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Abstract

We report laboratory experiments investigating the cyclicality of investment.
In our setting, optimal investment is counter-cyclical because investment costs
fall following market downturns. However, we do not observe counter-cyclical
investment. Instead, heuristic investment models where firms invest a fixed per-
centage of their liquidity, or a fixed percentage of anticipated market demand,
better fit our data on average than does optimal investment. We also report
a control treatment without cost changes and a treatment with asymmetric
investment liquidity. Both of these extensions support our main result.
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1 Introduction

For many economists, recessions are the worst of times, they are the best of times. To be

sure, they are not desired, yet they are often viewed with a Schumpeterian silver lining

as times of cleansing and reorganization. On this outlook, low investment costs and low

investment opportunity costs during downturns spur firms to invest counter-cyclically.1

The business press also lauds counter-cyclical investment, emphasizing the “risk of not

investing while the economy is weak” (Ghemawat, 1993) and touting recessions as “one of

the finest opportunities an innovation-driven business can have” (Vossoughi, 2012).

In this paper, we report results from laboratory experiments that examine the cyclicality

of investment over the business cycle. In our motivating duopoly model, recessions make

investing in future profit cheaper so that optimal investment is counter-cyclical, and in our

experimental design, investment cost changes are timed to permit clean identification of

counter-cyclical investment—if it occurs.

Our research was motivated by the fact that aggregate research and development (R&D)

investment is pro-cyclical.2 This well-documented result (Barlevy, 2007) belies the Schum-

peterian story. Possible explanations include the presence of binding liquidity constraints

(Aghion, et al., 2012), of high R&D adjustment costs (Brown and Peterson, 2011), and

of the lack of full appropriability of much R&D (Barlevy, 2007). Yet precisely identifying

the effect of falling investment costs on investment is challenging since firms face declining

market revenues at the same time that their investment costs fall.3

1Examples of low investment costs include low input good costs and low wages. Investment opportunity
costs are low if new investment is less disruptive to current production during recessions than during
expansions.

2Zajaz and Bazerman (1991) provide additional motivation from the management literature: “[A] com-
petitive decision-making perspective could be used to discuss other current topics in industry and competitor
analysis, such as. . . the choice of optimal research and development or advertising levels (e.g., to what extent
are levels chosen with competitors in mind?).”

3The former suggests less investment, the latter more. Identification is even trickier with inter-industry
variation in how liquidity hampers R&D investment (Ouyang, 2011).
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We examine the cyclicality of investment in a precise way. By design, our investment

cost change is not subtle. We make investment half as costly following a recessionary

period as after an expansionary period. Still, our participants’ response to the cost change

is roughly one tenth of that predicted by our model. On average, our participants over-

invest during market expansions when investment costs are relatively high and under-invest

following recessions when investment costs are relatively low.

We find it striking that we do not observe counter-cyclical investment in our stylized

experiment with stark investment cost changes. Our data suggest that many participants

exhibit bounded rationality and what Porter (1980) terms a blind spot, as they “will either

not see the significance of events (such as a strategic move) at all, will perceive them

incorrectly, or will perceive them only very slowly.” On average, the rules-of-thumb invest

a fixed percentage of liquidity and invest a fixed percentage of the market forecast fit our

data better than the optimal investment path does. These heuristics also well-fit data from

a treatment with asymmetric liquidity constraints.

Our paper contributes to several literatures. Our experimental markets are extended

and contextualized proportional-prize contests, so it extends the growing experimental

contest literature. It also expands behavioral industrial organization research with its

results on heuristics in investment competition and is, to the best of our knowledge, the

first experimental paper to examine competition in markets with frequent cost changes.

Finally, to the extent that our results are externally valid, they contribute to the literature

on the cyclicality of investment.4

Our paper is organized as follows. In Section 2, we describe our motivating model.

Section 3 conveys our experimental design and procedures and the optimal investment path

for our experiments. We report our experimental results in Section 4. Finally, Section 5

4We mostly frame our paper in microeconomic terms, but it is related to the burgeoning experimental
macroeconomics literature reviewed by Duffy (2016).
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concludes.

