Fall 12-6-2017

Building and Modifying an Open-Source 3D Printer to Extrude Viable 3D Cell Cultures

Kathleen Thornsberry
Chapman University, thorn144@mail.chapman.edu

Follow this and additional works at: http://digitalcommons.chapman.edu/cusrd_abstracts

Part of the Biochemistry, Biophysics, and Structural Biology Commons, and the Engineering Commons

Recommended Citation
http://digitalcommons.chapman.edu/cusrd_abstracts/251

This Poster is brought to you for free and open access by the Office of Undergraduate Research and Creative Activity at Chapman University Digital Commons. It has been accepted for inclusion in Student Research Day Abstracts and Posters by an authorized administrator of Chapman University Digital Commons. For more information, please contact laughtin@chapman.edu.
INTRODUCTION

- 3D printing, also known as additive manufacturing, traditionally has been the process of adding heated plastic layer by layer to create 3D objects
- RepRap (Replicating Rapid Prototyper) is a project that began to enable 3D printers to self-replicate using minimal extra materials
- Recently, 3D printing has developed to include printing viable biological materials
- Applications of 3D bioprinting include:
 - Tissue engineering and reconstruction
 - Drug testing
 - Prosthetics

OBJECTIVES

Completed Fall 2017:
- Researching directions and methods of 3D bioprinting
- Researching methods of building a RepRap 3D printer
- Based on this research, the RepRap Mendel90 model was chosen
- An OURCA Grant Proposal to fund building a 3D printer in Spring of 2018 was submitted

Objectives for Spring 2018:
- Gathering materials and build printer
- Use Chapman’s existing 3D printer to print parts
- Modify the printer to mount a syringe-extruder head

METHODS

- Research for the printer was conducted via communication with the RepRap community
- Possible directions in bioprinting were researched using scientific databases
- Parts for the extruder head were printed

FUTURE METHODS

- Parts will be printed using Chapman’s AW3D AXIOM printer
- Vitamins, or parts that cannot be printed, will be bought at local stores and online
- Printer head will be modified by switching out the plastic-extruding head for a syringe extruder

FUTURE DIRECTIONS

Tissue engineering and reconstruction
- Top-down approach: printing cells into degradable porous scaffolds
- Bottom-up approach: printing cell-laden hydrogels layer-wise

Possible modifications
- Heat-based extruder head
- Inkjet printing head

REFERENCES