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Equilibrium wage rigidity in directed search†

Gabriele Camera Jaehong Kim
Chapman University Xiamen University
University of Bologna

June 29, 2018

Abstract

Matching frictions and downward wage rigidity emerge as equilibrium phenomena in a two-
sided labor market where firms sustain variable wage adjustment costs. Firms post wages
to attract workers and matches are endogenous. Reducing the wage relative to the wage
previously posted is costly to the firm, where the cost is proportional to the size of the
proposed cut. Shocks to the firm’s profitability may yield an equilibrium wage above what
the firm would offer absent proportional adjustment costs. Wage cuts can be partial or full,
immediate or delayed, and are non-linear in the shock size. Importantly, wages are sticky
even if firms have negligible costs for cutting wages.

Keywords: frictions; matching; sticky wages.

JEL: C70, D40, E30, J30

1 Introduction

A large body of empirical evidence suggests that real wages are not very flexible

downward. Firms rarely push through wage cuts (e.g., Agell and Lundborg, 2003;

Bewley, 1995; Holzer and Montgomery, 1993), in contrast with the equilibrium pre-

diction of the typical directed search model of frictional labor markets. This kind
†We thank an anonymous referee for many helpful comments that improved the exposition of the
analysis. Correspondence address: J. Kim, Wang Yanan Institute for Studies in Economics and the
School of Economics, Xiamen University, China; e-mail: jaehongkim@xmu.edu.cn.
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of wage rigidity has also been observed in laboratory economies where workers can

direct their search to a firm of their choice (Fehr and Falk, 1999). We ask: can this

phenomenon emerge as an equilibrium of frictional labor markets where search can

be directed?

Here, we show that equilibrium downward wage rigidity naturally emerges in

two-sided labor markets where search is costless and labor market frictions emerge

endogenously as in Peters (1984) and Burdett et al. (2001) among many others. To

study wage dynamics in a frictional labor market we embed the directed search model,

which is static, in an infinitely-lived economy (e.g., as in Albrecht et al., 2006). The

model assumes that all matches break at the end of a period, so the existence of

equilibrium price rigidities does not rely on the existence of insurance motives when

market participants are risk averse and can commit to multi-period contracts (e.g.,

as in Rudanko, 2009). Moreover, in symmetric equilibrium the wage is unique so the

mechanism responsible for price rigidities is not based on assuming a specific focal

point when a continuum of bargained wages exists (e.g., as in Hall, 2005).

The model has a two-sided structure as in Peters (1984), where search is costless

and unrestricted. In each period many profit-maximizing firms compete in posted

wages to attract many utility-maximizing workers who independently direct their

search. Lack of coordination among workers is a constant source of frictions, which

gives rise to a trade-off for workers and firms: applying to a higher-wage job lowers

the probability of being hired, while posting a lower wage reduces the probability of

filling a vacancy. This basic market structure forms the basis of the directed search

literature of labor markets (e.g., as in Burdett et al., 2001; Shimer, 2005). Its key

characteristic is that, in symmetric equilibrium, the distributions of workers across

firms and of wages reflect the market structure. In particular, labor market frictions

emerge endogenously because workers choose to direct their search at random based

on the distribution of wages that are posted in the period.

The innovation, relative to the directed search models, is the introduction of a
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variable asymmetric wage adjustment cost. It is assumed that if the firm offers a wage

below what it offered in the past, then this wage cut is costly to implement because it

generates a variable cost to the firm, which is proportional to the size of the proposed

cut. In particular, the cost vanishes as the size of the wage cut shrinks to zero. The

central question is: how do firms react when market conditions suddenly change? We

identify five levels of the wage posted in the previous period by a firm, which allow full

characterization of current wage choices in Markov-perfect equilibrium: an exit wage,

below which the firm can never attract workers; a target wage, which maximizes the

firm’s expected profit in the absence of any adjustment cost; a trigger wage, below

which the firm optimally chooses not to adjust the current wage; a break-even wage,

above which there is no wage rigidity; and an inactive threshold wage above which

the firm prefers to remain temporarily idle; see Figure 1.

0 z v∗ vτ v̄ z̄

inactive threshold

break-even

trigger

target

exit

Figure 1: Five key wages

The analysis, reveals that downward wage rigidity generally emerges endoge-

nously, in Nash equilibrium. The resulting wage may lie above temporarily or

permanently the ‘ideal’ target wage. The extent of rigidity nonlinearly depends

on the severity of the shock. Firms always react to favorable shocks i.e., shocks that

raise their target wage by fully raising the wage to the new target in order to best

compete for workers. By contrast, firms will cut wages in reaction to an unfavorable

shock only when their target wage sufficiently drops.

Equilibrium wage cuts can be partial or full, immediate or delayed, depending on

the shock size. There is a full wage cut when, following the shock, the firm posts
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exactly the target wage. The wage cut is partial, when the firm instead posts a wage

in between the target wage and the previous period’s wage. A permanent negative

shock induces the firm to optimally cut the wage only if the shock is sufficiently

large and even so, full wage cuts are implemented only in extreme cases. This

gives rise to three interesting results. First, the decision to cut wages is negatively

associated with the size of the induced cost. Importantly, wages are sticky even if

cutting the wage entails a negligible adjustment cost for the firm. By contrast, wages

are cut in response to shocks that significantly lower the target wage, even if this

implies high adjustment costs. Second, the size of a wage cut responds non-linearly

to the adjustment cost. Generally, firms will push through only partial wage cuts, and

only shocks that significantly reduce the firm’s profitability will trigger a full wage

cut. Third, the firm may optimally choose to temporarily leave the market, and then

re-enter it by offering a lower wage. Whether or not this will occur depends on the

size of the shock.

Our model assumes that wage adjustment costs arise whenever the firm hires a

worker at a wage below the previous period’s wage. The adjustment cost is propor-

tional to the size of the wage cut, and is asymmetric, there is no benefit if the wage

increases. This modeling choice is economically meaningful: it allows us to capture

the important empirical observation that worker’s productivity depends on worker’s

morale, and downward wage rigidity results from employers’ desire to avoid harming

worker’s morale and performance through a wage cut. These observations emerge

from multiple surveys (e.g., Bewley, 1995; Campbell and Kamlani, 1997; Kaufman,

1984) as well as a recent field experiment (Kube et al., 2013). Simply put, there is

evidence that work effort of existing and newly hired workers alike depends upon

workers’ morale, and workers’ morale is negatively affected by wage cuts, though not

necessarily by a low wage level. As a consequence, firms are reluctant to lower wages.

The mechanism explored in this paper supports wage rigidity through a different

mechanism a variable cost compared to assuming efficiency wages or fixed adjust-
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ment costs which are popular justifications of wage rigidity. In the efficiency wage

literature (e.g., Shapiro and Stiglitz, 1984) offering a wage below market dispropor-

tionately lowers productivity, so hiring a worker at that lower wage is unprofitable for

the firm at any point in time. By contrast, it is the size of the wage cut that matters

in our model (not the wage level), and hiring a worker at the lower wage is always

profitable for the firm; the wage cut only generates an internal cost.

As in the literature on menu costs, our model assumes an explicit adjustment

cost. However, the properties of the adjustment cost in our model are different

as compared to other models with explicit adjustment costs. In particular, in the

menu costs literature the cost is typically lump-sum and does not vanish as the wage

adjustment vanishes (e.g., see Ball and Romer, 1991). This implies that sufficiently

small wage cuts are unprofitable. By contrast, in our model the adjustment cost

varies proportionately with the size of the cut, and vanishes as the size of the wage

cut goes to zero. As a result small wage cuts can in principle be profitable.