2 Motivating Model

We present a model that guides our experimental design and which we reference when

reporting our experimental results. Our motivating model is stylized, but it incorporates

several important features of investment: (1) Investment today affects profit tomorrow, (2)

Market demand and investment costs are inversely related, and (3) Investment liquidity is

constrained.

There are two firms in our model, indexed by i ∈ {1,2}, that compete in the same

market. Time is finite and composed of periods represented by t, where T is the model’s

final period. Firms earn revenue Ri
t = s

i
tMt, where sit denotes Firm i’s market share in

period t, and Mt is the value of the market in that period. Firm i’s market share is

determined according to:

sit =
xit−1

xit−1 + x
−i
t−1

(1)

where xit−1 is Firm i’s investment in period t − 1. Thus, each firm’s market share is their

investment last period divided by the total market investment last period.

Note that revenue is increasing in market share, and thus is increasing in investment.

However, firms bear costs associated with their investment. Firm i’s investment cost in

period t is Ci
t = α

i
t(∆Mt−1)x

i
t, where ∆Mt−1 = Mt−1 −Mt−2. To capture counter-cyclical

investment costs, we assume that:

αi
t =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

αL if ∆Mt−1 < 0

αH if ∆Mt−1 ≥ 0
(2)

where αL < αH . In other words, when ∆Mt−1 < 0, investing gets cheaper.
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Figure 1: Timeline for Investment Cost Change

Mt−2 Mt−1 Mt

Recession Investment Costs Fall

Figure 1 illustrates the timing of the cost change. At the beginning of each period, Firm

i observes the value of the economy, Mt, and their investment cost coefficient, αi
t(∆Mt−1).

Both firms then simultaneously make investments xit ≤ φiR
i
t, where the coefficient φi cap-

tures Firm i’s liquidity. In other words, firms must chose an investment that is less than

or equal to their current liquidity-adjusted revenue.

We can write Firm i’s profit maximization problem recursively as:

max
{xi

t}

πit = −α
i
t(∆Mt−1)x

i
t + s

i
t+1(x

i
t)E

i
t[Mt+1] + δV

i
t+1

subject to xit ≤ φiR
i
t

(3)

where V i
t+1 is the continuation value and δ is the discount factor. Note that investment

today affects revenue tomorrow, whereas the cost of the investing is borne today.

The value of the market is assumed to be autoregressive of order 1, AR(1). Its value

in period t is Mt = µ + ρMt−1 + ε, where µ and ρ are constants and ε ∼ N(0, σ2). Note that

because the noise term is mean zero, Ei
t[Mt+1] = µ + ρMt.

Differentiating (3) with respect to xit and rearranging yields the following best-response

function:

BRi
t(x

−i
t ) =

¿

Á
ÁÀx−it [

Ei
t[Mt+1]

αi
t(∆Mt−1)

] − x−it (4)
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Figure 2: Best Response Curve
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−i
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In Appendix I we show that the optimal investment path in our model is defined by:5

x∗t =
Ei

t[Mt+1]

4αi
t(∆Mt−1)

(5)

A representative best-response curve is plotted in Figure 2. There are two distinct

regions in the plot that can be thought of in terms of Firm i’s expectations about Firm

−i’s investment. When a firm anticipates their rival investing above the optimal investment,

x∗t , they should respond in the opposite direction. However, when a firm anticipates their

rival investing below x∗t , they should respond in the same direction.

5We can precisely define “cyclical investment” and “counter-cyclical investment” in our experiment.
When α = 1.0, optimal investment is positively related to expected market demand (“cyclical”). On the
other hand, equation (5) shows that when α < 1.0, optimal investment can be negatively related to expected
market demand (“counter-cyclical”).

5



Our model can be viewed as a proportional-prize contest (Long and Vousden, 1987;

Cason, et al., 2010). In a standard proportional-prize contest, players compete for a prize

by putting forth costly effort. They receive shares of the prize in proportion to their

individual effort over the sum of all effort. Our model modifies this canonical structure in

light of several “stylized facts” about investment.

