. The first set of relations immediately follows from the previous proposition and
by the description of the operators in matrix form given in Proposition 4. The last set is a
consequence of the fact that the two matrices representing ai and bj are incompatible. 2

Remark 6. It is in fact the case that some extra conditions hold for the operators in the
q-Hermitian system, for instance in the case m = 1 we have d′2 = δ0 and δ′0 = d2.
Such conditions do not really constitute differential conditions, but rather they reflect the
fact that some of the rows of P4m are linearly dependent. In Section 5 we will also give
an interpretation of such “degree zero" relations, which we also refer to as “algebraic
constraints” as opposed to “differential constraints”, from the point of view of symplectic
invariance.
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4 Algebraic analysis of the operators

We begin by the description of the characteristic variety of the module associated to the
q-Hermitian system. In the following, R will denote the polynomial ring C[x1, . . . , x4m].

Definition 7. Let P (D) be the matrix associated to the q-Hermitian system and let P be
the polynomial matrix symbol of P (D) whose rows form a set of minimal generators. We
defineM4m to be R-module given by the cokernel of the map P t.

Theorem 1. The characteristic variety of the R-moduleM4m is given by{
X = (x1, . . . , x4m) ∈ C4m

∣∣∣∣∣
4m∑
i=1

x2
i = 0

}
.

Proof. To show the result we will consider the q-Hermitian system (4). Written in this
form, the system is given by the Dirac operator ∂X = ∂X1 and the variations ∂Xi

,
i = 2, 3, 4 obtained by suitable changes of variables (see (3)). Let us denote the Fourier
transform of the four blocks of the matrix associated to the system by M1, . . . ,M4. Note
that M1 is the matrix whose columns correspond to the vector variable X = X1 and its
multiplication by a unit ei1...ir . The matrices M2, M3, M4 are obtained in a similar way,
through the vector variables X2, X3, X4 which are obviously obtained by applying suit-
able variable substitutions on X1. Note that Xi · Xj = 0 if i 6= j. The determinant of
each block is given by a power of the polynomial

∑4m
i=1 x

2
i , so the equation

∑4m
i=1 x

2
i = 0

is one of the defining equations of the characteristic variety. We now consider a maximal
minor M whose columns are taken from the various blocks. The columns of M will be
Ze, Z ′e′, Z ′′e′′, . . . where Z,Z ′, Z ′′, . . . are Xi, i = 1, . . . , 4 and e, e′, e′′, . . . are units.
Modulo a right multiplication by e, so that the first column of M is Z, we can compute
MTM :

MTM =


Z
Z ′e′

. . .
Z ′′e′′

 [Z Z ′e′ . . . Z ′′e′′
]

=

[
Z2 ZZ ′e′ . . . ZZ ′′e′′

. . . . . .

]
.

The elements of the first row are either zero, by the orthogonality relations among the
Xi’s, or they are equal to

∑4m
i=1 x

2
i . Thus for any Xi satisfying

∑4m
i=1 x

2
i = 0 the determi-

nant of MTM is already zero and so is detM . 2

Remark 7. In general, when dealing with several Dirac operators, the orthogonality con-
ditions are required for the description of the characteristic variety (see [7]). Here these
conditions are automatically satisfied.

Corollary 1. For the moduleM4m we have Ext1(M4m, R) 6= 0.

Proof. By contradiction, if Ext1(M4m, R) = 0, then by Corollary 1, p. 377 in [21], the
dimension of the characteristic variety would be less than 4m− 1. 2
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Remark 8. In the complex Hermitian case all the relevant Ext-modules are nonzero. In
the q-Hermitian case some Ext-modules can be zero, and some other can be nonzero
depending on the dimension. For example, in the case m = 1 only the first and the last
Ext-module are nonzero, while the remaining ones vanish identically.

A consequence of this discussion and in particular of the fact that Ext1(M4m, R) 6= 0
is the following result which we have already encountered in the case of the complex
Hermitian monogenic functions, see [9], [10], and which has already been noticed in [22]
in the low dimensional cases:

Corollary 2. Let K be a compact convex subset of an open set U ⊆ R4m, m ≥ 1 and let
f be a q-Hermitian monogenic function on U \K. Then f cannot in general be extended
to a q-Hermitian monogenic function on U .

