
Chapman University Digital Chapman University Digital 

Commons Commons 

ESI Working Papers Economic Science Institute 

11-9-2018 

Conditional Independence in a Binary Choice Experiment Conditional Independence in a Binary Choice Experiment 

Nathaniel Wilcox 
Chapman University, nwilcox@chapman.edu 

Follow this and additional works at: https://digitalcommons.chapman.edu/esi_working_papers 

 Part of the Econometrics Commons, Economic Theory Commons, and the Other Economics 

Commons 

Recommended Citation Recommended Citation 
Wilcox, N. T. (2018). Conditional independence in a binary choice experiment. ESI Working Paper 18-08. 
Retrieved from https://digitalcommons.chapman.edu/esi_working_papers/246 

This Article is brought to you for free and open access by the Economic Science Institute at Chapman University 
Digital Commons. It has been accepted for inclusion in ESI Working Papers by an authorized administrator of 
Chapman University Digital Commons. For more information, please contact laughtin@chapman.edu. 

https://www.chapman.edu/
https://www.chapman.edu/
https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/esi_working_papers
https://digitalcommons.chapman.edu/esi
https://digitalcommons.chapman.edu/esi_working_papers?utm_source=digitalcommons.chapman.edu%2Fesi_working_papers%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/342?utm_source=digitalcommons.chapman.edu%2Fesi_working_papers%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/344?utm_source=digitalcommons.chapman.edu%2Fesi_working_papers%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/353?utm_source=digitalcommons.chapman.edu%2Fesi_working_papers%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/353?utm_source=digitalcommons.chapman.edu%2Fesi_working_papers%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laughtin@chapman.edu


Conditional Independence in a Binary Choice Experiment Conditional Independence in a Binary Choice Experiment 

Comments Comments 
Working Paper 18-08. 

This article is available at Chapman University Digital Commons: https://digitalcommons.chapman.edu/
esi_working_papers/246 

https://digitalcommons.chapman.edu/esi_working_papers/246
https://digitalcommons.chapman.edu/esi_working_papers/246


 
 
 
 
 

Conditional Independence in a Binary Choice Experiment  
 

by 
 

Nathaniel T. Wilcox* 

 
Abstract: Experimental and behavioral economists, as well as psychologists, commonly 
assume conditional independence of choices when constructing likelihood functions for 
structural estimation. I test this assumption using data from a new experiment designed for 
this purpose. Within the limits of the experiment’s identifying restriction and designed 
power to detect deviations from conditional independence, conditional independence is 
not rejected. In naturally occurring data, concerns about violations of conditional 
independence are certainly proper and well-taken (for well-known reasons). However, 
when an experimenter employs contemporary state-of-the-art experimental mechanisms 
and designs, the current evidence suggests that conditional independence is an acceptable 
assumption for analyzing data so generated.  
 
 

November 9th, 2018 
 

Second Draft 
 

JEL Codes: C22, C25, C91, D81 
 
Keywords: Alternation, Conditional Independence, Choice Under Risk, Discrete Choice,  
Persistence, Random Lottery Incentive, Random Lottery Selection, Random Problem 
Selection, Random Round Payoff 
 
 
 
 
 
 
 
 
 
 
*Professor of Economics, Economics Science Institute, Argyros School of Business and 
Economics, Chapman University, One University Drive, Orange CA 92866. 
nwilcox@chapman.edu. 

mailto:nwilcox@chapman.edu


1 

 

1. Introduction 

 

 Conditional independence of observations is a common requirement for well-behaved 

estimation with relatively simple estimators, such as simple maximum likelihood without 

any dynamic relationship between observations now and observations in the past. For 

naturally occurring data (such as most survey data), there is a well-founded concern that 

sequences of decisions made by the same observational unit are probably not conditionally 

independent of one another, and much econometric innovation addresses this problem.  

 Are similar concerns appropriate for laboratory data arising from a sequence of 

decisions made by the same subject in an individual choice experiment? This is an 

interesting and, to my knowledge, unexplored question. Much innovation of laboratory 

methods, based closely on decision-theoretic notions of independence, has taken place over 

the last forty years. The decision-theoretic design of laboratory mechanisms, such as the 

random problem selection or RPS mechanism, proceeds from decision theoretic 

independence axioms of various kinds. When an experimenter employs such mechanisms, 

she means to make a choice now “independent” of decision problems her subject has 

already encountered in the laboratory session, but in a decision-theoretic sense of the word 

“independence.”  

 A long history of experimental work (beginning perhaps with Starmer and Sugden 

1991 and continuing through Brown and Healy 2018) examines these decision-theoretic 

senses of independence (or as Brown and Healy wish to frame this, the statewise 

monotonicity axiom discussed by Azrieli et al. 2018). In statistical terms, that long 

experimental literature focused on the behavior of marginal choice probabilities within a 

mechanism, asking whether the presence or absence of other decision problems (within 

the mechanism) affected observed choice proportions in a given decision problem.  

 The econometric and statistical sense of the term “conditional independence” concerns 

conditional, not marginal, choice probabilities. Yet decision-theoretic axioms such as the 

compound independence axiom or CIA of expected utility and other theories, or the 

statewise monotonicity axiom, do suggest that, in sequences of decision problems 

embedded within the RPS mechanism, a choice now should not only be independent of 

previous decision problems but also independent of previous choices. Therefore I ask 
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whether or not conditional independence (in its econometric and statistical sense) appears 

to be satisfied in a state-of-the-art decision making experiment. Such experiments employ 

the RPS mechanism as well as other features that seem necessary to obtain an empirical 

version of decision theoretic independence (which I define shortly and call behavioral 

incentive compatibility or BIC).  

 Related work by Hey and Lee (2005a, 2005b) and Hey and Zhou (2014) tests whether 

subjects appear to be optimizing one grand function of all decisions across all or some trials 

(a sufficient condition for conditional dependence) and those tests suggest that subjects 

are not doing that. But conditional dependence could arise from other sources such as 

autocorrelated random preference parameter processes. The tests of Hey and Lee, and Hey 

and Zhou, also depend on assumed structural models of risk preference. The test I conduct 

here will depend on an identifying restriction, but make no assumptions concerning any 

specific underlying preference structure. 

 Within the limits of the experiment’s identifying restriction and designed power to 

detect deviations from conditional independence, conditional independence is not rejected. 

A substantial number of scholars may breathe a sigh of relief at this since it has been very 

common practice to assume conditional independence when constructing likelihood 

functions for the estimation and analysis of structural preferences from laboratory data 

(e.g. Hey and Orme 1994; Loomes et al. 2002; Andersen et al. 2008; Rieskamp 2008; Wilcox 

2008, 2011). My experimental results here suggest this has not been mistaken practice. 

 

2. Definition of an experiment and features of contemporary state-of-the-art experiments 

 

 Here an experiment ℰ = 〈Ω1
𝑖 , Ω2

𝑖 , … , Ω𝐽
𝑖 〉 means a sequence of trials 𝑗 = {1,2, … , 𝐽} 

where each subject 𝑖 ∈ {1,2, … , 𝐼} chooses from a basic pair Ω𝑗
𝑖 = {𝑅𝑗

𝑖, 𝑆𝑗
𝑖} of lotteries. Let 

𝑐𝑗
𝑖 = 1 if subject 𝑖 chooses 𝑅𝑗

𝑖 from Ω𝑗
𝑖 and 𝑐𝑗

𝑖 = 0 if she chooses 𝑆𝑗
𝑖 from Ω𝑗

𝑖. A lottery 𝑅𝑗  

means a one-stage probability distribution (𝑟𝑙𝑗, 𝑟𝑚𝑗 , 𝑟ℎ𝑗) over a vector (𝑙𝑗 , 𝑚𝑗 , ℎ𝑗) of three 

possible money outcomes 𝑧 ∈ ℝ+ where 𝑙𝑗 < 𝑚𝑗 < ℎ𝑗 . A one-stage probability distribution 

is a probability measure of three exhaustive and mutually exclusive events, determined by 

one (and only one) simple random device such as a single throw of a six-sided die (as 
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employed in my experiment). This rules out resolution of uncertainty by means of a 

sequence of two or more simple random devices (it rules out multi-stage probability 

distributions). By a basic pair Ω𝑗 = {𝑅𝑗 , 𝑆𝑗} of lotteries, I mean a pair where neither lottery 

first-order stochastically dominates the other. Henceforth a pair always means a basic pair. 