The paper proceeds by presenting the model in Section 2. The analysis is laid out

in Section 3. Section 4 concludes by offering a discussion of the main features of the

model in relation to the literature on the exogenous random matching models and

how wage rigidity would be affected if we introduced the possibility of multi-period

matches.

2 The model

Time is discrete, t = 1, 2, . . . There are infinitely-lived agents of two types, j ∈ J =

{1, . . . , J} firms and i ∈ I = {1, . . . , I} homogeneous workers. We assume large

markets by letting J →∞ with I = rJ , where 1/r > 0 denotes market tightness, i.e.,

the ratio of vacancies to job-seekers. Therefore we work with countably many workers

and firms. Every agent discounts the future at geometric rate β ∈ (0, 1). Each period
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has two stages: wage posting and hiring.1

In the first stage of each period t each firm independently posts a wage vt which

is earned by the worker who is hired; there is no cost from posting wages. In the

second stage, workers see all posted wages and choose to visit one firm; there is no

cost from visiting a firm (see Virag, 2010, for a model where visiting a firm entails a

fixed cost).

After matches are realized one vacancy is filled at all firms that have met at least

one worker. Matches last only one period, so that separation is certain at the end of

the period. Unmatched parties and those matched parties who do not trade obtain

zero payoff in the period. If firm j hires a worker on date t > 1, then the worker

receives vt and the firm’s profit is φj(vt; vt−1), which depends on the current wage

vt and the previous period’s wage vt−1. In particular, it is assumed that lowering

the wage from the previously posted wage generates a variable cost to the firm. The

cost is proportional to the size of the wage cut, so that small wage reductions have

a minimal impact on profit of the firm during the period. Moreover, the profit of all

future matches remains unaltered. The profit of the firm is formulated by means of

the piece-wise profit function

φj(vt; vt−1) :=

 φ̃j(vt)− (vt−1 − vt)cj1vt<vt−1 if t > 1,

φ̃j(vt) if t = 1,
(1)

where

φ̃j(v) := aj − bjv ≥ φj(v; vt−1)

with 0 < cj < bj. We have φ̃j(v) ≥ 0 for all v ∈ [0, v̄j] where v̄j = aj
bj

is called the

break-even wage. Since v̄j is the crucial element of the analysis, we will normalize
1The model and notation reflect the formulation adopted in Kim and Camera (2014), to which we
refer the reader for additional details and implied proofs of statements.
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bj = 1 for all firms, i.e., we assume perfectly transferable utility. See Figure 2. Since

in the initial period t = 1 there is no history of previous wages, the profit function is

simply φj(v1, v0) = φ̃j(v1).2

vt

φj

φ̃j

vt

φ̃j(vt−1)

φj(0; vt−1)

vt−1 v̄j

Figure 2: The profit function φj(vt; vt−1)

Notes: The red line is the adjustment cost from cutting the wage to vt from vt−1.

We now discuss the matching function on a generic date t, omitting the argument t

when understood. Consider symmetric equilibria, which are the focus in the literature

(see Norman, 2015, for a way to justify this focus). Let λj denote the expected number

of workers who visit firm j in a symmetric outcome where workers are indifferent

across all firms and so choose them at random. Given the large size of the market, a

standard result is that workers are distributed according to a Poisson with parameter

λj (Peters, 1984). Consequently we let

M(λj) := 1− e−λj

2To reduce the notational burden, we will not make this distinction explicit in the remainder of
the paper, when no confusion arises. Conceptually, assuming φj(v1, v0) = φ̃j(v1) is equivalent to
assuming φj as in definition (1) for all t ≥ 1 and v0 = 0.
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denote the unconditional probability that firm j trades on date t.3

It is assumed that firms who are visited by more than one worker randomly hire

one of the workers who are present. Again, the standard result is that the function

H(λj) := 1− e−λj
λj

= M(λj)
λj

,

can be used denote the conditional probability that a worker is hired when she visits

a firm who expects λj workers on date t.

In a symmetric outcome workers must be indifferent across all firms j ∈ J . Hence,

letting vj denote the wage offered by firm j on date t, the following indifference

condition must hold:

H(λj)vj = H(λk)vk = U for all j, k ∈ J .

Above, we have used U to denote the expected utility that workers receive on the

market in a symmetric outcome. This notation will be convenient later because,

given U , we immediately see that the indifference constraint implies that the queue

λj depends only on vj. When understood, we will omit the argument vj from λj(vj).

Discussion and interpretation. Our model of adjustment costs can be inter-

preted as one in which a higher past wage acts like a reduction in productivity. To

drive this point home, notice that for the case vt < vt−1, we can reformulate the profit

function in our model as follows:4

φ(vt; vt−1) := v̄ − cvt−1 − (1− c)vt ∝ yt − vt
3One may be tempted to conclude that our analysis can be simplified, at virtually no cost, by
imposing an urn-ball matching process. This conclusion is incorrect. The possibility to direct
search dramatically changes incentives not only in equilibrium, but also off-equilibrium. See the
discussion in Section 4 about the importance of a micro-foundation for the matching function M.

4We thank an anonymous referee for suggesting this interpretation and reformulation.
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where yt := v̄ − cvt−1

1− c is the firm’s productivity, which declines in vt−1.

A possible mechanism generating this negative association between past wages and

current productivity is tied to the well-received empirical observation that worker’s

productivity depends on worker’s morale. In this case, downward wage rigidity may

results from employers’ fear that a wage cut would harm worker’s morale and pro-

ductivity. There are several studies providing empirical support to this productivity

channel.

The study in Bewley (1995) reports findings from 334 interviews of business own-

ers, managers and human-resource executives from a variety of U.S. small and large

companies, during the years 1992-1994. The central conclusion is that the main causes

of downward wage rigidity have to do with employers’ belief that worker’s produc-

tivity depends on worker’s morale, and wage cuts have a negative effect on morale

of existing employees, and also of new hires. Results from the more recent survey in

Campbell and Kamlani (1997) confirm this conclusion. Respondents indicated that

among the greatest deterrents to wage cuts we find the fear that a wage cut would

lead to less effort because it would lower workers’ morale. The survey also revealed

that workers respond more strongly to a wage cut than to low wages. The study in

Kaufman (1984) strikes a similar note for U.K firms, with the authors noting that

employers felt that wage reductions, especially those unaccompanied by credible in-

formation concerning a financial crisis, would lower morale and effort. In a controlled

field experiment that minimized reputation effects and ruled out the possibility of

repeated employment, Kube et al. (2013) finds that wage cuts significantly lower

workers’ productivity, whereas wage increases do not affect it.

It should be clear that the particular combination of assumptions adopted in our

model does not allow it to capture all features of the economies analyzed in the

aforementioned studies the presence of incumbent workers, or possible behavioral

effects on application probabilities, for example. Our model is simply designed to

capture the key operating principle that is common to all the aforementioned studies:
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employers’ wage choices are influenced by the prospect that a wage cut has adverse

effects on workers’ productivity. The adjustment cost in our model can be therefore

interpreted as workers’ productivity decline stemming from a decline in morale. This

cost reflects the size of the wage cut but not necessarily the level of the wage, as

seen above. The asymmetry in adjustment cost captures the evidence that workers

respond asymmetrically to a wage cut as opposed to a wage increase.