Example 1. To provide an example of a q-Hermitian monogenic function with a compact
non-removable singularity, we cannot use the kernel functions appearing in the integral
representation formulas (see [22]) since these functions are not q-Hermitian monogenic.
Note that this is the case even when considering Hermitian monogenic functions in the
complex setting: it is wellknown that the kernel used in the Cauchy integral formula is
not Hermitian monogenic itself. In view of the fact that both classical Clifford analysis as
well as the complex and the quaternionic Hermitian Clifford analysis refine the theory of
harmonic functions, it seems natural to start from the fundamental solution for the Laplace
operator ∆m on Rm i.e. (up to a constant):

Em(r) := r2−m, m ≥ 4, m even,

where r−2 = {Z,Z†}−1. Let us consider the simplest case, i.e.m = 4 and let us consider
the S1-valued function defined by

E
(1)
4 (r) := E4(r)(f†1 + f†2)I, where I = f1f

†
1f2f
†
2.

By recalling Proposition 4, it is easily verified that also the function

J [∂†Z ]J [∂Z ]∂†Z∂ZE
(1)
4 (r)

is S1-valued. By recalling that ∂ziE4(r)=−zi{Z,Z†}−2 and ∂zciE4(r)=−zci {Z,Z
†}−2

it is then possible to show that

∂†Z∂ZE
(1)
4 (r) = −∂†Z

(
(f†1z1 + f†2z2){Z,Z†}−2(f†1 + f†2)I

)
= 2(f1z

c
1 + f2z

c
2)(f†1z1 + f†2z2){Z,Z†}−3(f†1 + f†2)I

− (f1f
†
1 + f2f

†
2){Z,Z†}−2(f†1 + f†2)I

= 2(z1z
c
1 f1f
†
1 + z2z

c
1 f1f
†
2 + z1z

c
2 f2f
†
1 + z2z

c
2 f2f
†
2){Z,Z†}−3(f†1 + f†2)I

− {Z,Z†}−2(f†1 + f†2)I

= {Z,Z†}−2(f†1 + f†2)I− 2(z2z
c
1 f
†
2 + z1z

c
2 f
†
1){Z,Z†}−3I.
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In a similar way, invoking rather lengthy computations, we can prove that

J [∂†Z ]J [∂Z ]∂†Z∂ZE
(1)
4 (r)

is not identically zero and it clearly has a compact singularity at the origin. This function
is q-Hermitian monogenic, as can be seen using Proposition 3 and the relations in Propo-
sition 5. Note that it is necessary to consider the S1-valued function E(1)

4 (r) since the S0
or S2-valued parts of a function come from a holomorphic or anti-holomorphic system of
equations, whose compact singularities can be removed.

Using the description of the characteristic variety for the Dirac system in four vector
variables, we can describe the free resolution associated to the q-Hermitian Dirac operator
in any dimension, thus generalizing the results in [22].

Theorem 2. The free resolution of the module Mn associated to the system (2) in real
dimension 4m is linear of length 4m.

Proof. The system of Equations (4) can be written in the form

∂X1
f = ∂X2

f = ∂X3
f = ∂X4

= 0, (11)

where ∂X1
denotes the standard Dirac operator ∂X and the operators ∂Xi

, i = 2, 3, 4 are
obtained from ∂X via a suitable change of coordinates. By Theorem 1, the characteristic
variety of the module M4m is given by

∑4m
i=1 x

2
i = 0. This means that the principal

ideal A := (
∑4m
i=1 x

2
i ) is an associated prime for the module M4m. The depth of A

is 4m because it is a free module over R := C[x1, . . . , x4m]. A wellknown result in
commutative algebra states that pd(M4m), the projective dimension ofM4m, is greater
than or equal to depth(P) for every associate prime P , and since the number of variables
is an upper bound, we have in this case pd(M4m) = depth(A) = 4m.