 Within each pair Ω𝑗 = {𝑅𝑗 , 𝑆𝑗}, 𝑅𝑗  is relatively risky compared to the relatively safe 𝑆𝑗 , 

meaning 𝑠𝑚𝑗 > 𝑟𝑚𝑗 , 𝑟𝑙𝑗 > 𝑠𝑙𝑗, and  𝑟ℎ𝑗 > 𝑠ℎ𝑗: 𝑅𝑗  has higher probabilities of the low and high 

outcomes 𝑙𝑗  and ℎ𝑗 , while 𝑆𝑗  has a higher probability of the middle outcome 𝑚𝑗 . This 

conventional terminology is only descriptive (it carries no normative implication).  

 In an experiment, each page (in the case of a physical booklet presentation) or each 

screen (in the case of a computer presentation) presents exactly one pair: Call this feature 

separated decisions or SED. An experiment also features the random problem selection or 

RPS mechanism to motivate subjects without creating unwanted portfolio or wealth effects 

across the trial sequence. After all 𝐽 choices have been made by subject 𝑖, a random device 

selects just one trial 𝑗∗ (every trial has an equal 𝐽−1 chance of selection). Then subject 𝑖 

plays out only her chosen lottery in trial 𝑗∗ using a second random device, and this is her 

sole payment from her choices. Subjects may also receive a fixed payment simply for 

showing up on time for an experiment but this is not connected to the choices they make.  

 Under either the compound independence axiom (CIA) of expected utility and other 

theories (Segal 1990), the isolation effect of prospect theory (Kahneman and Tversky 

1979), or the statewise monotonicity axiom defined by Azrieli et al. (2018), experiments 

featuring RPS should achieve what I call behavioral incentive compatibility or BIC. Consider 

a 𝐽 pair experiment ℰ = 〈Ω1
𝑖 , Ω2

𝑖 , … , Ω𝑗
𝑖, … , Ω𝐽

𝑖 〉 and a one pair experiment ℰ° = 〈Ω
1°
𝑖 〉 where 

Ω
1°
𝑖 ≡ Ω𝑗

𝑖 are the same pair: BIC holds iff 𝑃(𝑅𝑗
𝑖) = 𝑃(𝑅

1°
𝑖 ), where 𝑃(𝑅𝑗

𝑖) ≡ 𝑃(𝑐𝑗
𝑖 = 1) is the 

marginal probability that subject 𝑖 chooses 𝑅𝑗
𝑖 from Ω𝑗

𝑖. Put differently, BIC holds when the 

choice probability 𝑃(𝑅𝑗
𝑖) in a 𝐽 pair experiment equals the choice probability 𝑃(𝑅

1°
𝑖 ) in an 

experiment presenting only that pair.  

 Current evidence fails to reject BIC when all alternatives are lotteries in basic pairs and 

the experiment features both SED and RPS (Brown and Healy 2018 show this and discuss 

past evidence). Baltussen et al. 2012 show that BIC can fail when trials are not choices from 

lottery pairs (in particular, where each trial is a sequence of decisions in a multi-stage risky 
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choice game); and both Harrison and Swarthout (2014) and Cox et al. (2015) show that 

BIC can fail without SED. Therefore my new experiment features lotteries in basic pairs, 

SED, and RPS, which I regard as the current “state-of-the-art” for obtaining BIC. 

 

3. Purpose of the new experiment 

 

 When we write probabilities 𝑃(𝑅𝑗
𝑖) of choice events to build likelihood functions for 

preference estimation, these obviously condition on offered pairs. The simplest model 

𝑃(𝑅𝑗
𝑖) = 𝑓𝑖(Ω𝑗

𝑖) only conditions on the offered pair and the subject. This conditional 

independence assumption greatly simplifies construction of the likelihood of a choice 

sequence 𝑐𝑖 = (𝑐1
𝑖 , 𝑐2

𝑖 , … , 𝑐𝐽
𝑖) and minimizes the number of parameters to be estimated. 

Behavioral economists (and psychologists) widely make this assumption for likelihood-

based analysis of choice sequences (e.g. Hey and Orme 1994; Loomes et al. 2002; Andersen 

et al. 2008; Rieskamp 2008; Wilcox 2008, 2011). In general choices may be conditionally 

dependent: True choice probabilities would then be 𝑃(𝑅𝑗
𝑖) = 𝑔𝑖(Ω𝑗

𝑖 , 𝑐𝑗−1
𝑖 , 𝑐𝑗−2

𝑖 , … , 𝑐1
𝑖 ) ≢

𝑓𝑖(Ω𝑗
𝑖). Here, I test the null hypothesis of conditional independence against an alternative 

hypothesis of restricted conditional dependence 𝑃(𝑅𝑗
𝑖) = 𝑔𝑖(Ω𝑗

𝑖 , 𝑐𝑗−1
𝑖 ) that informs my 

experimental design, power planning (detailed in the Appendix), and data analysis. 

 Henceforth I suppress explicit conditioning on Ω𝑗
𝑖, taking it as implicit that all choice 

probabilities are conditioned on the offered pair. Thus 𝑃(𝑅𝑗
𝑖|𝑅𝑗−1

𝑖 ) will mean 𝑔𝑖(Ω𝑗
𝑖, 1) and 

𝑃(𝑅𝑗
𝑖|𝑆𝑗−1

𝑖 ) will mean 𝑔𝑖(Ω𝑗
𝑖, 0), while 𝑃(𝑅𝑗

𝑖) written without any condition will mean the 

marginal probability that 𝑐𝑗
𝑖 = 1 given that subject 𝑖 chooses from pair Ω𝑗

𝑖. 

 

4. Design of this experiment 

 

 Let 𝑡 and 𝜏 ∈ {1,2, … ,50} index two sequences of 50 choice pairs, the 𝑡 sequence (with 

pairs indexed by 𝑡) and the 𝜏 sequence (with pairs indexed by 𝜏). The design presents each 

subject with these two sequences, for 𝐽 = 100 total choice pairs. The order of presentation 

of the 𝑡 and 𝜏 sequences is varied across subjects: Let 𝒪1 and 𝒪2 denote sets of subjects 𝑖 
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who received the 𝑡 sequence or 𝜏 sequence first, respectively. The two sequences are 

separated by a short unpaid survey (as described below, the survey just gives subjects a 

short break between the sequences; responses to survey questions are of no interest here). 

 Both sequences contain 12 target pairs  𝒯 = {10,13,16,19,22,25,28,31,34,37,40,43} in 

exactly the same place within each sequence, for a test  and (fifty pairs later) a retest of 

choice from each target pair. Target pairs are identical across the two sequences. For 

example target pairs 𝑡 = 10 and 𝜏 = 10 are exactly the same choice pair. 

 Conditioning pairs  {9,12,15,18,21,24,27,30,33,36,39,42} immediately precede each 

target pair. These pairs differ across the 𝑡 and 𝜏 sequences. For example, conditioning pairs 

𝑡 = 9 and 𝜏 = 9 (presented just before the common target pair 𝑡 = 𝜏 = 10) are different 

choice pairs: In pair 𝑡 = 9, 𝑅𝑡 is more attractive than 𝑆𝑡 (call this a high conditioning pair) 

for most subjects, while in pair 𝜏 = 9 𝑆𝜏 is more attractive than 𝑅𝜏(call this a low 

conditioning pair)  for most subjects. This manipulation makes it likely that any subject 

comes to the two presentations of identical target pair 𝑡 = 𝜏 = 10 with two different choice 

histories (different choices at 𝑡 = 𝜏 = 9). Similarly for each 𝑡 = 𝜏 ∈ 𝒯 a high conditioning 

pair immediately precedes 𝑡 or 𝜏 while a low conditioning pair immediately precedes the 

other matched target pair. Table 1 shows that this manipulation was largely successful. 