3 Equilibrium wages

Here we study the equilibrium behavior of a generic firm, so we omit the indicator j

whenever it is understood. We let v∗ ∈ (0, v̄) denote the target wage, i.e., the wage

that the firm optimally posts in the absence of any cost from cutting wages. Since

the environment is stationary, v∗ corresponds to the static Nash equilibrium wage.

We focus on Markov perfect equilibria, where the firm’s posted wage does not

depend on the history of play and is not a function of time; the wage depends on the

“state” of the profit function and the current market conditions and, in particular, a

worker’s market utility U , which the firm takes as given. In a stationary environment,

wages in Markov perfect equilibrium correspond to wages in static Nash equilibrium

(see the discussion in Camera and Kim, 2016).

The analysis identifies five key wage thresholds, which are illustrated in Figure

1: the exit wage z; the target wage v∗; the trigger wage vτ ; the break-even wage v̄;

and the inactive threshold wage z̄. These thresholds allow us to fully characterize the

optimal posted wage, as reported in the following Theorem.

Theorem 1. Consider Markov-perfect strategies and any period t > 1. For any

given vt−1, there exists a unique equilibrium sequence of profit-maximizing wages

(v∗t , v∗t+1, . . .), which satisfies the following properties:

1. If vt−1 ≤ v∗, then v∗t+j = v∗ for all j ≥ 0;
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2. If v∗ < vt−1 ≤ v̄, then there exist a “trigger wage” vτ ∈ (v∗, v̄) such that

v∗t+j

 = vt−1 if vt−1 ∈ (v∗, vτ ]

∈ [v∗, vτ ) if vt−1 ∈ (vτ , v̄]

for all j ≥ 0;

3. If v̄ < vt−1, then there exists an “inactive threshold” wage ω > z̄ such that

• v∗t < v∗ if vt−1 ∈ (v̄, ω), and otherwise the firm remains idle in t;

• v∗t+j = v∗ for all j ≥ 1.

Theorem 1 establishes three facts. First, if the wage last period was below the

target wage, then wages immediately and fully adjust to the target v∗, as the firm

suffers no adjustment costs. This implies that, without external shocks, optimal wages

are constant in Markov equilibrium. They correspond to the target wage v∗, which

is simply the market wage in static Nash equilibrium.

The next two points demonstrate the existence of equilibrium wage rigidity, when

the firm must sustain an adjustment cost to lower its wage today. Whether or not

wages are cut, and by how much, depends on how bigger the previous period’s wage

vt−1 was as compared to the target wage v∗. The second item in Theorem 1 shows that

if the wage last period was above the target but below the trigger wage vτ , then this

period’s wage will be completely rigid. If instead, last period’s wage is between the

trigger wage and the break-even wage v̄, then the firm will partially lower the current

wage, moving it closer to the target v∗. That is, if the wage differential vt−1 − v∗ is

sufficiently small, then the firm will not adjust wages at all at any point in time and

will keep the wage at vt−1; otherwise, it will partially adjust the wage, lowering it

toward the target.

The third item in Theorem 1 shows that if last period’s wage was so large to
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overtake the break-even wage, then the wage will adjust to the target, but will do so

with a delay. The delay is due to the large adjustment cost that must be suffered

by the firm today. If vt−1 was sufficiently high, then the firm simply stays out of

the market today, and re-enters it tomorrow; this is equivalent to posting a zero

wage today. Otherwise, there will be “overshooting” of the target wage, because the

firm will post a wage below v∗ today, only to raise it back up to v∗ from tomorrow

on. Overshooting stems from the large adjustment cost, which forces the firm to cut

current labor costs by offering a low wage today in order to remain profitable.

The remainder of this section is devoted to prove this Theorem through a se-

quence of Lemmas. We start by establishing a preliminary result about symmetric

equilibrium in the static game, which is central to proving existence and uniqueness of

symmetric Markov equilibrium in the dynamic game. We then proceed by examining

optimal choices in the dynamic game. Finally, we will extend the analysis to the case

of unanticipated shocks to firms.

3.1 Preliminaries: equilibrium in the static game

Consider a static game. The firm’s profit function depends solely on the wage it

chooses to post. For the generic firm j, we have φ(v) = φ̃(v), with φ decreasing in

v. Consequently, in this section we omit the symbol ∼ from φ̃ for convenience, and

simply work with the notation φ. Note that, given the normalization b = 1, we have

v̄ = a and φ(v) = v̄ − v. For any given market utility U , the firm’s maximization

problem is thus

max
v
M(λ)(v̄ − v) such that H(λ)v = U.
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From the constraint we obtain λ(v) as a function of v, which we can substitute into

the objective function to get

v∗ := arg max
v
M(λ(v))(v̄ − v). (2)

Lemma 1 (Wages in Static Nash Equilibrium). If φ(v) = v̄− v, with v̄ > 0, then the

optimal posted wage v is v∗ = v∗(v̄). If φj(v) = v̄j − v for j = 1, 2 with v̄1 ≥ v̄2, then

v∗1 ≥ v∗2.

There are two important lessons. First, the firm’s optimal posted wage v∗ is

uniquely determined by the break-even wage v̄. Second, optimal wages monotonically

increase in the break-even wage.

To prove Lemma 1, we study the first order condition of (2). In an interior

solution, the optimal value v∗ must satisfy the first order condition G(v̄, v∗) = 0

where

G(v̄, v∗) := ∂M(λ(v∗))
∂λ

× ∂λ(v∗)
∂v

(v̄ − v∗)−M(λ(v∗)).

Note that v∗ only depends on v̄. Consider the two partial derivatives of G(v̄, v∗), i.e.,

Gv̄(v̄, v∗) := ∂M(λ(v∗))
∂λ

∂λ(v∗)
∂v

> 0,

Gv∗(v̄, v∗) :=
{
∂2M(λ(v∗))

∂λ2

(
∂λ(v∗)
∂v

)2
+ ∂M(λ(v∗))

∂λ
∂2λ(v∗)
∂v2

}
(v̄ − v∗)− 2∂M(λ(v∗))

∂λ
∂λ(v∗)
∂v

< 0.

The implicit function theorem, the characterization of the function λ(v) (see the

Appendix), and the properties of M imply

∂v∗

∂v̄
= − Gv̄(v̄, v∗)

Gv∗(v̄, v∗)
> 0.
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Now note that Gv∗(v̄, v∗), which is negative, represents the second order condition for

the problem in (2). Therefore, v∗ uniquely maximizes the firm’s profit.

Lemma 1 is illustrated in Figure 3; it displays the optimal posted wage v∗j for two

firms j = 1, 2, which depends only on the break-even wage v̄j that firm j can offer.

The left panel shows why the normalization bj = 1 is without loss in generality; there,

we have a2 < a1 and b2 < b1 = 1 such that a2
b2

= a1
b1

= v̄1 = v̄2, so the two optimal

posted wages coincide. The right panel shows two firms with normalized b2 = b1 = 1

and a2 > a1 so v̄2 > v̄1.

v

φj(v)

φ1φ2

v∗1 = v∗2 v̄1 = v̄2
v

φj(v)

φ1 φ2

v∗1 v
∗
2 v̄1 v̄2

Figure 3: The optimal posted wage v∗j

3.2 The target wage in the dynamic game

Consider the dynamic game. We derive the sequence of target wages and show it is

constant. Recall that when workers are indifferent across firms, then demand on date

t is determined by λ(vt). The expected profit function on date t is

M(vt)φ(vt; vt−1) =M(vt)φ̃(vt)−M(vt)(vt−1 − vt)c1vt<vt−1 ,

where for convenience we have omitted the argument λ from the function M(λ(vt)).