To incorporate the fact that investments take time to generate revenue, investment

in the current period (t) affects a player’s share of the prize in the subsequent period

(t + 1)—not the current period. Because investment revenue may vary over the course of

the business cycle, the contest prize varies period-to-period. To incorporate the fact that

the cost of investing varies over the course of the business cycle, the cost of effort varies

period-to-period. Finally, because firm liquidity may vary over the course of the business

cycle, the maximum possible effort varies period-to-period.

3 Experimental Design and Procedures

We make the following choices to translate our motivating model into an experiment.

First, we assume no discounting, δ = 1. We also set the cost parameter so that αL = 0.5

and αH = 1.0. Finally we use the same, pre-drawn market path randomly realized from

Mt+1 = 10+0.9Mt+ε with ε ∼ N(0,10) in each of our experimental sessions. Periods 1-30 of

this path are shown in Figure 3, along with the optimal investment path. Market demand

is presented in experimental currency units (ECUs) and it attains a minimum value of 116

ECUs in Periods 3 and 8 and a maximum value of 173 ECUs in Period 28.6 For the thirty

periods shown, the market has 19 expansionary and 11 recessionary periods (the latter are

shown in gray in Figure 3).

Our experiments were conducted with 166 participants at a mid-sized liberal arts uni-

6The exchange rate between ECUs and U.S. dollars was 60 ECUs to $1.00 in all treatments.
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Figure 3: Market Demand and Optimal Investment, by Period
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versity. They were run in zTree (Fischbacher, 2007) with our participants recruited via

proprietary recruitment software. Each session included approximately 15 minutes of in-

structions, which are produced in full in Appendix II. On average, across all of our treat-

ments, participants earned $23.30 (this includes a $7.00 show-up fee).

We conducted three treatments: No Cost, Cost, and Liquidity. Table 1 provides in-

formation on each treatment. We ran each session for as long as possible, conditional on

finishing the session within two hours.7 There are three Cost sessions because Cost Ses-

sion I was relatively short. While we analyze all of our data statistically (except where

indicated), our figures only show the first 30 periods as that is the period minima across

treatments.

In all three treatments, each participant managed an experimental firm. Our program

randomly assigned participants to duopolies prior to the experiment and they remained in

7Participants did not know the session length. Because of heterogeneity in the time it took participants
to make their investment decisions, we deemed it necessary to conduct each session for as long as possible.
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Table 1: Experiment Summary

Treatment Cost Change Liquidity Session Participants Markets Periods

No Cost No φ1 = 1.00, φ2 = 1.00 I 22 11 38
No φ1 = 1.00, φ2 = 1.00 II 24 12 30

46 23

Cost Yes φ1 = 1.00, φ2 = 1.00 I 24 12 21
Yes φ1 = 1.00, φ2 = 1.00 II 24 12 30
Yes φ1 = 1.00, φ2 = 1.00 III 24 12 26

72 36

Liquidity Yes φ1 = 1.00, φ2 = 0.75 I 24 12 39
Yes φ1 = 1.00, φ2 = 0.75 II 24 12 30

48 24

Total 166 83

the same duopoly market throughout the experiment. During the experiment, participants

could test out investments before making their actual investment decision. They did so

by entering a “hypothetical” investment for themselves and their rival and a hypothetical

value for market demand into an on screen calculator. The calculator returned a market

share and a market return based on the entered values; it did not include a “best response”

or similar option.

When participants were ready to make their actual investment, they entered their cho-

sen investment and predictions about the other firm’s investment (“paired participant’s

investment”) and about market demand.8 The rival investment and market demand pre-

dictions were not incentivized. We felt that incorporating an incentive-compatible belief

elicitation mechanism into our already complex design would be too taxing on our partic-

ipants.