 
Table 1: Choice percentages (of 204 subjects) in conditioning pairs 
 

high conditioning pairs meant to 
induce choice of 𝑅 (risky) 

 low conditioning pairs meant to 
induce choice of 𝑆 (safe) 

pair 
index 

 percentage 
𝑅 (risky) 

 
 

pair 
index 

 percentage 
𝑆 (safe) 

𝑡 = 9  81.37  𝑡 = 12  87.75 
𝑡 = 15  79.90  𝑡 = 18  83.82 
𝑡 = 21  90.20  𝑡 = 24  92.65 
𝑡 = 27  84.80  𝑡 = 30  90.69 
𝑡 = 33  90.69  𝑡 = 36  99.02 
𝑡 = 39  78.92  𝑡 = 42  87.75 
𝜏 = 12  88.24  𝜏 = 9  68.63 
𝜏 = 18  92.65  𝜏 = 15  77.45 
𝜏 = 24  92.16  𝜏 = 21  95.10 
𝜏 = 30  88.73  𝜏 = 27  65.20 
𝜏 = 36  91.67  𝜏 = 33  87.75 
𝜏 = 42  87.75  𝜏 = 39  86.76 

average 87.26  average 85.21 
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 Figure 1 illustrates the overall trial sequence in the experiment. Notice the additional 

presence of buffer pairs which serve several design purposes. First, a buffer pair separates 

each pair of a conditioning and target pair from the next such pair of pairs (see panel B of 

Figure 1). Second, both the 𝑡 and 𝜏 sequences begin and end with seven buffer pairs. This 

gives subjects a (short) warm-up prior to presentation of pairs of conditioning and target 

pairs and additionally keeps these away from the ends of sequences (when subjects might 

begin relaxing their concentration). Appendix Table A1 lists all of the choice pairs, and this 

online supplement contains screen prints of the experiment’s computerized instructions. 

 
 
Figure 1: The experiment sequence for the subjects 𝑖 ∈ 𝒪1 (receiving the 𝑡 sequence first). 
 
 

A. Pair sequence 
 
 

 
 
1, 2, 3, ⋯, 𝑗, ⋯, 49, 50  

survey 
 51, 52, 53, ⋯, 𝑗, ⋯, 99, 100 

                  
1, 2, 3, ⋯, 𝑡, ⋯, 49, 50   1, 2, 3, ⋯, 𝜏, ⋯, 49, 50 

     
the 𝑡 sequence of choice pairs    the 𝜏 sequence of choice pairs 

 
 

B. Pair sequence detail 
 

 
 
 
 
 

⋯, 8 9 10 ⋯,  survey  ⋯, 8 9 10 ⋯, 
 
             
 
 
 
 

the 𝑡 sequence    the 𝜏 sequence 
 

target pairs 𝑡 = 𝜏 = 10: same pair in both sequences 

conditioning pair 𝑡 = 9 conditioning pair 𝜏 = 9 

buffer pair 𝑡 = 8 buffer pair 𝜏 = 8 

time 

pairs differ 

pairs differ 

https://www.chapman.edu/research/institutes-and-centers/economic-science-institute/_files/WorkingPapers/Conditional-Independence-Wilcox-2018-online-supplement.pdf
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5. Hypotheses and data analysis 

 

 In eqs. 1, 2, 3 and 4 below I index pairs by locations 𝑗 = 𝑘 = 𝑚 ∈ 𝒯, with exactly one of 

𝑗 or 𝑘 in the 𝑡 sequence and the other in the 𝜏 sequence. That is, both 𝑗 and 𝑘 are the same 

target pair location 𝑚, one in the 𝑡 sequence and the other in the 𝜏 sequence and, for the 

time being, which is which remains unspecified. The experimental design implies that one 

of 𝑗 or 𝑘 follows a high conditioning pair while the other follows a low conditioning pair. 

With all this in mind, conditionally independent and identically distributed trials imply that  

 

(1)  𝑃(𝑅𝑗
𝑖 ∩ 𝑅𝑗−1

𝑖 ) 𝑃(𝑅𝑗−1
𝑖 )⁄ ≡ 𝑃(𝑅𝑗

𝑖|𝑅𝑗−1
𝑖 ) = 𝑃(𝑅𝑘

𝑖 |𝑆𝑘−1
𝑖 ) ≡ 𝑃(𝑅𝑘

𝑖 ∩ 𝑆𝑘−1
𝑖 ) 𝑃(𝑆𝑘−1

𝑖 )⁄ . 

 

Rearrange the left-most and right-most terms of eq. 1 to get the null hypothesis  

 

(2)  𝐻0:  𝑃(𝑅𝑗
𝑖 ∩ 𝑅𝑗−1

𝑖 )𝑃(𝑆𝑘−1
𝑖 ) − 𝑃(𝑅𝑘

𝑖 ∩ 𝑆𝑘−1
𝑖 )𝑃(𝑅𝑗−1

𝑖 ) = 0. 

 

 To test this null, define these twelve data-derived within-subject differences for each 

subject 𝑖: 

 

(3)  𝑦𝑚
𝑖 = 𝟏(𝑐𝑗

𝑖 = 1 ∩ 𝑐𝑗−1
𝑖 = 1) ∙ 𝟏(𝑐𝑘−1

𝑖 = 0) − 𝟏(𝑐𝑘
𝑖 = 1 ∩ 𝑐𝑘−1

𝑖 = 0) ∙ 𝟏(𝑐𝑗−1
𝑖 = 1). 

 

 Adopt the indexing convention that, when it is possible to do so, the target pair indices 

𝑗 and 𝑘 are assigned to the 𝑡 and 𝜏 sequences so that 𝑐𝑗−1
𝑖 = 1 and 𝑐𝑘−1

𝑖 = 0. (Notice that 

whenever this is not possible, 𝑦𝑚
𝑖 = 0 regardless of the assignment of those indices.) The 

design’s conditioning pair features are meant to make (𝑅𝑗−1
𝑖 ∩ 𝑆𝑘−1

𝑖 ) a likely event in the 

data for  𝑗 = 𝑘 = 𝑚 ∈ 𝒯. Table 2 shows the experiment’s joint distributions of safe and 

risky choices in pairs of high and low conditioning pairs: The sum of the off-diagonal cells 

in these tables give the percent of subjects for whom 𝑗 and 𝑘 can be assigned such that 

events (𝑅𝑗−1
𝑖 ∩ 𝑆𝑘−1

𝑖 ) occur and shows that these are common in the data, as intended. 
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Table 2: Empirical joint distribution of choices in high and low conditioning pairs 
(percentages of 204 subjects). 

 
   low conditioning pair choice 
   safe risky  safe risky  safe risky 
        
  

 
𝑡 = 𝜏 = 9 

 
𝑡 = 𝜏 = 12 

 
𝑡 = 𝜏 = 15 

 safe  11.76 6.86 
 

9.80 1.96 
 

15.20 4.90 
 risky  56.86 24.51 

 
77.94 10.29 

 
62.25 17.65 

           
  

 
𝑡 = 𝜏 = 18 

 
𝑡 = 𝜏 = 21 

 
𝑡 = 𝜏 = 24 

 safe  7.35 0.00 
 

9.80 0.00 
 

7.35 0.49 
high 

conditioning 
pair choice 

risky  76.47 16.18 
 

85.29 4.90 
 

85.29 6.86 
          
 

 
𝑡 = 𝜏 = 27 

 
𝑡 = 𝜏 = 30 

 
𝑡 = 𝜏 = 33 

 safe  14.71 0.49 
 

9.80 1.47 
 

8.33 0.98 
 risky  50.49 34.31 

 
80.88 7.84 

 
79.41 11.27 

           
  

 
𝑡 = 𝜏 = 36 

 
𝑡 = 𝜏 = 39 

 
𝑡 = 𝜏 = 42 

 safe  8.33 0.00 
 

18.14 2.94 
 

10.78 1.47 
 risky  90.69 0.98 

 
68.63 10.29 

 
76.96 10.78 

           
 

 

 To know the expected value of each 𝑦𝑚
𝑖 , I need an identifying restriction: 

 

Identifying Restriction:  𝑅𝑗
𝑖 ∩ 𝑅𝑗−1

𝑖  and 𝑆𝑘−1
𝑖  are conditionally independent, and 

𝑅𝑘
𝑖 ∩ 𝑆𝑘−1

𝑖  and 𝑅𝑗−1
𝑖  are conditionally independent.  