The central difference from the static game is that the expected profit function

M(vt)φ(vt; vt−1) is not differentiable at vt = vt−1 because φ has a kink at that point.
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The kink is the consequence of the temporary decline in profit due to the variable

adjustment cost. Hence, define the partial derivative

F (vt; vt−1) := ∂{M(vt)φ̃(vt)−M(vt)(vt−1 − vt)c}
∂vt

,

where we note that F (vt; vt−1) = ∂{M(vt)φ(vt; vt−1)}
∂vt

for vt < vt−1.

Let Π(vt−1) denote the firm’s maximal lifetime utility, or maximal payoff, on

date t given vt−1. This is the maximal discounted sum of expected profits. Since the

environment is stationary we use the recursive formulation

Π(vt−1) = max
vt
{M(vt)φ(vt; vt−1) + βΠ(vt)} (3)

= max
vt

Π(vt; vt−1),

where

Π(vt; vt−1) :=M(vt)φ(vt; vt−1) + βΠ(vt).

Let v∗t := v∗t (vt−1) be a solution to max
vt

Π(vt; vt−1). In what follows we will show that

the maximizer v∗t is unique and is in the interior of [0, v̄].

Lemma 2 (Target wages). There exists a unique solution vt = v∗ ∈ (0, v̄), which

solves the firm’s problem max
vt

Π(vt; vt−1) in each t = 1, 2, . . .

Proof of Lemma 2. Recall that in t = 1 we have φ(v1; v0) = φ̃(v1), following the

definition in (1). Since the environment is stationary, consider an outcome such that

v∗t = v∗ ∈ [0, v̄] for all t. We have

Π(v∗) = M(vt)φ(vt; vt−1)
1− β

∣∣∣∣∣
vt=vt−1=v∗

= M(v∗)φ̃(v∗)
1− β .

From earlier results we know that, for all v such that M(v) > 0, the function
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M(v)φ̃(v) is strictly concave and differentiable. That is, when the firm is in the

market, then his expected profit function is smooth and strictly concave (Peters,

1984). Consequently, there exists a unique interior optimum v∗ that satisfies

∂{M(v∗)φ̃(v∗)}
∂v

= 0.

In fact, it is easy to see that the stationary sequence {v∗} is the unique equilibrium.

Consider any sequence where at least one wage is off-target, i.e., {vt}∞t=1 6= {v∗}.

From above, we have that v∗ is the unique solution to max
v
M(v)φ̃(v). To show that

non-stationary sequences {vt}∞t=1 are also suboptimal, using the definition of φ in

equation (1) we have

Π(v∗) = M(v∗)φ̃(v∗)
1− β =

∞∑
t=1

βt−1M(v∗)φ̃(v∗)

>
∞∑
t=1

βt−1M(vt)φ̃(vt) ≥
∞∑
t=1

βt−1M(vt)φ(vt; vt−1).

Lemma 2 proves that in Markov equilibrium wages coincide with the target wage

v∗ in each period. The open question is: what wage would the firm optimally post

currently, if it last period it posted a wage that does not correspond to the current

target? Hence, in what follows, we discuss the optimal wage v∗t for any off-target case

vt−1 6= v∗. For convenience, we define

F̃ (v) := ∂{M(v)φ̃(v)}
∂v

,

so that at the optimum v = v∗ we have F̃ (v∗) = 0.

Given the formulation for φ in equation (1) we need to consider left and right
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derivatives, which we respectively denote

f ′−(x0) := lim
x→x0−

f(x)− f(x0)
x− x0

, and f ′+(x0) := lim
x→x0+

f(x)− f(x0)
x− x0

.

As usual, if f ′−(x0) = f ′+(x0) < ∞, then f is differentiable at x0, in which case we

define f ′(x0) := f ′−(x0) = f ′+(x0).

3.3 The optimal wage when the previous wage is off-target

In this section we show how to calculate the optimum wage v∗t when the previous

wage was off-target. There are several cases to consider, depending on whether vt−1

is (i) above or below the target wage v∗ and (ii) near to or far from v∗.

vt−1

v∗t

v∗ v̄

Figure 4: Case 1 The optimal wage v∗t when vt−1 < v∗.

Lemma 3 (Full adjustment). If vt−1 < v∗ on date t, then v∗t = v∗ uniquely solves

max
vt

Π(vt; vt−1), hence v∗t+j = v∗ for all j ≥ 1.

Proof of Lemma 3. Let vt−1 < v∗ on date t. By definition φ̃(v∗) = φ(v∗; vt−1).

The firm’s optimal choice is v∗t = v∗ because the maximum payoff is achieved at v∗:

Π(v∗) =M(v∗)φ̃(v∗) + βΠ(v∗) =M(v∗)φ(v∗; vt−1) + βΠ(v∗).

Lemma 3 establishes that if the firm yesterday posted a wage that is below the

current target, then it is optimal to raise the wage back to the target level. This is

so because raising the wage increases the firm’s expected profit and there is no cost.

Hence, calculation of equilibrium wages follows the standard analysis.

Things are different when the firm has previously posted a wage above target.

Here the firm faces a profit decline in period t due to the cost. To discuss this case,
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we define the left derivative

Π′−(v; vt−1) := lim
vt→v−

Π(vt; vt−1)− Π(v; vt−1)
vt − v

and similarly for the opposite right derivative Π′+(v; vt−1).

The first step to understand optimal wage setting when vt−1 > v∗, is to establish

where v∗t lies relative to the state vt−1.

Lemma 4 (Direction of adjustment). If vt−1 > v∗ on date t, then the firm optimally

chooses v∗t ≤ vt−1.

Proof of Lemma 4. The proof is by contradiction. Suppose that there exist some

vt−1 > v∗ such that v∗t > vt−1 is optimal. In fact, we have

Π(vt−1; vt−1) =M(vt−1)φ(vt−1; vt−1) + βΠ(vt−1)

≥M(vt−1)φ(vt−1; vt−1) + βΠ(v∗t ) =M(vt−1)φ̃(vt−1) + βΠ(v∗t )

>M(v∗t )φ̃(v∗t ) + βΠ(v∗t ) =M(v∗t )φ(v∗t ; vt−1) + βΠ(v∗t )

= Π(v∗t ; vt−1),

which contradicts that v∗t is optimal. The first inequality follows from the fact that

the maximal payoff Π(vt−1) can be no less than Π(v∗t ) since by conjecture v∗t > vt−1.

The second inequality follows from the concavity of M(vt)φ̃(vt) which is maximized

at vt = v∗ and the observation that φ(v∗t ; vt−1) = φ̃(v∗t ) when v∗t > vt−1.

A firm that has (incorrectly) posted wages above the target v∗ has an incentive

to revert back to the optimal target and not to compound the problem by moving

further away from it. Hence, the firm will not offer more than vt−1 on date t. The

central question is whether the firm will find it optimal to fully or partially adjust

wages back to the target v∗, or not adjust them at all.
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To proceed, define the trigger wage vτ > v∗ as follows. If the firm yesterday posted

vt−1 = vτ , then the firm is indifferent to marginally cut its wage below vt−1. Hence,

vτ is the solution to

F̃ (v)
1− β +M(v)c = 0.

The term F̃ (v)
1− β accounts for the marginal revenue decline from not altering wages,

whileM(v)c accounts for the marginal savings from avoiding temporary profit losses.

Lemma 5. A unique solution vτ to the equation F̃ (v)
1− β +M(v)c = 0 exists in (v∗, v̄).