Linearity of the resolution follows from Proposition 6. Indeed, one can consider the q-
Hermitian Dirac system as a 16m× 4m matrix P4m with entries in D := C〈di, d′i, δi, δ′i |
i = 0 . . .m〉. This is the free associative non-commutative algebra over the set of symbols
Σ = {di, d′i, δi, δ′i}, and one can take the quotient of this algebra with the two sided ideal
I generated by the relations of Proposition 6. It is easily seen that D/I is a GR-algebra
(or Gröbner-ready algebra, according to the terminology of [20]), i.e. it is a quotient of
the algebra generated, as a vector space, by the standard monomials in Σ, and satisfying
relations of the type

ts = Cts · st+Dts, s, t ∈ Σ, s < t,

whereCts is an upper triangular matrix of complex numbers indexed over Σ,< is an order
on the symbols of Σ, and Dts are polynomials containing terms that are strictly smaller
than st with respect, for example, to the lexicographic ordering on monomials induced by
<. One can then construct the free resolution of the row span of the matrix P4m within
D/I, using one of the methods outlined in [20]. We will follow the standard Schreyer’s
method with S-polynomials, which naturally extends to GR-algebras. Our aim is to prove
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that at each step, only linear relations will appear. Looking at the matrices (7)÷(10),
we need to look for syzygies of their rows. However, since in each row there is at most
one nonzero element, it is sufficient to calculate the syzygies column by column. Let
us fix one of the columns. There appear only four nonzero elements a1

i , b
1
j , a

2
i , b

2
j , using

the notation of Proposition 6, with j 6= i + 1. Therefore, once we calculate their S-
polynomials vanish identically. This means that the only way to annihilate them is to use
the relations aki±1a

k
i = bkj±1b

k
j = 0. The only two cases we did not include are the first

and the last column which can be treated in a similar way. This proves linearity at the first
step. Since the syzygies obtained this way are again of the same type, with at most one
nonzero element in each row, we can conclude that all matrices in the resolution will be
of degree one by recursion. 2

Despite the fact that other systems in hypercomplex analysis correspond to Cohen–
Macaulay modules, e.g. the Cauchy–Fueter system and the Moisil–Theodorescu system,
the q-Hermitian system is different as shown in the next corollary.

Corollary 3. The moduleM4m is not Cohen–Macaulay.

Proof. We have dimM4m = 4m−1 as it equals the dimension of the characteristic varie-
ty. Moreover, if ℘4m denotes the ideal of the variables inR, by the Auslander–Buchsbaum
formula we have depth(℘4m,M4m) = 4m−pd(M4m) = 0. Thus depth(℘4m,M4m) 6=
dim(M4m) and the statement follows. 2

In order to describe explicitly the free resolution associated to the q-Hermitian system,
we consider the Fourier transform of the matrices (7)÷(10), which we will denote by the
same symbol. The context will make clear if we are consider matrices of differential
operators or of polynomials. Let Q4m be the matrix obtained by putting the four blocks
∂Z , ∂†Z , J [∂†Z ], J [∂Z ] in a column. The rows of the matrixQ4m generate the same module
as the rows of the matrix P4m, however, as we already noted, there are redundancies. This
means that at the level of syzygies there will be some degree zero relations. However, this
description is convenient in order to describe the matrix of the first syzygies in terms of
the original operators. We obtain:

Proposition 7. The map of the degree one first syzygies of coker(Q4m) is given by

∂Z 0 0 0
0 ∂†Z 0 0
0 0 J [∂†Z ] 0
0 0 0 J [∂Z ]

∂Z 0 J [∂†Z ] 0
0 ∂†Z 0 J [∂Z ]

J [∂Z ] 0 0 ∂Z
0 J [∂†Z ] ∂†Z 0


. (12)
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Proof. The matrix is obtained using the relations of Proposition 6. Note that the rela-
tions involving the Laplace operator do not generate syzygies because, if one writes the
relations

∆ · s = s ·∆, s ∈ Σ,

these are identically satisfied given the fact that all elements of Σ are idempotents. 2

As a corollary we now prove the vanishing of Ext0(M4m, R) which means that when
a q-Hermitian function on the complement of a compact set K admits an extension inside
K, then this extension is unique.