 

This identifying restriction is implied by both the null and alternative hypotheses. Beyond 

the specifics of the null and alternative hypotheses, the restriction requires that at a 

remove of fifty trials there is no dependence between the test and the retest of the same 

target pair and the conditioning pairs preceding them. The design’s survey break between 

the 𝑡 and 𝜏 sequences is meant to enhance the plausibility of this “no memory” assumption 

between the two sequences. Under this assumed restriction,  

 

(4)   𝐸[𝑦𝑚
𝑖 ] = 𝑃(𝑅𝑗

𝑖 ∩ 𝑅𝑗−1
𝑖 )𝑃(𝑆𝑘−1

𝑖 ) − 𝑃(𝑅𝑘
𝑖 ∩ 𝑆𝑘−1

𝑖 )𝑃(𝑅𝑗−1
𝑖 ). 
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Therefore, defining the observation from each subject 𝑖 as 𝑦𝑖 =
1

12
∑ 𝑦𝑚

𝑖
𝑚∈𝒯 , a one-sample 

test against a zero location of the 𝑦𝑖 tests the null of eq. 2 against the alternative of 

conditional dependence.  

 Given the construction of 𝑦𝑖 detailed above (especially the indexing  convention), 

nonzero values of 𝑦𝑖 are evidence favoring one of two alternatives. When 𝑦𝑖 > 0, relatively 

risky choices are more common when preceded by a relatively risky choice than when 

preceded by a relatively safe choice: On average we observe persistence of the choices of 

subject 𝑖. When 𝑦𝑖 < 0, relatively risky choices are less common when preceded by a 

relatively risky choice than when preceded by a relatively safe choice: On average we 

observe alternation of the choices by subject 𝑖.  

 A simple one-parameter odds ratio model of conditional dependence (e.g. Lipsitz et al. 

1991; Carey et al. 1993) captures both possibilities (persistence or alternation) and this 

model motivated the experimental design and informed my power analysis of the design. 

The Appendix contains that power analysis, which is for a two-tailed t-test against the null 

hypothesis of eq. 2, at a size of 5%, given effect sizes described in the Appendix. To obtain 

power of 90%, the analysis recommends a sample size of 200 subjects. The actual sample 

size is 204 subjects 𝑖, with half in the 𝒪1 pair ordering and the other half in the 𝒪2 ordering. 

 The above construction of the null hypothesis and the observation 𝑦𝑖 for testing it 

assumes not only conditional independence but identically distributed trials of target pair 

choices  across the 𝑡 and 𝜏 sequences. The design’s balanced variation of presentation order 

of the 𝑡 and 𝜏 sequences should offset any simple drift toward either more risky or more 

safe choices as trials progress. However, simple drift is a finding of some experiments (e.g. 

Hey and Orme 1994; Ballinger and Wilcox 1997; Loomes and Sugden 1998) so to check for 

it define the observation 

  

(5)  𝑥𝑖 =  
1

12
[𝟏(𝑖𝜖𝒪1) ∑ (𝑐𝑡

𝑖 − 𝑐𝜏
𝑖 )𝑡=𝜏∈𝒯 + 𝟏(𝑖𝜖𝒪2) ∑ (𝑐𝜏

𝑖 − 𝑐𝑡
𝑖)𝑡=𝜏∈𝒯 ], 

 
which is just the difference between observed risky choices of subject 𝑖 in her first and 

second trials of target pairs. Figure 2 displays the empirical cumulative distribution 

function of 𝑥𝑖  across the experiment’s 204 subjects. The sample mean of 𝑥𝑖  and that mean’s   
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Figure 2: Empirical cumulative distribution function of 𝑥𝑖  across 204 subjects. 
 

 
 
Figure 3. Empirical cumulative distribution function of 𝑦𝑖 across 204 subjects. 
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standard error are –0.0041 and 0.0093, respectively, suggesting an absence of significant 

simple drift in the new experiment. 

 Figure 3 displays the empirical cumulative distribution function of 𝑦𝑖 across the 

experiment’s 204 subjects. The sample mean of 𝑦𝑖 and that mean’s standard error are 

0.0069 and 0.0084, respectively, yielding a 𝑡-statistic with absolute value less than one, so 

there is no significant violation of conditional independence in the new experiment. The 

statistic is positive, suggesting that if there is any conditional dependence here, it is 

perhaps a bit of persistence of choice. 

 

6. Conclusions 

 

 It appears that when an experimenter uses state-of-the-art experimental mechanisms 

and features in an individual choice experiment, conditional independence of observed 

choices is an acceptable assumption. To my knowledge, the new experiment reported here 

is the first direct test of conditional independence, though the tests reported by Hey and 

Lee (2005a, 2005b) and Hey and Zhou (2014) certainly weigh in favor of conditional 

independence as well. And perhaps this does not need emphasis, but neither my evidence 

nor that of Hey and his co-authors says anything at all about other decision experiments 

where choice problems are not basic pairs of one-stage lotteries, or RPS and SED are not 

features of the experiment. Nor does this evidence say anything about other sorts of 

experiments such as multiperiod games or markets. Other scholars could investigate the 

status of conditional independence in these other kinds of experiments. 

 My data analysis and experimental design depended on two things: First, no drift in 

choice probabilities across the two trials of my target choice pairs (which appears to be 

empirically acceptable); and second, an identifying restriction—in essence that at a remove 

of about fifty intervening trials there is no conditional dependence. I have no test of that 

assumption, but believe it is defensible. The two oldest facts from human memory research 

are the primacy and recency effects. The recency effect suggests that if there is any 

conditional dependence, we should probably expect to detect it in recently past choices 

(say one or two trials ago) rather than at a remove of fifty trials past. The primacy effect is 
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that the earliest events or stimuli in a sequence are more likely to be remembered. My 

experimental design pads the front end of each choice sequence (the earliest trials, most 

exposed to any primacy effect) with seven buffer pairs not used in my test. However, I 

accept that there is room for doubt about my identifying restriction. 

 Behavioral econometricians and psychometricians frequently assume conditional 

independence when they construct their likelihood functions for structural estimation of 

preferences from discrete choice sequences observed in the lab. They may take some 

comfort from my results—assuming, of course, that their experiment employs RPS, and 

SED, and that their subjects’ choices are from pairs of one-stage lotteries. For the rest, we 

await new experiments testing conditional independence in other experimental situations. 
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Appendix 

 

 An odds ratio model (Lipsitz et al. 1991; Carey et al. 1993) of restricted conditional 

dependence guided my power analysis for designing the experiment: 

 

Constant odds ratio of four joint probabilities parameterized by the constant 𝛾 > 0: 

 

(A1) 𝛾 = 𝑃(𝑅𝑗
𝑖 ∩ 𝑅𝑗−1

𝑖 ) ∙ 𝑃(𝑆𝑗
𝑖 ∩ 𝑆𝑗−1

𝑖 ) [𝑃(𝑅𝑗
𝑖 ∩ 𝑆𝑗−1

𝑖 ) ∙ 𝑃(𝑆𝑗
𝑖 ∩ 𝑅𝑗−1

𝑖 )]⁄ > 0. 