Proof of Lemma 5. If we evaluate it at v = v∗, then

F̃ (v∗)
1− β +M(v∗)c =M(v∗)c > 0,

since F̃ (v∗) = 0 by definition. If we evaluate it at the break-even wage v = v̄, then

F̃ (v̄)
1− β +M(v̄)c = M

′(v̄)φ̃(v̄)
1− β − M(v̄)

1− β +M(v̄)c

=
(
c− 1

1− β

)
M(v̄) < 0,

where we have used the fact that φ̃(v̄) = 0 and 1 > c (by definition). By the continuity

of the evaluated function, we can find a solution vτ ∈ (v∗, v̄). Uniqueness of the

solution vτ follows from noticing that M(v) is strictly concave and monotonically

increasing in v ∈ [v∗, v̄]. That is,

F̃ ′(v) +M′(v)(1− β)c =M′′(v)φ̃(v)−M′(v)[2− (1− β)c] < 0.

Hence F̃ (v)
1− β +M(v)c is monotonically decreasing, and the solution is unique.
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Therefore F̃ (v)
1− β +M(v)c ≥ 0 for all v ∈ (v∗, vτ ].

Lemma 6 (Wage rigidity). If vt−1 ∈ (v∗, vτ ] on date t, then v∗t = vt−1 uniquely solves

the firm’s problem max
vt

Π(vt; vt−1). Hence, v∗t+j = vt−1 for all j ≥ 1.

Proof of Lemma 6. Let vt−1 ∈ (v∗, vτ ] on date t. There are three possible cases:

v∗t+1 > v∗t , v∗t+1 < v∗t , and v∗t+1 = v∗t . We will show that the first two cases are

impossible, while the third case represents the solution to the firm’s problem.

(i) v∗t+1 > v∗t : By Lemma 4, we must have v∗t < v∗. Note that

Π′−(v∗; vt−1) = lim
v→v∗−

Π(v; vt−1)− Π(v∗; vt−1)
v − v∗

= lim
v→v∗−

M(v)φ(v; vt−1)−M(v∗)φ(v∗; vt−1) + βΠ(v)− βΠ(v∗)
v − v∗

=F (v∗; vt−1) > 0.

In the third line we have used the fact that Π(v) = Π(v∗) for any v ≤ v∗; and

the inequality comes from Lemma 1. However, it contradicts that v∗t < v∗ because

the firm can marginally increase the wage and improve its expected payoff. Hence

v∗t+1 > v∗t is inconsistent with optimality.

(ii) v∗t+1 < v∗t : By the recursive nature of the problem, we must have v∗t < vt−1. To

show that this inequality holds, suppose it is not true. Then, by Lemma 4 we can

only have v∗t = vt−1; if so, then the firm would face the same problem tomorrow, so

we must have v∗t+1 = v∗t . But this is in contradiction with the conjecture v∗t+1 < v∗t .

Given that v∗t < vt−1, note that since Π(vt−1) = max
vt
{M(vt)φ(vt; vt−1) + βΠ(vt)}

and v∗t < vt−1, then Π′(vt−1) is well defined and equals to −M(v∗t )c by the envelope
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theorem. Note that

Π′−(vt−1; vt−1) = lim
v→vt−1−

Π(v; vt−1)− Π(vt−1; vt−1)
v − vt−1

= lim
v→vt−1−

M(v)φ(v; vt−1)−M(vt−1)φ(vt−1; vt−1) + βΠ(v)− βΠ(vt−1)
v − vt−1

=F̃ (vt−1) +M(vt−1)c− βM(v∗t )c

>F̃ (vt−1) +M(vt−1)c− βM(vt−1)c > 0.

In the third line we have used the fact that Π′(vt−1) = −M(v∗t )c; the fourth line comes

from v∗t < vt−1; and the last inequality comes from the fact that F̃ (v)
1− β +M(v)c is

monotonically decreasing and vt−1 < vτ . Hence we find a contradiction for v∗t < vt−1.

Therefore v∗t+1 < v∗t is inconsistent with optimality.

(iii) v∗t+1 = v∗t : If v∗t+1 = v∗t is optimal, then v∗t+j = v∗t should be optimal for all j ≥ 1

by the recursive nature of the problem. For any v ∈ (v∗, vt−1), the marginal payoff is

∂

∂v

[
M(v)φ(v; vt−1) + β

1− βM(v)φ̃(v)
]

=F (v, vt−1) + β

1− β F̃ (v)

= 1
1− β F̃ (v) +M(v)c−M′(v)(vt−1 − v)c.

The limit of the above first order condition as v → vt−1 from the left is

1
1− β F̃ (vt−1) +M(vt−1)c > 0.

Together with Lemma 4, v∗t = vt−1 is the unique solution to the firm’s problem.

Lemma 6 establishes that a firm finding itself with wages slightly above target

will not adjust wages at all, neither presently nor in the future. The firm has no

incentive to adjust the current wage because the cost is larger than the benefit. By

the recursive nature of the problem, the firm has no incentive to perform adjustments

in the future, either. Figure 5 provides an illustration.
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vt

Π(vt; vt−1)

Π′−(v∗t ; vt−1) > 0

v∗ vt−1 = v∗t vτ v̄

Figure 5: Case 2: The kink at v∗t when vt−1 ∈ (v∗, vτ )

Yesterday’s wage in the figure is above the optimal target, although not so much,

i.e., we have vt−1 ∈ (v∗, vτ ). The curved thin line represents the expected profit

Π(vt; vt−1), which reveals that the firm benefits from raising the wage from v∗ because

the marginal profit is positive, declining as we move towards vt−1. The straight

thick line represents the marginal profit when vt = vt−1, which is still positive, i.e.,

Π′−(vt; vt−1) > 0. So, why does the firm choose to stop at this point, and post

v∗t = vt−1, instead of moving further up? Going beyond vt−1 causes a discrete drop

in the firm’s marginal profit, because at vt−1 the firm suffers a temporary adjustment

cost that generates a kink in the payoff. This is illustrated by the dashed, declining

curve. Hence, the firm should neither lower the wage back down to the target v∗,

nor increase it above vt−1. The firm should simply offer the same wage it offered

yesterday, v∗t = vt−1.

It is important to emphasize that the firm does not face exogenous restrictions to

its ability to offer wages because the choice set remains [0, v̄]. Lemma 6 shows that

the firm optimally chooses not to lower wages down to the target level v∗ because

doing so would entail an extra-marginal cost. The Lemma proves that when wages

are slightly above target, then this extra-marginal cost is greater than the revenue

decline associated with adjusting the wage back to target.

The question that remains to be discussed is: what happens to wages when the

firm’s wages are significantly above target?
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Lemma 7 (Sticky wages). If vt−1 ∈ (vτ , v̄) on date t, then there exists a unique

solution to the firm’s problem max
vt

Π(vt; vt−1) such that v∗t ∈ (v∗, vτ ). Hence, v∗t+j = v∗t

for all j ≥ 1. Furthermore, ∂v∗t
∂vt−1

< 0.

Proof of Lemma 7. The left-sided first order condition evaluated at the trigger

wage vt = vτ is

Π′−(vτ ; vt−1) = lim
v→vτ−

Π(v; vt−1)− Π(vτ ; vt−1)
v − vτ

= lim
v→vτ−

M(v)φ(v; vt−1)−M(vτ )φ(vτ ; vt−1) + βΠ(v)− βΠ(vτ )
v − vτ

=F (vτ ; vt−1) + βF̃ (vτ )
1− β

= F̃ (vτ )
1− β +M(vτ )c−M′(vτ )(vt−1 − vτ )c

=−M′(vτ )(vt−1 − vτ )c < 0.