Figure 4 is a screenshot of the experimental decision screen. As the figure shows, partic-

ipants’ screens gave them the complete history of market demand, their market share, their

8To avoid “deficit spending,” participants had to invest at least 5 ECUs each period.
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Figure 4: Experiment Screenshot

market revenue (“return”), their investment, their rival’s investment (“paired participant’s

investment”), past cost parameters, investment costs, period profits, and their cumulative

profit.

We exogenously vary the cost parameter, αi
t, and the liquidity parameter, φi, across

our three treatments. No Cost is our control treatment. It was identical to our other

treatments in every respect, except that the cost parameter on investment did not vary

with market demand. In other words, αt was equal to 1.0 in every period.

Cost is our baseline treatment. Cost firms had symmetric liquidity, and as described in

Section 2, investment costs changed following recessionary periods with a one-period lag.

Finally, Liquidity is identical to our other treatments expect that one of the firms, Firm 2

say, had φ2 = 0.75, so that x2t ≤ 0.75R2
t . This was not common knowledge. Firm 1, with

φ1 = 1.0, was never told and could only infer that Firm 2 was relatively more liquidity

9



constrained. In fact, φ1 = 1.0 firms received exactly the same instructions as Cost firms.

We test the following hypotheses generated by the model in Section 2:

Hypothesis 1 In No Cost and Cost, investment will be the optimal investment.

Hypothesis 2 In Liquidity, investment and liquidity will be inversely related.

Hypothesis 1 follows directly from our motivating model in Section 2. Specifically, equation

5 implies that investment is pro-cyclical in No Cost and counter-cyclical in Cost. By

comparison, Hypothesis 2 is more general than Hypothesis 1. We intentionally designed

Liquidity to be as similar as possible to Cost. The only change across the two treatments

is that “100%” was replaced by “75%” in the text of the φ = 0.75 firms’ instructions (See

Appendix II). Hypothesis 2 implies that φ = 1.00 firms invest relatively more than φ = 0.75

firms in Liquidity. Our participants were not informed about how their own liquidity

coefficient stacked up against their rival’s liquidity coefficient, but we expect that they

gleaned this information with market feedback.

4 Results

Our presentation of results begins visually. Figure 5 shows the time series of average

investment (in ECUs). Panel (a) contains the No Cost data and Panel (b) contains the

Cost data. Vertical gray bars indicate periods where αt = 0.5 in Cost, and we include bars

in the No Cost figure for comparison purposes, even though the investment cost coefficient

did not change in No Cost.

Figure 5a shows that actual No Cost investment was consistently above the optimal

investment path, on average. We calculate Pearson correlation coefficients between actual

investment and market demand for each No Cost participant (n = 46). The average such

correlation was r̄ = 0.14, with an average 95% confidence interval of [−0.14,0.40]. For

10



Figure 5: Average Investment by Period, by Treatment
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(b) Cost

comparison, if every No Cost participant invested optimally in each period, the analogous

average correlation would have been r̄ = −0.09, with an average 95% confidence interval of

[−0.48,0.34].

Figure 5b reveals that, on average, actual Cost investment was above the optimal

investment path in expansions and below the optimal path in recessions. The average

correlation between actual investment and market demand for Cost participants (n = 72)

was r̄ = 0.25, with an average 95% confidence interval of [−0.09,0.54]. By contrast, if every

Cost participant always invested optimally, it would have been r̄ = 0.37, with an average

95% confidence interval of [0.11,0.61].

We now examine No Cost and Cost investment more rigorously with regression analysis.
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Our estimating specification is:9

∆ ln(Investm,t) = β0 + β1∆ ln(Forecastt) + β2∆ ln(Costt) + Feasiblem,t + εm,t (6)

where Investm,t is average investment at the market level (m indexes duopoly markets),

Forecastt is the exogenous forecast of market demand displayed on each participant’s

screen, Costt is the market-level cost coefficient in period t, Feasiblem,t equals 1 if neither

firm in market m is so liquidity-constrained that they cannot invest the optimal investment

in period t (x∗t ), and equals 0 otherwise, and εi,t is an error term.