 

The four joint probabilities add up to unity (probability theory identity): 

 

(A2) 1 = 𝑃(𝑅𝑗
𝑖 ∩ 𝑅𝑗−1

𝑖 ) + 𝑃(𝑆𝑗
𝑖 ∩ 𝑆𝑗−1

𝑖 ) +  𝑃(𝑅𝑗
𝑖 ∩ 𝑆𝑗−1

𝑖 ) + 𝑃(𝑆𝑗
𝑖 ∩ 𝑅𝑗−1

𝑖 ). 

 

Pairs of joint probabilities add up to marginal probabilities (probability theory identities): 

 

(A3) 𝑃(𝑅𝑗
𝑖) = 𝑃(𝑅𝑗

𝑖 ∩ 𝑅𝑗−1
𝑖 ) + 𝑃(𝑅𝑗

𝑖 ∩ 𝑆𝑗−1
𝑖 )  and 

(A4) 𝑃(𝑅𝑗−1
𝑖 ) = 𝑃(𝑅𝑗

𝑖 ∩ 𝑅𝑗−1
𝑖 ) + 𝑃(𝑆𝑗

𝑖 ∩ 𝑅𝑗−1
𝑖 ). 

 

 With given values of 𝛾, 𝑃(𝑅𝑗
𝑖), and 𝑃(𝑅𝑗−1

𝑖 ) in hand, Eqs. A1 to A4 imply the following 

quadratic equation in 𝑃(𝑅𝑗
𝑖 ∩ 𝑅𝑗−1

𝑖 ): 

 

(A5) (𝛾 − 1)[𝑃(𝑅𝑗
𝑖 ∩ 𝑅𝑗−1

𝑖 )]
2

+ 𝛼𝑗
𝑖𝑃(𝑅𝑗

𝑖 ∩ 𝑅𝑗−1
𝑖 ) + 𝛽𝑗

𝑖 = 0,  where 

  𝛼𝑗
𝑖 = (1 − 𝛾)[𝑃(𝑅𝑗

𝑖) + 𝑃(𝑅𝑗−1
𝑖 )] − 1  and  𝛽𝑗

𝑖 = 𝛾𝑃(𝑅𝑗
𝑖) ∙ 𝑃(𝑅𝑗−1

𝑖 ). 

 

When 𝛾 ≠ 1, the quadratic formula gives roots of this equation. Only one root is well-

behaved in the sense that the solution 𝑃(𝑅𝑗
𝑖 ∩ 𝑅𝑗−1

𝑖 ) is always in [0,1]  ∀ 𝛾 ≠ 1): It is 

 

(A6) 𝑃(𝑅𝑗
𝑖 ∩ 𝑅𝑗−1

𝑖 ) = − 0.5 ∙ (𝛼𝑗
𝑖 + [(𝛼𝑗

𝑖)
2

− 4(𝛾 − 1)𝛽𝑗
𝑖]

0.5

) (𝛾 − 1)−1 ∀ 𝛾 ≠ 1,  and   

  𝑃(𝑅𝑗
𝑖 ∩ 𝑅𝑗−1

𝑖 ) = 𝑃(𝑅𝑗
𝑖) ∙ 𝑃(𝑅𝑗−1

𝑖 )  for  𝛾 = 1. 
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The solution from eq. A6 allows a sequential solution for the other three joint probabilities 

using eqs. A2, A3 and A4: 

 

(A7) 𝑃(𝑅𝑗
𝑖 ∩ 𝑆𝑗−1

𝑖 ) = 𝑃(𝑅𝑗
𝑖) − 𝑃(𝑅𝑗

𝑖 ∩ 𝑅𝑗−1
𝑖 ), 

(A8) 𝑃(𝑆𝑗
𝑖 ∩ 𝑅𝑗−1

𝑖 ) = 𝑃(𝑅𝑗−1
𝑖 ) − 𝑃(𝑅𝑗

𝑖 ∩ 𝑅𝑗−1
𝑖 ), and 

(A9) 𝑃(𝑆𝑗
𝑖 ∩ 𝑆𝑗−1

𝑖 ) = 1 − 𝑃(𝑅𝑗
𝑖 ∩ 𝑅𝑗−1

𝑖 ) − 𝑃(𝑅𝑗
𝑖 ∩ 𝑆𝑗−1

𝑖 ) − 𝑃(𝑆𝑗
𝑖 ∩ 𝑅𝑗−1

𝑖 ). 

 

 In turn, with given values of 𝑃(𝑅𝑗
𝑖) and 𝑃(𝑅𝑗−1

𝑖 ) in hand, Eqs. A6 and A7 then give 

solutions for the key conditional probabilities 𝑃(𝑅𝑗
𝑖|𝑅𝑗−1

𝑖 ) and 𝑃(𝑅𝑗
𝑖|𝑆𝑗−1

𝑖 ) given any value of 

𝛾 one wishes to specify as an interesting alternative hypothesis. The upper panels of 

Figures A1 and A2 graph these conditional probabilities for a 𝑡 = 𝜏 ∈ 𝒯 target pair where 

𝑡 − 1 is a high conditioning pair with 𝑃(𝑅𝑡−1
𝑖 ) = 0.85 and 𝜏 − 1 is a low conditioning pair 

with 𝑃(𝑆𝜏−1
𝑖 ) = 0.85 (approximately reflecting the average results for conditioning pairs 

shown in Table 1). Figure A1 assumes that 𝛾 = 2 yielding persistence so that 𝑃(𝑅𝑡
𝑖|𝑅𝑡−1

𝑖 ) −

𝑃(𝑅𝜏
𝑖 |𝑆𝜏−1

𝑖 ) > 0 at any common marginal probability 𝑃(𝑅𝑡
𝑖) = 𝑃(𝑅𝜏

𝑖 ) (shown on the 

horizontal axis).  Figure A2 instead assumes that 𝛾 = 0.5 yielding alternation so that 

𝑃(𝑅𝜏
𝑖 |𝑆𝜏−1

𝑖 ) − 𝑃(𝑅𝑡
𝑖|𝑅𝑡−1

𝑖 ) > 0 at any common marginal probability 𝑃(𝑅𝑡
𝑖) = 𝑃(𝑅𝜏

𝑖 ). 

 The lower panels of Figures A1 and A2 graph corresponding effect sizes. For example, 

to draw the lower panel of Figure A1, one divides the difference 𝑃(𝑅𝑡
𝑖|𝑅𝑡−1

𝑖 ) − 𝑃(𝑅𝜏
𝑖 |𝑆𝜏−1

𝑖 ) 

under the alternative hypothesis 𝛾 = 2 by the standard deviation (2𝑃(𝑅𝑡
𝑖)[1 − 𝑃(𝑅𝑡

𝑖)])
0.5

 of 

that difference under the null hypothesis that 𝑃(𝑅𝑡
𝑖|𝑅𝑡−1

𝑖 ) = 𝑃(𝑅𝜏
𝑖 |𝑆𝜏−1

𝑖 ) =  𝑃(𝑅𝑡
𝑖) (which is 

𝛾 = 1). The figures reveal that these effect sizes are on the small side. Cohen’s (1988) 

convention for these kinds of effect sizes calls 0.2 and 0.5 small and medium effect sizes, 

and those in the figures never quite reach 0.25 regardless of the common marginal 

probability 𝑃(𝑅𝑡
𝑖) = 𝑃(𝑅𝜏

𝑖 ). This is one reason for the repeated measurement of the design 

(that is, why there are twelve pairs of target and conditioning pairs in each sequence, 

providing twelve values 𝑦𝑚
𝑖  which are then averaged within each subject to yield overall 

observations 𝑦𝑖 for each subject 𝑖). 
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Figure A1. Conditional probabilities and effect size implied by 𝑃(𝑅𝑡−1
𝑖 ) = 𝑃(𝑆𝜏−1

𝑖 ) = 0.85 

and persistence (𝛾 = 2). 
 