Corollary 4. For the moduleM4m we have Ext0(M4m, R) = 0.

Proof. The module M4m is R24m
/〈P t4m〉. A minimal system of generators for the de-

nominator is given by the rows of P4m, since they are independent homogeneous vectors
of degree one. This fact is sufficient to conclude that Ext0(M4m, R) = 0. 2

5 Algebraic constraints clarified

In this section we illustrate how one can interpret the degree zero compatibility condi-
tions for the q-Hermitian system on the level of representation theory. To do so we de-
compose the space of spinors, where the functions on which the operators act take values,
into irreducible sp(m)-modules, and we study how the operators split according to this
decomposition. Our aim is to study compatibility conditions for the following inhomoge-
neous system of equations, involving the operators that are used to introduce the notion
of q-monogenicity: 

∂Zf(z, z†) = g(z, z†)

∂†Zf(z, z†) = h(z, z†)

J [∂Z ]f(z, z†) = p(z, z†)

J [∂†Z ]f(z, z†) = r(z, z†),

(13)

where all functions take values in the spinor space S and depend on the complex variables
(z, z†) ∈ R4m. As a notation, given a spinor valued function f , we will write it as
f =

∑2m
i=0 fi where each fi is its homogeneous component with values in Si. We will

often make use of the following relations:

[Q, ∂Z ] = 0 [P, ∂†Z ] = 0

[Q, J(∂†Z)] = 0 [P, J(∂Z)] = 0

[Q, ∂†Z ] = iJ [∂†Z ] [P, ∂Z ] = iJ [∂Z ]

[Q, J(∂Z)] = −i∂Z [P, J(∂†Z)] = −i∂†Z ,

for which we refer to our earlier paper [13].
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5.1 The case m = 1.

Proposition 8. The algebraic constraints for the system (13) for m = 1 are{
g2 = f†1f

†
2p0

r2 = f†1f
†
2h0.

Proof. Writing down the explicit form of the operator, restricted to S1, one immediately
observes that the two operators d2 and δ′0 have the same form, in the sense that they both
act on 1-homogeneous spinors and give the same values under the natural identification
of S0 with S2. Explicitly, we have g2 = f†1f

†
2p0 and r2 = f†1f

†
2h0, the last one being the dual

relation of the first, coming from the comparison of d′2 and δ0. 2

Remark 9. Technically speaking, at this point one could also find a relation between d1
and δ′1. They both end up in the space S1, but act on functions taking values in spinor
spaces that can be identified. This, however, does not appear in the calculation of syzy-
gies with computational methods, since the operators appear in different columns in the
matrices (7) and (10).

As a general principle, we will look for relations between operators ending up in
isomorphic spaces, as they correspond to different rows of the symbol matrix, since com-
patibility conditions for the system (13) are syzygies of these rows.

5.2 The case m = 2.

Proposition 9. The algebraic constraints for the system (13) for m = 2 are
2G0 = ip0

2R0 = −ih0

2H4 = ir4

2P4 = −ig4.

Proof. We start from the complex vector space C8 and its Clifford algebra C8, which after
multiplication with the idempotent I1I2I3I4 gives rise to the spinor space S = S+⊕S− =
S0 ⊕ · · · ⊕ S4. The so-called homogeneous spinor spaces Sj are all sl(4)-irreducible, but
they are not necessarily sp4(C)-irreducible. Indeed, the module S2 splits into the direct
sum of two irreducibles:

S2 = SQ2 ⊕ PS4 ∼= SP2 ⊕QS0,

where P and Q denote the sp4(C)-invariant multiplication operators

P = f2f1 + f4f3 and Q = f†1f
†
2 + f†3f

†
4,

and the superscript P or Q refers to the fact that we intersect with the kernel for these
operators. For example, SP2 = S2 ∩ ker(P ). The other homogeneous spinor spaces are
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irreducible with respect to sp4(C), so that we omit the subscripts P orQ. In this particular
example, we have the following explicit expression:

SQ2 = spanC(f†1f
†
3I, f

†
1f
†
4I, f

†
2f
†
3I, f

†
2f
†
4I)⊕ C(f†1f

†
2 − f†3f

†
4)I

PS4 = C(f†1f
†
2 + f†3f

†
4).