Our experimental design ensures that any two markets are independent, so that εm,t

and ε−m,t are independent. However, autocorrelation is an obvious concern since εm,t and

εm,t+1 are not independent, so we first-difference our specification (note that this removes

any time-invariant, unobserved market heterogeneity). However, Wooldridge Tests reject

null hypotheses of no autocorrelation for each treatment, so we also employ Driscoll-Kraay

standard errors that are robust to heterosckedascticity, cross-sectional correlation, and

autocorrelation.

We estimate specification (6) for each treatment by pooled ordinary least squares (OLS)

with Driscoll-Kraay standard errors. For the No Cost treatment, ∆ ln(Costt) = 0 for all

periods. Before reporting the regression results, we note that estimating specification (6)

with optimal investment (x∗t ) as the dependent variable results in the coefficient estimates

β̂1
∗

= 1.00 and β̂2
∗

= −1.00.

Table 2 shows regression results for the No Cost and Cost treatments. All the coefficient

estimates on ∆ ln(Forecastt) are significantly different from 0, but none are significantly

different from 1. Thus, in both No Cost and Cost, we estimate that a 1% change in the

market demand forecast leads to a 1% change in investment, in the same direction.

9Standard tests suggest that multicollinearity is not an issue for specification (6) with our data.
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Table 2: Regression Results

∆ ln(Investm,t) No Cost Cost

∆ ln(Forecastt) 1.00∗∗∗ 1.02∗∗∗ 1.15∗∗∗ 1.28∗∗∗ 1.34∗∗∗

(0.24) (0.24) (0.27) (0.27) (0.26)
∆ ln(Costt) −0.08∗∗ −0.11∗∗∗

(0.03) (0.03)
Feasiblem,t 0.12∗∗∗ 0.05∗∗

(0.04) (0.02)

R2 0.02 0.04 0.03 0.04 0.05
Observations 755 755 888 888 888

Notes: Pooled OLS coefficient estimates with Driscoll-Kraay standard errors in parenthesis. Statistical signif-
icance: ∗∗∗

< 0.01, ∗∗ < 0.05, ∗ < 0.10.

For Cost, we estimate that lowering investment costs increases investment. However,

our estimate of the effect of lowering investment costs by half is only 11% of that pre-

dicted by our motivating model (−0.11/ − 1.00).10 Not surprisingly, in both No Cost and

Cost, average investment is higher when both firms can investment the optimal investment

amount. When both firms can invest the optimal amount, investment is 12% higher in

No Cost and 5% higher in Cost than when one or both firms cannot invest the optimal

amount.

From the preceding analysis, we conclude:

Result 1 In No Cost, average investment exceeded optimal investment.

Result 2 In Cost, average investment exceeded optimal investment when α = 1.0

and was less than optimal investment when α = 0.5.

Our data clearly do not support Hypothesis 1. We interpret Result 1 as a manifestation

of the near ubiquitous “overbidding” phenomenon in experimental contests (Sheremeta,

2013; Dechenaux, et al., 2015). In Cost, participants over-invest when α = 1.0 as in No

10The effect of lowering investment costs by half is 16% of that predicted by our motivating model when
we drop the first 10 periods from our estimating sample.
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Cost, but under-invest when α = 0.5. Why do the data not support Hypothesis 1?

4.1 Why was investment suboptimal?

We now consider possible explanations for our results: Participants were confused, partici-

pants were inexperienced, participants cooperated (or, if you prefer, colluded), participants

did not use the “rational” forecast, and participants did not view their investment problem

game theoretically but in some other way.

Perhaps participants did not understand that investment costs change, did not under-

stand how costs change, or that costs change for both firms? Our complete instructions are

presented in Appendix II. They cover the cost change at length and include stark reminders

such as: “When market demand falls, investment costs fall.” Moreover, as Figure 4 shows,

participants saw their investment cost parameter (αt) on their computer screen. We have

no evidence that participants were not aware of, or did not understand the investment cost

change, and as we detail below, our data are not well-fit by assuming that participants

ignored the cost changes.