 

 

 The figures also reveal an asymmetry relevant to the experimental design. Under the 

alternative hypothesis of persistence (𝛾 = 2) the range of marginal probabilities achieving 

effect sizes of at least 0.2 is about 0.30 to 0.85. But under the alternative hypothesis of 

alternation (𝛾 = 0.5), the range of marginal probabilities achieving effect sizes of at least 

0.2 is about 0.15 to 0.70. The compromise range most useful for both alternative 

hypotheses is to (try to) choose target pairs with marginal probabilities in a range from 

about 0.30 to 0.70. On the other hand, some marginal probabilities outside this range are 

among those most useful for estimation of preferences (Manski and McFadden 1981; 

Kanninen 2002). In this design, I attempted to choose target pairs which, on the basis of 

past results with the population I sample from (more on this appears presently), would 

have population mean probabilities falling across most of the unit interval. Half of the  
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Figure A2. Conditional probabilities and effect size implied by 𝑃(𝑅𝑡−1
𝑖 ) = 𝑃(𝑆𝜏−1

𝑖 ) = 0.85 

and alternation (𝛾 = 0.5). 
 

 
 

twelve target pair tests and retests fall within the range from 0.30 to 0.70 mentioned 

above, with the other half more extreme. 

 An estimate of the distributions of marginal and conditional choice probabilities in the 

population I sample from helps with selecting a reasonable sample size. I have a previous 

experiment with a sample of 501 undergraduate subjects from my university, each 

choosing from 72 lottery pairs on the outcome range $8 to $48, using a 4-sided die as the 

chance device. This unpublished experiment was completed in January 2010 in 

collaboration with the late John Dickhaut. Using this data and assuming conditional 

independence, I estimated a random parameters Rank Dependent Utility or RDU model 

(Quiggin 1982, 1993). RDU is essentially the same as Tversky and Kahneman’s (1992) 

Cumulative Prospect Theory limited to lotteries over gains. This yields an estimated 

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

co
n

d
it

io
n

al
 p

ro
b

ab
il

it
ie

s

ef
fe

ct
 s

iz
e

Axis Title

𝑃 𝑅𝜏 𝑆𝜏−1 − 𝑃(𝑅𝑡|𝑅𝑡−1)

2𝑃 (𝑅𝑡) 1 − 𝑃 (𝑅𝑡)

𝑃 𝑅𝜏|𝑆𝜏−1

𝑃 𝑅𝑡|𝑅𝑡−1

𝑃 𝑅𝑡 = 𝑃(𝑅𝜏 ), marginal probabilities



19 

 

distribution of preference parameter vectors 𝜃 in the population of likely subjects at my 

university.  

 With this estimation completed, I draw 1000 simulated subjects indexed by 

𝑛 ∈ {1,2, … ,1000} from my estimated distribution of RDU parameters, and for design 

planning purposes I regard these 1000 simulated subjects as “the population” I sample 

from when I run an experiment. Each simulated subject is a vector 𝜃𝑛 = (𝜅𝑛, 𝜇𝑛, 𝜔𝑛, 𝜆𝑛) of 

four probabilistic RDU model parameters described below. 

 The parameter  𝜅𝑛 ∈ ℝ  is utility curvature in this HARA utility function: 

 

(A10) 𝑢(𝑧|𝜅𝑠) = (1 − 𝜅𝑛)−1[−1 + (1 + 𝑧)(1−𝜅𝑛)]  for  𝜅𝑛 ≠ 1,  ln (1 + 𝑧)  for  𝜅𝑛 = 1. 

 

The parameters  𝜇𝑛 ∈ (0,1)  and  𝜔𝑛 ∈ (0, ∞)  are elevation and curvature parameters of 

this “Beta” weighting function: 

 

(A11) 𝑤(𝐺|𝜇𝑛, 𝜔𝑛) = 𝐵(𝐺|𝑎𝑛, 𝑏𝑛)  where  𝑎𝑛 = 𝜇𝑛𝜔𝑛,  𝑏𝑛 = (1 − 𝜇𝑛)𝜔𝑛,  

  𝐺 is decumulative probability in a lottery, and  

  𝐵(𝑥|𝑎𝑛, 𝑏𝑛) is the cumulative distribution function of the Beta distribution. 

 

The parameter  𝜆𝑛 ∈ (0, ∞)  is a precision or sensitivity parameter of the probabilistic RDU 

model of choice I use in the random parameters estimation.  

 

 The RDU model of marginal probabilities is then 

 

(A12) 𝑃(𝑅𝑗
𝑛|𝜃𝑛) = Λ(𝜆𝑛∆𝑅𝐷𝑈𝑗

𝑛)  where  ∆𝑅𝐷𝑈𝑗
𝑛 = 𝑅𝐷𝑈(𝑅𝑗

𝑛) − 𝑅𝐷𝑈(𝑆𝑗
𝑛), 

  Λ(𝑥) = [1 + exp (𝑥)]−1 is the logistic cumulative distribution function, 

  𝑅𝐷𝑈(𝑅𝑗
𝑛) =  𝜋ℎ𝑗(𝜇𝑛, 𝜔𝑛) + 𝜋𝑚𝑗(𝜇𝑛, 𝜔𝑛)𝑣𝑗(𝑚𝑗|𝜅𝑛), 

  𝜋ℎ𝑗(𝜇𝑠, 𝜔𝑠) = 𝑤(𝑟ℎ𝑗|𝜇𝑛, 𝜔𝑛),  𝜋𝑚𝑗(𝜇𝑛, 𝜔𝑛) = 𝑤(𝑟ℎ𝑗 + 𝑟𝑚𝑗|𝜇𝑛, 𝜔𝑛) − 𝑤(𝑟ℎ𝑗|𝜇𝑛, 𝜔𝑛),  

  and  𝑣𝑗(𝑚𝑗|𝜅𝑛) = [𝑢(𝑚𝑗|𝜅𝑛) − 𝑢(𝑙𝑗|𝜅𝑛)] [𝑢(ℎ𝑗|𝜅𝑛) − 𝑢(𝑙𝑗|𝜅𝑛)]⁄ . 
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 This specification of marginal RDU choice probabilities employs the contextual utility 

probabilistic choice model of Wilcox (2008, 2011) which is appropriate for three-outcome 

pairs of lotteries. These marginal probabilities, calculated for all 𝐽 = 100 pairs in the design 

for each of the 1000 simulated subjects 𝑛, are the choice probabilities under the null 

hypothesis 𝛾 = 1. Conditional choice probabilities may be calculated from them by way of 

eqs. A6 and A7 for any assumed value of 𝛾 ≠ 1, providing choice probabilities under any 

alternative hypothesis.   

 Monte Carlo simulation can check the size of potential test statistics using the marginal 

probabilities (i.e. those that apply when the null hypothesis 𝛾 = 1 is true) as true choice 

probabilities. I draw 10,000 samples, each with 𝑁 = 200 simulated subjects, from my 

population of simulated subjects. For each of those simulated subjects, I draw 100 

Bernoulli variates 𝑐𝑗
𝑛 based on their marginal choice probability as given by eq. A12. Then 

𝑦𝑛 may be computed for each of the 200 simulated subjects in each sample, and then one 

may compute (in each sample) the p-values of test statistics against the null hypothesis in 

eq. 2. For a nominal size of 5%, the actual size of t-tests, signed-rank tests, and sign tests 

from this Monte Carlo simulation are 5.06%, 5.15% and 4.12%, respectively. As far as size 

goes, both the t-tests and the signed-rank tests look quite good, whereas the sign tests 

appear to be somewhat conservative. 