Due to the fact that our function system is related to invariance with respect to sp4(C),
which is reflected in the decomposition of the space S in which our functions take values
into irreducibles SPj and SQj , we are expecting compatibility conditions which reflect this
refinement. Let us then introduce the following notation: f = (f0, f1, f2 ⊕ PF4, f3, f4),
where f2 ∈ SQ2 and F4 takes its values in the remaining (one-dimensional) piece. We
distinguish the following three steps:
Step 1. Consider first of all the function f1 ∈ C∞(C8,S1). By definition, we have that

∂Zf1 := ϕ2 ⊕QΦ0 ∈ S2 = SP2 ⊕QS0.

In order to find the components of ∂Zf1 in each of these summands, we have to consider
the action of the operator P . On the one hand we have P∂Zf1 = PQΦ0 = 2Φ0, whereas
on the other hand, using the commutator relations above, we also have

P∂Zf1 = ∂ZPf1 + iJ [∂Z ]f1 = iJ [∂Z ]f1,

so that we conclude

∂Zf1 =
(
∂Z −

i

2
QJ [∂Z ]

)
f1 ⊕

i

2
QJ [∂Z ]f1.

From the system, we get ∂Zf = g, hence ∂Zf1 = g2⊕QG0, which means that the initial
data G0 have to be compared with the initial data for J [∂Z ]f = p. Indeed, J [∂Z ]f has a
component in S0 given by p0 and this leads to the following compatibility condition:

2G0 = P (g2 ⊕QG0) = P
( i

2
QJ [∂Z ]f1

)
= ip0.

Step 2. Similar calculations can now be done for the other raising operator:

J [∂†Z ]f1 := ψ2 ⊕QΨ0 ∈ S2 = SP2 ⊕QS0.

On the one hand, the projection on each of these irreducible summands gives

J [∂†Z ]f1 =
(
J [∂†Z ] +

i

2
Q∂†Z

)
f1 ⊕−

i

2
Q∂†Zf1,

whereas from the system we get that J [∂†Z ]f = r ⇒ J [∂†Z ]f1 = r2 ⊕ QR0. This means
that the initial data R0 have to be compared with the initial data for ∂†Zf = h. Indeed,
∂†Zf has a component in S0 given by h0 and this leads to the following compatibility
condition:

2R0 = P (r2 ⊕QR0) = P
(
− i

2
Q∂†Zf1

)
= −ih0.
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Step 3. Next, consider the function f3 ∈ C∞(C8,S3). A completely analogous argument
can now be applied to the lowering operators ∂†Z and J [∂Z ], and this will eventually lead
to the following conditions:

2H4 = Q(h2 ⊕ PH4) = Q
( i

2
PJ [∂†Z ]f3

)
= ir4.

and
2P4 = Q(p2 ⊕ PP4) = Q

(
− i

2
P∂Zf3

)
= −ig4. 2

Remark 10. A priori, one could look for relations coming from operators starting from
the space S2, since they end up in either S1 or S3 which are clearly isomorphic. However,
the above four complex relations exhaust the situation since, thanks to computations with
CoCoA, we know the exact number of real algebraic constraints, which is 8 in this case.

5.3 The case m = 3.

Proposition 10. The algebraic constraints for the system (13) for m = 3 are

3G0 = ip0

3R0 = −ih0

3H6 = ir6

3P6 = −ig6

Q3P0 = −6iG6

Q3H0 = −6iR6.

Proof. This time we will start from the complex vector space C12 and its associated Clif-
ford algebra C12, which after multiplication with the idempotent I1I2I3I4I5I6 gives rise
to the spinor space S = S+ ⊕ S− = S0 ⊕ . . . S6. Again, these homogeneous spinor
spaces are sl(6)-irreducible, but they are not necessarily sp6(C)-irreducible. Indeed, the
following modules split into the direct sum of two irreducible summands:

S2 = SP2 ⊕QS0

S3 = SP3 ⊕QS1 ∼= SQ3 ⊕ PS5

S4 = SQ4 ⊕ PS6,

where P and Q denote the multiplication operators

P = f2f1 + f4f3 + f6f5 and Q = f†1f
†
2 + f†3f

†
4 + f†5f

†
6.