Maybe participants did not understand that their rival’s costs changed when their own

costs changed. Our instructions do not make this explicit, but it is implied. Moreover, if

a firm believes that their rival always has α = 1.0, their investment best-response is very

similar to the optimal investment path in Figure 7b (the spikes when α = 0.5 are slightly

less pronounced)—and thus is very different from the actual investment path.11

Another possible explanation for why our participants invested suboptimally is that

our participants initially had no experience in our complex environment. As with most

experiments, we cannot exclude this possibility. However, our estimate of the effect of

11We note that slight departures from the optimal investment path do not explain the observed data
either. If one firm in a market is slightly off the optimal path, the other firm should investment very near
the optimal path, because the best response curve is very flat in the neighborhood of optimal investment.
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lowering investment costs by half only changes from −0.11 to −0.16 when we drop periods

1-10 from our estimating sample in Section 4’s regression analysis. Moreover, a priori it is

uncertain whether greater experience leads to more competition (and results closer to the

optimal investment path) or to more cooperation in our experimental environment.

Did participants cooperate with their supposed rival? There are individual No Cost

and Cost markets where firms clearly cooperated. However, there is considerable hetero-

geneity across firms and across markets; there were markets where investment fell over

time, but also markets where investment escalated over time. On average, as Figure 5

shows, participants were supracompetitive, not cooperative in No Cost, and in Cost when

α = 1.0.12

In equation (5), optimal investment is a function of the forecast of next period’s market

demand and the cost parameter. In 2 of the first 10 periods (and in 3 of the first 20

periods) actual market demand exceeded the rational forecast, Et[Mt+1] = 10 + 0.9Mt.

Perhaps this influenced our participants to employ an alternative forecast rather than the

rational forecast? To examine this possibility, we calculate optimal investment under three

counterfactual forecasting assumptions: (1) Participants are able to perfectly forecast next

period’s actual market demand (Et[Mt+1] =Mt+1), (2) Participants forecast using adaptive

learning, and (3) Participants forecast according to the unincentivized demand forecasts

they submit when entering their investment levels. Assumptions (1) and (3) are self-

explanatory, but assumption (2) requires elaboration.

Following the adaptive learning literature in macroeconomics (see, for example, Evans

and Honkaphoja, 2001), we suppose that our participants’ perceived law of motion for

12It is conceivable that Cost participants were “competitive” during market expansions, and “coopera-
tive” during market recessions. But, again, average investment in No Cost is consistently above optimal
investment in both expansions and recessions (see Figure 5a). We would expect counter-cyclical cooperation
strategies to be employed in No Cost if such strategies are employed at all. So, on average, there is no
support for a counter-cyclical collusion result in the (rough) spirit of Rotemberg and Saloner (1986).
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Figure 6: Optimal Investment by Period, by Forecast Assumption
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(b) Cost

market demand was:

Mt = a + bMt−1 + ηt (7)

with a and b unknown to the participant and ηt is an error term. Of course, participants

were told that a = 10 and b = 0.9, but perhaps—for whatever reason—they formed their

own beliefs about the value of these two parameters. We assume that in each period

t, participants estimated â and b̂ by least squares, using all available past market data

up to period t, or {Mi}
t
i=1.

13 Their assumed forecast of demand in period t + 1 is then

Et[Mt+1] = â + b̂Mt.

Figure 6 shows optimal investment under our three counterfactual forecasting assump-

tions and assuming the rational forecast. The average of each counterfactual forecast was

substituted into equation (5) to obtain the optimal investment time series. It is clear from

13We estimate â and b̂ for periods 3-30. There is not enough data to estimate prior to period 3.
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Figure 7: Expectations by Period, by Treatment
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the figure that assuming non-rational forecasting, but maintaining equation (5), does not

generate investment paths that fit the data well.