 Monte Carlo simulation can also check the power of potential test statistics, at various 

sample sizes, using the conditional probabilities (i.e. those that apply when the alternative 

hypotheses with 𝛾 ≠ 1 are true) as true choice probabilities. I draw 10,000 samples, each 

with 𝑁 = 200 simulated subjects, from my population of simulated subjects. For each of 

those simulated subjects, eq. A12 is first used to compute marginal probabilities, and then 

eqs. A6 and A7 are used to convert these into conditional probabilities with some 𝛾 ≠ 1. I 

draw 100 Bernoulli variates 𝑐𝑗
𝑛 based on those conditional choice probabilities and the 

previous draw at 𝑗 − 1 (each draw 𝑐𝑗−1
𝑛  determines the conditional choice probability used 

to draw 𝑐𝑗
𝑛). Then 𝑦𝑛 may be computed for each of the 200 simulated subjects in each 

sample, and then one may compute (in each sample) the p-values of test statistics against 

the null hypothesis in eq. 2.  



21 

 

 When 𝛾 = 2 (the value of 𝛾 I specify for the alternative hypothesis of persistence), at a 

nominal size of 5% and with 𝑁 = 200 simulated subjects per sample, t-tests, signed-rank 

tests, and sign tests reject the null hypothesis in  89.71%, 89.20% and 81.20% of the 

10,000 samples, respectively. These power figures show that both the t-tests and the 

signed-rank tests get very close to 90% power with 𝑁 = 200, whereas the sign tests are 

noticeably less powerful than that. The alternative hypothesis of alternation (I specify 

𝛾 = 0.5 for this) produces very similar results. The t-tests, signed-rank tests, and sign tests 

reject the null hypothesis in  90.37%, 90.13% and 81.78% of the 10,000 samples, 

respectively. Again, both the t-tests and the signed-rank tests get very close to 90% power 

with 𝑁 = 200, whereas the sign tests are noticeably less powerful than that. 

 I made the same calculations above for progressively larger samples (beginning at 

𝑁 = 100 and stepping this up in increments of 10) until the sample size produced roughly 

90% power for both 𝛾 = 2 and 𝛾 = 0.5, which first occurs at 𝑁 = 200. This is how the 

sample size was chosen. 
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Table A1: The lottery pairs. 
 

the 𝑡 sequence pairs  the 𝜏 sequence pairs 

𝑡 
 

𝑙 𝑚 ℎ 
 

𝑟𝑙  𝑟𝑚  𝑟ℎ  
 

𝑠𝑙  𝑠𝑚  𝑠ℎ  
 

pair 
type  

𝜏 
 

𝑙 𝑚 ℎ 
 

𝑟𝑙  𝑟𝑚  𝑟ℎ  
 

𝑠𝑙  𝑠𝑚  𝑠ℎ  
 

pair 
type 

1 
 

18 23 58 
 

1

6
 0 

5

6
 

 
0 

5

6
 

1

6
 

 
buff 

 
1 

 
18 23 58 

 

1

2
 0 

1

2
 

 

1

3
 

2

3
 0 

 
buff 

2 
 

8 18 58 
 

1

2
 0 

1

2
  

0 
2

3
 

1

3
 

 
buff 

 
2 

 
8 18 23 

 

1

2
 0 

1

2
  

0 1 0 
 

buff 

3 
 

8 18 58 
 

1

6
 0 

5

6
  

0 1 0 
 

buff 
 

3 
 

8 18 58 
 

1

6
 0 

5

6
  

0 1 0 
 

buff 

4 
 

8 18 23 
 

2

3
 0 

1

3
 

 

1

3
 

2

3
 0 

 
buff 

 
4 

 
8 18 58 

 

5

6
 0 

1

6
 

 

1

6
 

5

6
 0 

 
buff 

5 
 

18 23 58 
 

1

2
 0 

1

2
  

0 
5

6
 

1

6
 

 
buff 

 
5 

 
18 23 58 

 

1

2
 0 

1

2
  

0 
5

6
 

1

6
 

 
buff 

6 
 

8 18 23 
 

1

2
 0 

1

2
  

1

6
 

5

6
 0 

 
buff 

 
6 

 
8 18 23 

 

1

6
 0 

5

6
  

0 
1

2
 

1

2
  

buff 

7 
 

18 23 58 
 

5

6
 0 

1

6
 

 
0 1 0 

 
buff 

 
7 

 
8 18 23 

 

1

3
 0 

2

3
 

 

1

6
 

5

6
 0 

 
buff 

8 
 

8 18 58 
 

1

6
 

1

2
 

1

3
 

 
0 1 0 

 
buff 

 
8 

 
8 18 58 

 

1

6
 0 

5

6
  

0 
1

2
 

1

2
  

buff 

9 
 

18 23 58 
 

1

6
 

2

3
 

1

6
 

 
0 1 0 

 
high 

 
9 

 
8 18 58 

 

1

3
 0 

2

3
 

 
0 

1

2
 

1

2
  

low 

10 
 

8 18 23 
 

1

6
 0 

5

6
  

0 1 0 
 

targ 
 

10 
 

8 18 23 
 

1

6
 0 

5

6
  

0 1 0 
 

targ 

11 
 

8 18 23 
 

1

3
 

1

2
 

1

6
 

 

1

6
 

5

6
 0 

 
buff 

 
11 

 
8 18 23 

 

1

6
 

1

2
 

1

3
 

 
0 1 0 

 
buff 

12 
 

8 18 23 
 

1

6
 

1

2
 

1

3
 

 
0 

5

6
 

1

6
 

 
low 

 
12 

 
8 18 58 

 

1

3
 0 

2

3
 

 
0 1 0 

 
high 

13 
 

8 18 58 
 

2

3
 0 

1

3
 

 
0 

5

6
 

1

6
 

 
targ 

 
13 

 
8 18 58 

 

2

3
 0 

1

3
 

 
0 

5

6
 

1

6
 

 
targ 

14 
 

18 23 58 
 

1

3
 0 

2

3
 

 
0 

1

2
 

1

2
  

buff 
 

14 
 

8 18 58 
 

1

6
 

2

3
 

1

6
 

 
0 1 0 

 
buff 

15 
 

18 23 58 
 

1

3
 

1

2
 

1

6
 

 

1

6
 

5

6
 0 

 
high 

 
15 

 
8 18 23 

 

1

6
 0 

5

6
  

0 
1

3
 

2

3
 

 
low 
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Table A1: The lottery pairs (continued). 
 

the 𝑡 sequence pairs  the 𝜏 sequence pairs 

𝑡  𝑙 𝑚 ℎ  𝑟𝑙  𝑟𝑚  𝑟ℎ   𝑠𝑙  𝑠𝑚  𝑠ℎ   
pair 
type 

 𝜏  𝑙 𝑚 ℎ  𝑟𝑙  𝑟𝑚  𝑟ℎ   𝑠𝑙  𝑠𝑚  𝑠ℎ   
pair 
type 

16  18 23 58  
1

2
 0 

1

2
  0 

2

3
 

1

3
  targ  16  18 23 58  

1

2
 0 

1

2
  0 

2

3
 

1

3
  targ 

17 
 

8 18 23 
 

1

3
 0 

2

3
 

 

1

6
 

2

3
 

1

6
 

 
buff 

 
17 

 
8 18 23 

 

1

6
 0 

5

6
  

0 
5

6
 

1

6
 

 
buff 

18 
 

8 18 58 
 

2

3
 0 

1

3
 

 

1

6
 

2

3
 

1

6
 

 
low 

 
18 

 
18 23 58 

 

2

3
 0 

1

3
 

 

1

6
 

5

6
 0 

 
high 

19 
 

8 18 58 
 

1

3
 0 

2

3
 

 

1

6
 

5

6
 0 

 
targ 

 
19 

 
8 18 58 

 

1

3
 0 

2

3
 

 

1

6
 

5

6
 0 

 
targ 

20 
 

8 18 58 
 

2

3
 0 

1

3
 

 

1

3
 

2

3
 0 

 
buff 

 
20 

 
18 23 58 

 

1

6
 

1

2
 

1

3
 

 
0 

5

6
 

1

6
 

 
buff 

21 
 

18 23 58 
 

1

2
 0 

1

2
  

1

6
 

2

3
 

1

6
 

 
high 

 
21 

 
8 18 23 

 