The other homogeneous spinor spaces are irreducible with respect to sp6(C), whence we
again omit the subscripts P or Q. Let us then again consider the compatibility conditions
for the inhomogeneous system (13), where all functions take values in the spinor space S
and depend on the complex variables (z, z†) ∈ R12. In order to derive conditions, we first
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need to introduce notation to label each of the components of a function taking values in
one of the irreducible slots. For our initial function f ∈ C∞(R12,S) for example, we put

f = f0 + f1 +

(
f2
QF0

)
+

(
f3
QF1

)
+

(
f4
PF6

)
+ f5 + f6,

where each column as a whole will be represented by means of f̃i; e.g. f̃4 = f4 + PF6.
In order to illustrate how the algebraic information coming from the representation theory
will reflect on the syzygies, we proceed as follows:

Step 1. Consider the function f1 ∈ C∞(R12,S1). By definition, we have that

∂Zf1 := ϕ2 ⊕QΦ0 ∈ S2 = SP2 ⊕QS0.

In order to find the components of ∂Zf1 in each of these summands, we have to consider
the action of the operator P . We have that P∂Zf1 = PQΦ0 = 3Φ0, where we have used
the fact that the restriction of the operator PQ to S0 acts as the constant 3. On the other
hand, invoking the commutation relations, we have:

P∂Zf1 = ∂ZPf1 + iJ [∂Z ]f1 = iJ [∂Z ]f1,

so that we conclude

∂Zf1 =
(
∂Z −

i

3
QJ [∂Z ]

)
f1 ⊕

i

3
QJ [∂Z ]f1.

From the system, we get ∂Zf = g, hence ∂Zf1 = g2⊕QG0, which means that the initial
data G0 have to be compared with the initial data for J [∂Z ]f = p. Indeed, J [∂Z ]f has a
component in S0 given by p0 and this leads to the following compatibility condition:

3G0 = P (g2 ⊕QG0) = P
( i

3
QJ [∂Z ]f1

)
= ip0.

Along completely similar lines, one can consider the effect of the operator J [∂†Z ]. This
leads to a similar condition, explicitly given by 3R0 = −ih0.

Step 2. One the other hand, one can of course consider the ’dual’ result starting from
the function f5 ∈ C∞(R12,S5). Again using completely similar arguments, involving the
commutation relations, one is easily led to the conditions

3H6 = +ir6 and 3P6 = −ig6.

Step 3. Finally, we will use the fact that starting from a function f3 ∈ C∞(R12,S3), it
is possible to reach a component taking values in the spaces S0 and S6 (as an irreducible
subspace of the spaces S2 and S4 respectively). Moreover, there is a natural identification
between these extremal (one-dimensional) spaces so that it is natural to compare those
functions. To do so, we first of all note that the natural isomorphism can be expressed by
means of Q3 : S0 7→ S6. Let us then prove the following result:
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Lemma 1. For any function f3 ∈ C∞(R12,S3), the following result holds:

Q3[PJ [∂Z ]f3
]

= −6iQ∂Zf3 .

Proof: It suffices to note that J [∂Z ]f3 is S2-valued, which means that the operator QP
acts as a constant on the summandQS0 ⊂ S2 (since the summand SP2 will be annihilated).
It is then easily seen that QPS2 = QPQS0 = 3QS0. Together with [Q, J [∂Z ]] = −i∂Z ,
we thus get:

Q3[PJ [∂Z ]f3
]

= 3Q2[J [∂Z ]f3
]

= 3Q
[
− i∂Zf3 + J [∂Z ]Qf3

]
= −6iQ∂Zf3. 2

On the level of data then, this gives rise to the compatibility conditionQ3P0 = −6iG6.
In a completely similar way, we are also led to Q3H0 = −6iR6. Considering that
CoCoA returns only 6 syzygies of degree zero, we have the statement. 2