In Figure 7, participants’ expectations about their rivals’ investment are fairly consis-

tent with their rivals’ actual investment in No Cost and Cost.14 The figure suggests that

our participants made their investment decisions by some other calculus than maximizing

equation (3), because neither actual nor expected investment match the optimal invest-

ment path in either treatment. If our participants were boundedly-rational and did not

invest optimally—according to our game theoretic model’s notion of optimality, how might

they have made their investment decisions?

The theory of selective attention provides a possible explanation (Schwartzstein 2014;

14The time series of the average best response to expected rival investment is very similar to the time
series of optimal investment, so participants were not best-responding to the expected investment of their
rival.
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Hanna, et al. 2014).15 If attention is costly, important economic variables may be ne-

glected in favor others that are less informative, but which are more easily noticed. Agents

may optimize along more noticeable dimensions, while failing to optimize along the most

important dimensions.

In our experiment, participants may be attentive to exogenous variables such as past

market demand or the forecast of future market demand. Or they may be attentive to their

current liquidity or their rivals’ past investment, but not to their future liquidity or their

rivals’ future investment. If so, they have a competitive blind spot and “will either not see

the significance of events (such as a strategic move) at all, will perceive them incorrectly,

or will perceive them only very slowly” (Porter, 1980).

Selectively attentive participants will not determine investment according to equation

(5), but may instead apply heuristics (“rules-of-thumb”) to the variables within their focus.

A number of possible investment heuristics seem reasonable in our setting.16 We consider

the following rules-of-thumb:

“Ignore Cost” Assume the cost parameter always equals 1 ∶ xit = Et[Mt+1]/4

“Imitation” Match my rival’s lagged investment ∶ xit = x
−i
t−1

“Forecast%” Invest a fixed percentage of the market forecast ∶ xit = λiEt[Mt+1]

“Liquidity%” Invest a fixed percentage of liquidity ∶ xit = γis
i
tMt

(8)

While invest a fixed percentage of current market demand is another reasonable heuristic,

current market demand and the market forecast are collinear so they have nearly identical

15Of course this theory is preceded by Simon (1955), Cyert and March (1963; 1992), and Leibenstein
(1969) among others. Related theories of “rational inattention” are also plausible here.

16Examples of heuristic use by real firms abound. Notably, cost-plus pricing heuristics are employed by
many firms where an item is priced by applying a fixed mark up to the item’s average cost (see, e.g., Hall
and Hitch, 1939; Hanson, 1992). Also, “Several studies have documented that many firms have as a decision
rule that R&D expenditures should be a roughly constant fraction of sales” (Nelson and Winter, 1982).
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Figure 8: Kernel Densities
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predictive power as heuristics.17 For comparison purposes, we also consider the optimal

investment path (“Optimal”).

The strategies Optimal and Imitation consider the firm’s rival, though Imitation is

backwards-looking—it considers what the rival did, not what they will or what they might

do. On the other hand, Ignore Cost, Forecast%, and Liquidity% ignore the rival and only

concern the firm’s own situation, or the exogenous market situation. In each case, the

heuristic is consistent with selective attention: the firm focuses on rivals’ past investment,

or on the market forecast, or on their own liquidity.

To assess the Forecast% and Liquidity% heuristics, the coefficients λi and γi from

(8) are estimated separately for each firm using ordinary least squares. Investi,t is the

dependent variable in each regression, there is no constant term, and the sole regressor in

each specification is either Forecastt or is Firm i’s maximum liquidity in t. Finally, the

17Recall that the forecast is Et[Mt+1] = 10 + 0.9Mt.
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estimating sample is periods 1-30, except for the two Cost sessions with 21 and 26 periods.

Figure 8 shows kernel densities by treatment and firm type for λ̂i (Figure 8a) and γ̂i

(Figure 8b). The average values of λ̂i and γ̂i over all firms (denoted λ̄ and γ̄) are in Table 3.