In the third line we have used the fact that Π(v) = M(v)φ(v; v)
1− β for v ∈ (v∗, vτ ] by

Lemma 6; in the fourth line we have decomposed F (vτ ; vt−1); and in the last line we

have used F̃ (vτ ) + (1− β)M(vτ )c = 0. Therefore v∗t < vτ .

The right-sided first order condition evaluated at vt = v∗ is

Π′+(v∗; vt−1) = lim
v→v∗+

Π(v; vt−1)− Π(v∗; vt−1)
v − v∗

= lim
v→v∗+

M(v)φ(v; vt−1)−M(v∗)φ(v∗; vt−1) + βΠ(v)− βΠ(v∗)
v − v∗

=F (v∗; vt−1) + βF̃ (v∗)
1− β

=M(v∗)c−M′(v∗)(vt−1 − v∗)c > 0.

The third line is derived from Π(v) = M(v)φ(v; v)
1− β for v ∈ [v∗, vτ ], and the inequality

23



comes from the fact that v∗ satisfies

M(v∗)−M′(v∗)(v̄ − v∗) = 0, (4)

which is the first order condition for the static game equilibrium. Hence we also have

v∗t ≥ v∗. Note that the left and right derivatives of Π(v; vt−1) at v ∈ (v∗, vτ ) are the

same (because the function is differentiable at that point), so we can find v∗t ∈ (v∗, vτ )

by using the first order condition Π′(v; vt−1) evaluated at v = v∗t , i.e.,

F (v∗t ; vt−1) + βF̃ (v∗t )
1− β = F̃ (v∗t )

1− β +M(v∗t )c−M′(v∗t )(vt−1 − v∗t )c = 0.

We have ∂v∗t
∂vt−1

= M′(v∗t )c
F̃ ′(v∗t )
1− β + 2M′(v∗t )c−M′′(v∗t )(vt−1 − v∗t )c

< 0, since the denomi-

nator is negative. The denominator is negative because

∂

∂v∗t

[
F̃ (v∗t )
1−β +M(v∗t )c−M′(v∗t )(vt−1 − v∗t )c

]
= F̃ ′(v∗t )

1−β + 2M′(v∗t )c−M′′(v∗t )(vt−1 − v∗t )c < F̃ ′(v∗t ) + 2M′(v∗t )−M′′(v∗t )(vt−1 − v∗t )

=M′′(v∗t )[φ̃(v∗t )− (vt−1 − v∗t )] =M′′(v∗t )φ̃(vt−1) < 0.

The second line is derived from the fact that F̃ ′(v∗t ) < 0 and 2M′(v∗t )−M′′(v∗t )(vt−1−

v∗t ) > 0 with c < 1.

Due to the recursive nature of the firm’s problem and Lemma 6, we have vt+j = v∗t

for all j = 1, 2, . . .

Consider the case when vt−1 ∈ (vτ , v̄), which roughly corresponds to the case

when the firm yesterday posted a wage that is considerably above the target wage

v∗. Lemma 7 shows that the firm will lower the wage, posting a value v∗t in between

the target wage v∗ and the trigger wage vτ . In this case the temporary loss from

adjusting the wage is dominated by the gain in expected revenue. By the recursive
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nature of the problem, the firm has no incentive to perform further adjustments in the

future and will keep wages constant thereafter. Wages are adjusted downward only

in the current period because further adjustments would be costly; hence, progressive

adjustment is inherently suboptimal for the firm.

Figure 6 provides an illustration. Last period the firm posted a wage vt−1 that is

above the trigger wage vτ , but still below the break-even wage v̄. To maximize the

payoff, the firm lowers the wage toward v∗, stopping at v∗t .

vt

Π(vt; vt−1)

Π′(v∗t ; vt−1) = 0

v∗ v∗t vτ vt−1 v̄

Figure 6: Case 3: No kink at v∗t when vt−1 ∈ (vτ , v̄)

The equilibrium wage for the case studied in Lemma 7, and depicted in Figure

6, has an interesting property. Larger departures of the previous period’s wage vt−1

from the target wage v∗ result in a larger wage cut, i.e., a smaller current wage v∗t .

In other words, the firm optimally chooses to adjust the wage closer and closer to the

target wage v∗ as vt−1 moves further and further away from the trigger level vτ .

Why would we observe a current wage offer v∗t that decreases in the firm’s previous

wage offer vt−1? The reason is that a change in wage has two effects. It alters

realized profit conditional on match with a worker because it alters the cost of

labor (intensive margin). It also alters expected profits because it alters the expected

number of workers λ, hence the probability of match (extensive margin). By cutting

the wage relative to previous period’s wage, the firm suffers an adjustment cost. As

discussed in Section 2, this adjustment cost be interpreted as a productivity decline.
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A large wage cut i.e., a wage cut bringing v∗t close to the target v∗ allows the firm

to counteract this productivity decline by decreasing its labor cost. All else equal,

larger values of vt−1 bring about a larger productivity decline, which magnifies the

firm’s desire do reduce labor costs, inducing it to lower the wage even closer to the

target v∗. The firm does not cut the wage all the way to v∗ because doing so greatly

reduces the matching probability, causing an expected revenue loss that outweighs

the savings from lower labor costs.

Now consider vt−1 = v̄, i.e., the firm posted the break-even wage. Here, there will

be full adjustment to the target wage v∗ because

v∗t = arg max
v
M(v)φ(v; v̄) + βΠ(v)

= arg max
v≤v̄

(1− c)M(v)φ̃(v) + βΠ(v)

= arg max
v≤v̄
M(v)φ̃(v) + βΠ(v) = v∗.

The second equality follows from two observations. First, the firm chooses a wage

v ≤ v̄ (by Lemma 4). Second, when vt−1 = v̄ we have φ(v; v̄) = (1−c)φ̃(v) (definitions

of profit functions). This second observation is crucial: it implies that a firm that

posted the break-even wage last period, will currently suffer an adjustment cost for

any profitable wage it will choose to post. The question is then, how large a cost

should the firm suffer conditional on hiring. Note that in this case the profit function

has no kink but it is linear. If so, then marginal profits are zero at v∗t = v∗, as when

there are no adjustment costs at all because the only optimality element that matters

when the profit function is linear is the break even wage (Lemma 1). This implies

the third equality, i.e., the solution to the maximization problem is equivalent to the

unique solution to the unconstrained problem.

Now consider the case when the wage from the previous period, vt−1, is so large

that is lies above the break-even wage v̄. This corresponds to the third item in
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Theorem 1. Let z < v∗ denote the exit wage; any firm that offers v ≤ z cannot

attract workers so the firm exits the market. Recall that the firm takes a worker’s

market utility U as given. Consequently, workers’ indifference implies that z = U

and if v > z, then H(λ)v = U .

Let z̄ > v̄ be the inactive threshold, i.e., if vt−1 ≥ z̄, then the firm cannot earn a

profit by offering something above v̄. Moreover, the adjustment cost is so large that

the firm cannot be profitable even if it offers a wage below v̄. Hence, if vt−1 ≥ z̄, then

it is optimal for a firm to be inactive in t. Here, z̄ uniquely solves φ(z̄; z) = 0.

v
z

φ̃(v)

φ(v; vt−1)

φ(v; z̄) v̄ vt−1 z̄

Figure 7: The profit function φ in period t, when vt−1 > v̄

Lemma 8. Let vt−1 ∈ (v̄, z̄) on date t > 1. There exists a unique solution to the

firm’s problem max
vt

Π(vt; vt−1) such that v∗t < v∗. Hence, v∗t+j = v∗ for all j ≥ 1.