5.4 Conclusions. Based on the calculations of the previous paragraphs, we can now
make some general considerations on the algebraic constraints of the q-Hermitian system.
In the low dimensional cases we presented, it is clear that such constraints appear only
when there is a copy of S0 inside one of the homogeneous spinor spaces. Since such copies
only appear in the decomposition of S2j into irreducibles, for 1 ≤ j ≤ m, we have a total
of 2m algebraic conditions. Each pair of such conditions comes from considering a spinor
in S2j−1, 1 ≤ j ≤ m and applying either ∂Z and J [∂†Z ], or ∂†Z , J [∂Z ]. A priori, one could
expect more constraints to come from the various copies of other homogeneous spinor
spaces, which occur in higher dimensions. However, experiments with CoCoA suggest
that this is never the case. Therefore, we conjecture that all the algebraic constraints
are concentrated in even homogeneous pieces of the data functions, these being the only
spaces in which there is a copy of S0. As a consequence of this fact, it is not possible to
split the system into two equivalent parts using the classical decomposition S = S+⊕S−.
We already noticed in [10] that this was not always possible for the complex Hermitian
Dirac system. Indeed only for some values of the dimension the reduction yielded two
equivalent systems. Also in the quaternionic case, we expect that the reduction of, for
example, system (4) into even and odd part will never be possible, since the algebraic
constraints would only appear in one of the two systems.
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[11] R. Delanghe, F. Sommen, V. Souček, Clifford algebra and spinor-valued functions, volume 53
of Mathematics and its Applications. Kluwer 1992. MR1169463 (94d:30084) Zbl 0747.53001

[12] D. Eelbode, A Clifford algebraic framework for sp(m)-invariant differential operators. Adv.
Appl. Clifford Algebr. 17 (2007), 635–649. MR2356263 (2008k:58074) Zbl 1127.58035

[13] D. Eelbode, Quaternionic monogenic function systems. Preprint, 2007.

[14] D. Eelbode, Irreducible sl(m)-modules of Hermitean monogenics. Complex Var. Elliptic Equ.
53 (2008), 975–987. MR2453891 (2009k:30057) Zbl 1159.30029

[15] W. Fulton, J. Harris, Representation theory. Springer 1991. MR1153249 (93a:20069)
Zbl 0744.22001

[16] J. E. Gilbert, M. A. M. Murray, Clifford algebras and Dirac operators in harmonic analysis.
Cambridge Univ. Press 1991. MR1130821 (93e:42027) Zbl 0733.43001

[17] G.-M. Greuel, V. Levandovskyy, H. Schönemann, SINGULAR::PLURAL 2.1. A Computer
Algebra System for Noncommutative Polynomial Algebras. Centre for Computer Algebra,
University of Kaiserslautern, 2003. www.singular.uni-kl.de/plural

[18] G.-M. Greuel, V. Levandovskyy, H. Schönemann, SINGULAR 3.0. A Computer Algebra
System for Polynomial Computations. Centre for Computer Algebra, University of Kaiser-
slautern, 2007. www.singular.uni-kl.de

[19] M. Kreuzer, L. Robbiano, Computational commutative algebra. 1. Springer 2000.
MR1790326 (2001j:13027) Zbl 0956.13008

[20] V. Levandovskyy, Non-commutative Computer Algebra for polynomial algebras: Gröbner
bases, applications and implementation. Ph.D. thesis, 2005.

[21] V. P. Palamodov, Linear differential operators with constant coefficients. Springer 1970.
MR0264197 (41 #8793) Zbl 0191.43401