1

3
 

1

2
 

1

6
 

 
0 1 0 

 
low 

22 
 

8 18 23 
 

1

3
 0 

2

3
 

 
0 1 0 

 
targ 

 
22 

 
8 18 23 

 

1

3
 0 

2

3
 

 
0 1 0 

 
targ 

23 
 

18 23 58 
 

2

3
 0 

1

3
 

 

1

6
 

2

3
 

1

6
 

 
buff 

 
23 

 
8 18 58 

 

1

2
 0 

1

2
  

1

6
 

2

3
 

1

6
 

 
buff 

24 
 

8 18 23 
 

1

3
 0 

2

3
 

 
0 

5

6
 

1

6
 

 
low 

 
24 

 
18 23 58 

 

1

6
 

1

2
 

1

3
 

 
0 1 0 

 
high 

25 
 

8 18 58 
 

5

6
 0 

1

6
 

 

1

2
 

1

2
 0 

 
targ 

 
25 

 
8 18 58 

 

5

6
 0 

1

6
 

 

1

2
 

1

2
 0 

 
targ 

26 
 

8 18 58 
 

2

3
 0 

1

3
 

 

1

6
 

5

6
 0 

 
buff 

 
26 

 
8 18 58 

 

1

6
 0 

5

6
  

0 
1

3
 

2

3
 

 
buff 

27 
 

8 18 58 
 

1

6
 0 

5

6
  

0 
5

6
 

1

6
 

 
high 

 
27 

 
8 18 23 

 

5

6
 0 

1

6
 

 

1

2
 

1

2
 0 

 
low 

28 
 

18 23 58 
 

2

3
 0 

1

3
 

 
0 

5

6
 

1

6
 

 
targ 

 
28 

 
18 23 58 

 

2

3
 0 

1

3
 

 
0 

5

6
 

1

6
 

 
targ 

29 
 

8 18 58 
 

5

6
 0 

1

6
 

 

2

3
 

1

3
 0 

 
buff 

 
29 

 
18 23 58 

 

2

3
 0 

1

3
 

 

1

3
 

1

2
 

1

6
 

 
buff 

30 
 

8 18 23 
 

1

2
 0 

1

2
  

1

6
 

2

3
 

1

6
 

 
low 

 
30 

 
18 23 58 

 

1

2
 0 

1

2
  

0 1 0 
 

high 
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Table A1: The lottery pairs (continued). 
 

the 𝑡 sequence pairs  the 𝜏 sequence pairs 

𝑡  𝑙 𝑚 ℎ  𝑟𝑙  𝑟𝑚  𝑟ℎ   𝑠𝑙  𝑠𝑚  𝑠ℎ   
pair 
type 

 𝜏  𝑙 𝑚 ℎ  𝑟𝑙  𝑟𝑚  𝑟ℎ   𝑠𝑙  𝑠𝑚  𝑠ℎ   
pair 
type 

31  8 18 23  
1

2
 0 

1

2
  

1

3
 

2

3
 0  targ  31  8 18 23  

1

2
 0 

1

2
  

1

3
 

2

3
 0  targ 

32  8 18 58  
1

3
 

1

2
 

1

6
  0 1 0  buff  32  8 18 58  

1

6
 

1

2
 

1

3
  0 

5

6
 

1

6
  buff 

33 
 

18 23 58 
 

1

3
 0 

2

3
 

 
0 

5

6
 

1

6
 

 
high 

 
33 

 
8 18 23 

 

1

3
 0 

2

3
 

 
0 

2

3
 

1

3
 

 
low 

34 
 

8 18 23 
 

1

3
 0 

2

3
 

 

1

6
 

5

6
 0 

 
targ 

 
34 

 
8 18 23 

 

1

3
 0 

2

3
 

 

1

6
 

5

6
 0 

 
targ 

35 
 

8 18 58 
 

1

3
 0 

2

3
 

 
0 

5

6
 

1

6
 

 
buff 

 
35 

 
8 18 58 

 

1

2
 0 

1

2
  

0 1 0 
 

buff 

36 
 

8 18 23 
 

2

3
 0 

1

3
 

 

1

3
 

1

2
 

1

6
 

 
low 

 
36 

 
18 23 58 

 

1

2
 0 

1

2
  

1

3
 

1

2
 

1

6
 

 
high 

37 
 

8 18 58 
 

5

6
 0 

1

6
 

 
0 1 0 

 
targ 

 
37 

 
8 18 58 

 

5

6
 0 

1

6
 

 
0 1 0 

 
targ 

38 
 

8 18 58 
 

1

3
 0 

2

3
 

 
0 

2

3
 

1

3
 

 
buff 

 
38 

 
8 18 23 

 

2

3
 0 

1

3
 

 

1

2
 

1

2
 0 

 
buff 

39 
 

18 23 58 
 

2

3
 0 

1

3
 

 

1

3
 

2

3
 0 

 
high 

 
39 

 
8 18 23 

 

2

3
 0 

1

3
 

 

1

6
 

5

6
 0 

 
low 

40 
 

18 23 58 
 

5

6
 0 

1

6
 

 
0 1 0 

 
targ 

 
40 

 
18 23 58 

 

5

6
 0 

1

6
 

 
0 1 0 

 
targ 

41 
 

18 23 58 
 

1

2
 0 

1

2
  

1

6
 

1

2
 

1

3
 

 
buff 

 
41 

 
18 23 58 

 

5

6
 0 

1

6
 

 

1

6
 

5

6
 0 

 
buff 

42 
 

8 18 23 
 

1

2
 0 

1

2
  

1

6
 

1

2
 

1

3
 

 
low 

 
42 

 
18 23 58 

 

1

3
 0 

2

3
 

 

1

6
 

1

2
 

1

3
 

 
high 

43 
 

8 18 58 
 

1

2
 0 

1

2
  

1

3
 

2

3
 0 

 
targ 

 
43 

 
8 18 58 

 

1

2
 0 

1

2
  

1

3
 

2

3
 0 

 
targ 

44 
 

18 23 58 
 

2

3
 0 

1

3
 

 

1

2
 

1

2
 0 

 
buff 

 
44 

 
18 23 58 

 

2

3
 0 

1

3
 

 

1

2
 

1

2
 0 

 
buff 

45 
 

18 23 58 
 

1

3
 

1

2
 

1

6
 

 
0 1 0 

 
buff 

 
45 

 
18 23 58 

 

2

3
 0 

1

3
 

 
0 1 0 

 
buff 



25 

 

Table A1: The lottery pairs (continued). 
 

the 𝑡 sequence pairs  the 𝜏 sequence pairs 

𝑡  𝑙 𝑚 ℎ  𝑟𝑙  𝑟𝑚  𝑟ℎ   𝑠𝑙  𝑠𝑚  𝑠ℎ   
pair 
type 

 𝜏  𝑙 𝑚 ℎ  𝑟𝑙  𝑟𝑚  𝑟ℎ   𝑠𝑙  𝑠𝑚  𝑠ℎ   
pair 
type 

46  8 18 58  
1

3
 0 

2

3
  

1

6
 

5

6
 0  buff  46  18 23 58  

1

6
 0 

5

6
  0 

1

2
 

1

2
  buff 

47  8 18 23  
1

3
 0 

2

3
  0 

1

2
 

1

2
  buff  47  18 23 58  

2

3
 0 

1

3
  0 

5

6
 

1

6
  buff 

48  8 18 58  
1

3
 0 

2

3
  

1

6
 

2

3
 

1

6
  buff  48  8 18 23  

1

6
 0 

5

6
  0 1 0  buff 

49 
 

8 18 58 
 

1

6
 0 

5

6
  

0 
2

3
 

1

3
 

 
buff 

 
49 

 
18 23 58 

 

1

3
 0 

2

3
 

 
0 

2

3
 

1

3
 

 
buff 

50 
 

8 18 58 
 

2

3
 0 

1

3
 

 

1

2
 

1

2
 0 

 
buff 

 
50 

 
18 23 58 

 

5

6
 0 

1

6
 

 

2

3
 

1

3
 0 

 
buff 
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