Proof. Let vt−1 ∈ (v̄, z̄). The left-sided first order condition evaluated at vt = v∗ is

Π′−(v∗; vt−1) = lim
v→v∗−

Π(v; vt−1)− Π(v∗; vt−1)
v − v∗

= lim
v→v∗−

M(v)φ(v; vt−1)−M(v∗)φ(v∗; vt−1) + βΠ(v)− βΠ(v∗)
v − v∗

= lim
v→v∗−

M(v)φ(v; vt−1)−M(v∗)φ(v∗; vt−1)
v − v∗

= F (v∗; vt−1)

=F̃ (v∗) +M(v∗)c−M′(v∗)(vt−1 − v∗)c < 0.
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The third line is obtained by noticing that the continuation payoff on date t is

Π(v) = Π(v∗) = M(v∗)φ(v∗; v∗)
1− β for all v < v∗ by Lemma 3; in the last line, we

have decomposed F (v∗; vt−1); and in the inequality is obtained by F̃ (v∗) = 0, and

vt−1 > v̄ with the equation (4). Therefore, it is optimal for the firm to post v < v∗.

As the firm cannot attract workers if vt ≤ z, we have

Π(v; vt−1) =M(v)φ(v; vt−1) + βΠ(v) >M(x)φ(x; vt−1) + βΠ(x) = Π(x; vt−1)

for any x ≤ z and v = z+ ε where ε > 0 is small. Therefore it is optimal for the firm

to attract workers by posting v > z. Since

Π(v; vt−1) =M(v)φ(v; vt−1) + βΠ(v) =M(v)φ(v; vt−1) + βΠ(v∗)

for any v ∈ (z, v∗), it is clear that v∗t can be uniquely found by the strict concavity

of M(v)φ(v; vt−1) for v ∈ (z, v∗). Therefore in period t, the firm uniquely posts

v∗t ∈ (z, v∗). In subsequent periods, by Theorem 1, the firm posts v∗.

Lemma 8 says that when vt−1 ∈ (v̄, z̄), the firm will overreact by immediately

lowering the wage below the target level v∗, and then bringing it back up to v∗ the

period after. Intuitively, the overreaction occurs because large adjustment cost have a

very strong impact on the intensive margin effect of wage cuts. To see this, note that

in this equilibrium the adjustment cost is very large, all else equal. Decreasing labor

costs is thus of primary importance for the firm as compared to raising the probability

of match with a worker. It follows that it is optimal for the firm to manage large

adjustment costs by sharply reducing labor costs, posting a wage below the target

v∗. Next period, the firm can costlessly raise the wage back to the target level to

optimally compete for workers with other firms.

The next lemma considers the case when yesterday’s wage is extremely off target,

i.e., vt−1 ≥ z̄.
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Lemma 9. Let vt−1 ≥ z̄ on date t. The firm will be inactive in period t and re-enter

it in period t+ 1, optimally setting v∗t+j = v∗ for all j ≥ 1.

The proof immediately follows from the earlier observation that if vt−1 ≥ z̄, then

the firm cannot achieve a positive payoff in t due to the large adjustment cost. This

effectively forces the firm off the market in t, in order to re-enter it in t+ 1.

3.4 Equilibrium wages after a permanent shock

Here we apply the lessons from Theorem 1 to the case of an unanticipated permanent

shock that moves the firm’s break-even wage v̄ to a new level ω̄. As a consequence,

the target wage will change from v∗, to a new level denoted ω∗. We will differentiate

between positive shocks in which ω̄ > v̄, and negative shocks, where ω̄ < v̄.5

Equilibrium wages will respond asymmetrically, depending on whether the unan-

ticipated shock is positive or negative. In particular, wages can be “downward sticky.”

The firm will immediately raise wages to the new target ω∗ > v∗ in response to a

positive shock. But, it will react differently when the shock is negative. A firm that

is subject to a small negative shock might choose not to bring wages down to the new

target ω∗, keeping them at the old target v∗ indefinitely. Instead, a large negative

shock may induce the firm to partially or fully lower wages to the new target ω∗,

depending on the size of the shock. A very large negative shock will force the firm to

leave the market temporarily or permanently.

To show this, we only need to consider shocks that reduce the firm’s break-even

wage so much that the new break-even level ends up being below yesterday’s wage,

ω̄ < vt−1. In this case only wages below ω̄ guarantee a positive profit to the firm on

t; hence, since ω̄ < vt−1, a firm who wants to remain in the market will have to lower

wages relative to what it posted the day before.
5The source of the shock is not important at this point, although later in this Section we will provide
some examples.
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It is immediate that if the negative shock is so large that the new break even wage

falls below the exit wage, then the firm will permanently exit the market since it can

no longer profitably hire workers.

Therefore, consider the case when the negative shock is not so extreme. That

is, the break-even wage ω̄ remains above the exit wage. Following Theorem 1, there

can be two cases. In the more favorable case, the firm will overreact by immediately

lowering the wage below the new target level, raising the wage to the target level only

tomorrow. In the less favorable case, the firm exists the market and re-enters it next

period by posting the new target wage v∗t+1 = ω∗.

It is worth mentioning that the analysis carries over to the case of market-wide

shocks in which a small measurable set of firms receives a shock that does not change

the exit wage. Shocks of this type might change the demand for each firm if the

shocks induce some firms to exit the market and they may alter the workers’ market

utility U whenever firms adjust wages or exit the market. In all of these cases each

firm will have a new target wage ω∗ and the preceding analysis can be adapted to

study wage stickiness. Some examples of this kind are offered in the Appendix.

4 Discussion

This paper has extended the basic directed search model by introducing a vari-

able wage adjustment cost. The set-up considers dynamic, two-sided labor mar-

kets where matching frictions and downward wage rigidity emerge as an equilibrium

phenomenon. In the model firms compete for workers by posting wages and the dis-

tribution of demand for jobs is endogenous because workers choose where to apply.

This basic directed search model is modified by introducing a variable cost that a

firm incurs when it wants to adjust the wage downward relative to the past wage.

The analysis identifies four endogenous wage thresholds, which allow a full charac-

terization of equilibrium wage stickiness: an exit wage, below which the firm cannot
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recruit workers; a target wage, which maximizes the firm’s profit in the absence of any

adjustment cost from lowering wages; a trigger wage, below which the firm optimally

chooses not to respond to unanticipated shocks; a break-even wage, above which there

is no wage rigidity; and an inactive threshold wage above which the firm prefers to

remain temporarily idle.

The study complements other studies of wage rigidity, which have been conducted

using one-sided labor markets where frictions are due to costs from hiring or searching

for appropriate counterparts. One approach is to directly assume a suitable real wage

schedule (e.g., Blanchard and Gaĺı, 2010). By contrast, in our model the underlying

wage selection mechanism is made explicit. Another approach is to leverage the idea

of focal points in bargaining when wage strategies are history- and state-independent

(Hall, 2005). By contrast, our analysis does not rely on assuming that players are

able to coordinate on a market-wide scale. A third approach revolves around the idea

that if market participants can commit to long-term plans, then insurance motives

may lead to a constant wage for risk-averse workers (Rudanko, 2009). By contrast,

commitment is relaxed in our analysis.