http://www.ams.org/mathscinet-getitem?mr=1896475
http://www.emis.de/MATH-item?1025.58013
http://cocoa.dima.unige.it
http://www.ams.org/mathscinet-getitem?mr=2358765
http://www.emis.de/MATH-item?1135.30021
http://www.ams.org/mathscinet-getitem?mr=2089988
http://www.emis.de/MATH-item?1064.30049
http://www.ams.org/mathscinet-getitem?mr=2393630
http://www.emis.de/MATH-item?1135.30022
http://www.ams.org/mathscinet-getitem?mr=2511757
http://www.emis.de/MATH-item?1175.58014
http://www.ams.org/mathscinet-getitem?mr=1169463
http://www.emis.de/MATH-item?0747.53001
http://www.ams.org/mathscinet-getitem?mr=2356263
http://www.emis.de/MATH-item?1127.58035
http://www.ams.org/mathscinet-getitem?mr=2453891
http://www.emis.de/MATH-item?1159.30029
http://www.ams.org/mathscinet-getitem?mr=1153249
http://www.emis.de/MATH-item?0744.22001
http://www.ams.org/mathscinet-getitem?mr=1130821
http://www.emis.de/MATH-item?0733.43001
http://www.singular.uni-kl.de/plural
http://www.singular.uni-kl.de
http://www.ams.org/mathscinet-getitem?mr=1790326
http://www.emis.de/MATH-item?0956.13008
http://www.ams.org/mathscinet-getitem?mr=0264197
http://www.emis.de/MATH-item?0191.43401


Quaternionic Hermitian spinor systems and compatibility conditions 189

[22] D. Peña-Peña, I. Sabadini, F. Sommen, Quaternionic Clifford analysis: the Hermitian setting.
Complex Anal. Oper. Theory 1 (2007), 97–113. MR2276734 (2007k:30095) Zbl pre05177135

[23] R. Rocha-Chávez, M. Shapiro, F. Sommen, Integral theorems for functions and differential
forms in Cm. Chapman & Hall/CRC, Boca Raton, FL 2002. MR1889406 (2003a:32004)
Zbl 0991.32002

[24] I. Sabadini, F. Sommen, Hermitian Clifford analysis and resolutions. Math. Methods Appl.
Sci. 25 (2002), 1395–1413. MR1949504 (2004k:30127) Zbl 1013.30033

[25] E. M. Stein, G. Weiss, Generalization of the Cauchy-Riemann equations and representations
of the rotation group. Amer. J. Math. 90 (1968), 163–196. MR0223492 (36 #6540)
Zbl 0157.18303

[26] P. Van Lancker, Rarita–Schwinger fields in the half space. Complex Var. Elliptic Equ. 51
(2006), 563–579. MR2230266 (2007e:30077) Zbl 1117.30041

Received 7 January, 2009; revised 15 April, 2009

A. Damiano, Department of Mathematics and Computer Science, Chapman University, One uni-
versity Drive, Orange, CA 92866, USA
Email: alberto@tlc185.com

D. Eelbode, Department of Mathematics and Computer Science, University of Antwerp, Middel-
heimlaan 1, 2020 Antwerpen, Belgium
Email: david.eelbode@ua.ac.be

I. Sabadini, Politecnico di Milano, Dipartimento di Matematica, Via Bonardi, 9, 20133 Milano,
Italy
Email: irene.sabadini@polimi.it

http://www.ams.org/mathscinet-getitem?mr=2276734
http://www.emis.de/MATH-item?pre05177135
http://www.ams.org/mathscinet-getitem?mr=1889406
http://www.emis.de/MATH-item?0991.32002
http://www.ams.org/mathscinet-getitem?mr=1949504
http://www.emis.de/MATH-item?1013.30033
http://www.ams.org/mathscinet-getitem?mr=0223492
http://www.emis.de/MATH-item?0157.18303
http://www.ams.org/mathscinet-getitem?mr=2230266
http://www.emis.de/MATH-item?1117.30041


Copyright of Advances in Geometry is the property of De Gruyter and its content may not be copied or emailed

to multiple sites or posted to a listserv without the copyright holder's express written permission. However,

users may print, download, or email articles for individual use.


	Chapman University
	Chapman University Digital Commons
	2011

	Quaternionic Hermitian Spinor Systems and Compatibility Conditions
	Alberto Damiano
	David Eelbode
	Irene Sabadini
	Recommended Citation

	Quaternionic Hermitian Spinor Systems and Compatibility Conditions
	Comments
	Copyright


	tmp.1425937163.pdf.m0bIN