The argument made in the paper relies on the assumption that the adjustment cost

linearly depends on the magnitude of the wage cut, and does not depend on the level

of the old wage. An alternative formulation of nonlinear adjustment costs could alter

the main result, but only when differences between the target wage and the previous

period’s wage are sufficiently large. For sufficiently small differences differences that

imply a small variation in the optimal wage v∗, that is then our linear formulation

would still be a good approximation for any smooth cost function, so nonlinearities

would not alter the result. However, for large differences this approximation would

not be suitable and this could have consequences. In particular, a convex cost function

might remove the incentive to perform large wage cuts. If so, then the firm would

find it optimal to perform a sequence of small wages cuts, instead of one single, large

wage cut.
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Our directed search model has the key characteristic that the matching function

is endogenous, players are searching in each period and cannot commit to future

wages or matches. It is therefore instructive to consider these features in relation

to the literature where the random matching function is exogenous (e.g. urn-ball

matching), and where matches can be multi-period with external separation shocks.

On the first point, whether search is directed or random matters when there is

a wage adjustment cost. Our analysis cannot be simplified by imposing an urn-

ball matching process (e.g., Stevens, 2007). The micro-foundation for the matching

function M is not equivalent to an urn-ball matching specification. In the latter,

wage changes cannot increase the firm’s matching probability because meetings are

exogenously random. By contrast, in our model search is endogenously random and

wage changes affect the firm’s matching rate in and out of equilibrium. In particular,

offering a wage below competitors lowers the probability to meet workers, even in

an infinitely large market. Consequently, endogenizing the matching function has

implications for firms’ desire to cut wages following a shock. With random matching, a

firm who has variable adjustment costs adjusts the wage if it lays above the reservation

value. This is not necessarily true with directed search, because workers will react by

decreasing the probability to visit the firm. This means a shorter queue for the firm,

hence lower expected profit. This tradeoff is absent under random matching, which

therefore makes wage stickiness less likely, even under variable adjustment costs.

On the second point, the analysis suggests that, if we relaxed the assumption of

100% separation rate at the end of each period, then there would be scope for wage

rigidity of existing workers versus new hires. To understand why we think this would

be so, for the sake of the argument, consider a firm-worker pair in which the firm

hired the worker yesterday. Suppose that the match can be sustained for as long as it

is in the best interest of the two parties. What would the firm pay the worker today?

One can prove that both worker and firm have an interest in remaining matched as

long as the wage does not drop below the threshold represented by the market utility
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U . The worker has no incentive to leave the firm and search for another job if the

wage v ≥ U ; and the firm has no interest in paying her more than U . So v = U is

optimal. The wage of an existing worker would thus be “sticky” at U , as long as the

firm does not suffer a shock forcing it out of the market at that wage. However, this

would not be so if the firm had to advertise for new hires, because the offered wage

would vary with the firm’s shocks. In this sense, our model is consistent with the

empirical observation that wage rigidity is more prominent for pre-existing workers,

but not for new hires (Haefke et al., 2013).
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Appendix

Derivation of
∂λ

∂v
and

∂2λ

∂v2 .

Given U > 0, λ is a function of v such that H(λ)v = U . i.e. (1− e−λ)v = Uλ. Hence

e−λv
∂λ

∂v
+ 1− e−λ = U

∂λ

∂v
⇒ ∂λ

∂v
= 1− e−λ
U − e−λv

.

By substituting U = 1− e−λ
λ

v, we have

∂λ

∂v
=

(
1− e−λ

)2

U [1− (1 + λ)e−λ] > 0.

Hence
[
1− (1 + λ)e−λ

]2
U
∂2λ

∂v2 = ∂λ

∂v

{
2
(
1− e−λ

)
e−λ

[
1− (1 + λ)e−λ

]
−
(
1− e−λ

)2
λe−λ

}
= ∂λ

∂v

(
1− e−λ

)
e−λ

{
2
[
1− (1 + λ)e−λ

]
− λ

(
1− e−λ

)}
= ∂λ

∂v

(
1− e−λ

)
e−λ

[
2− λ− (λ+ 2)e−λ

]
.

Let g(λ) = 2− λ− (λ+ 2)e−λ. Then g(0) = 0 and

g′(λ) = −1 + (1 + λ)e−λ < 0 for all λ > 0.

Hence g(λ) < 0 for all λ > 0. As a result, we have

∂2λ

∂v2 < 0.

Examples
In this section we provide two examples of possible shocks that alter the firm’s target
wage. A first possibility is that the firm experiences a productivity shock, which
changes the underlying cost structure of the firm. For example, consider a shock that
results in a parallel shift of the profit function φ.
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Figure 8: The impact of a small negative shock the profit function φold.

Figures 8 illustrates a small negative productivity shock on period t, which lowers
the break-even wage to ω̄ < v̄.

We can also consider unanticipated demand shocks. Let |I|
|J |

= r be the new
market queue following a shock on date t. This change in the queue alters the target
wage. To find the new target wage v∗, we need to find the solution to

arg max
v
M(λ; r)φ̃(v)

such that H(λ(v; r))v = H(λj(vj; r))vj for any j ∈ J .
As the market queue r increases, the target wage v∗ decreases. i.e.

∂v∗

∂r
< 0.

To see this note that the first order condition at the target wage v∗ is

∂M(λ(v∗; r))
∂λ

∂λ(v∗; r)
∂v

(v̄ − v∗)−M(λ(v∗; r)) = 0.

By the implicit function theorem,

∂v∗

∂r
= −C(v∗; r)

B(v∗; r)

where

C(v∗; r) :=
(
∂2M(λ(v∗;r))

∂λ2
∂λ(v∗;r)

∂v
∂λ(v∗;r)

∂r
+ ∂M(λ(v∗;r))

∂λ
∂2λ(v∗;r)
∂r∂v

)
(v̄ − v∗)− ∂M(λ(v∗;r))

∂λ
∂λ(v∗;r)

∂r
< 0

B(v∗; r) :=
{
∂2M(λ(v∗;r))

∂λ2

(
∂λ(v∗;r)

∂v

)2
+ ∂M(λ(v∗;r))

∂λ
∂2λ(v∗;r)

∂v2

}
(v̄ − v∗)− 2∂M(λ(v∗;r))

∂λ
∂λ(v∗;r)

∂v
< 0

B(v∗; r) represents the second order condition. It is also easy to see C(v∗; r) < 0.
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Given v, as the market queue r increases, the demand for the each firm increases, i.e.
∂λ(v; r)
∂r

> 0, so it is straightforward to see that the last term of C(v∗; r) is negative.

i.e. −∂M(λ(v∗; r))
∂λ

∂λ(v∗; r)
∂v

∂λ

∂r
< 0. For the remaining terms, we have

∂2M(λ(v∗; r))
∂λ2

∂λ(v∗; r)
∂v

∂λ

∂r
+ ∂M(λ(v∗; r))

∂λ

∂2λ(v∗; r)
∂r∂v

= −e−λ λ(1− e−λ)
v[1− (1 + λ)e−λ]

∂λ

∂r
+ e−λ

(1− e−λ)2 − λ2e−λ

v[1− (1 + λ)e−λ]2
∂λ

∂r

= −e−λ

v[1− (1 + λ)e−λ]2
∂λ

∂r
[λ2e−2λ − (1− λ)(e−λ − 1)2] < 0.

We obtain the second line using ∂λ(v∗; r)
∂v

= λ(1− e−λ)
v[1− (1 + λ)e−λ] . Therefore ∂v

∗

∂r
< 0.
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