We use Kolmogorov-Smirnov tests to assess whether differences exist in the distributions

of λ̂i and γ̂i across No Cost and Cost. To satisfy an independence assumption of the test,

we average estimates at the market level (nNC = 23, nC = 36). According to the tests, there

is no difference across No Cost and Cost for the distributions of λ estimates (p = 0.185),

but there is a difference for the distributions of γ estimates (p = 0.086).

Table 3 shows the average root-mean-square-error (RMSE) for each investment strategy

relative to actual investment. For each strategy, a count of the number of firms whose lowest

RMSE was that strategy is also presented. So, for example, Liquidity% generates the lowest

RMSE for 72% (52/72) of Cost firms. For each treatment and firm type, Liquidity% fits

the actual investment data better than the alternative strategies, though Forecast% also

outperforms the optimal investment path. The former heuristic suggests that, on average,

No Cost firms invested 57% of their liquidity and that Cost firms invested 67% of their

liquidity each period.

Our analysis leads us to conclude:

Result 3 The heuristics invest a fixed percentage of the market forecast and invest

a fixed percentage of liquidity better fit our No Cost and Cost data than does optimal

investment.

How well does the Liquidity% heuristic match the data visually? Figure 9 compares actual

investment, optimal investment, and investment assuming that each firm invested 57%

(67%) of their liquidity in No Cost (Cost). Because liquidity appears to play a crucial

role in our participants’ investment decisions, we now report a treatment with asymmetric

liquidity constraints.
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Table 3: Heuristic Comparison

Treatment Optimal Ignore Cost Imitation Forecast% Liquidity%

No Cost Mean RMSE 27.90 41.81 18.10 14.73
n out of 46 0 5 14 27

λ̄ = 0.31 γ̄ = 0.57

Cost Mean RMSE 28.97 27.08 38.72 18.38 14.03
n out of 72 1 0 4 15 52

λ̄ = 0.35 γ̄ = 0.67

Liquidity (φ = 1.00) Mean RMSE 33.98a 34.81a 46.62 20.49 18.45
n out of 24 0 0 1 10 13

λ̄ = 0.43 γ̄ = 0.61

Liquidity (φ = 0.75) Mean RMSE 30.52a 21.02a 47.99 13.36 7.11
n out of 24 0 0 0 2 22

λ̄ = 0.21 γ̄ = 0.75

aRelative to optimal investment in Cost
Notes: Mean RMSE is averaged over all participants by treatment and firm type. “n out of X” is how times the strategy had
the lowest RMSE among the four candidate strategies. Comparisons should be made across columns, but not across rows.

4.2 How does liquidity affect investment?

We now consider the effects of exogenous liquidity asymmetry on investment in our exper-

imental environment. Recall that in Liquidity, one duopolist could invest Ri
t each period,

whereas their rival could only invest 0.75R−i
t each period. The asymmetric liquidity con-

straints did not preclude firms from investing according to the optimal investment for Cost,

if participants had always previously invested the optimal amount.

While Liquidity participants were not informed about the asymmetric constraints on

investment in the instructions, they may have inferred a difference in liquidity over time

from the market history reported on their screen. Before data collection, we hypothesized

that this would occur, so that actual investment would be inversely related to the liquidity

constraint (Hypothesis 2). After data collection, in light of our contention in Section 4.1

that participants use the rule-of-thumb invest a fixed percentage of liquidity, we certainly

expect a difference in investment across φ = 1.00 firms and φ = 0.75 firms.

Figure 10 shows both average investment over time and average expected investment
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Figure 9: Heuristic Investment over Time
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(b) Cost

over time. The blue time series are for actual investment and the gray investment paths are

those predicted by the Liquidity% heuristic (see Table 3). Clearly, φ = 1.00 firms invested

more on average than did φ = 0.75 firms. In per period terms, they invested 59.0 ECUs

compared to 28.4 ECUs for φ = 0.75 firms.18 For comparison, Cost firms invested 47.5

ECUs on average.19

As we do for our other treatments, we present time series for average expectations in

Liquidity. Figure 10b shows that φ = 1.00 firms’ expectations about their rivals’ investment

were, on average, good. However, φ = 0.75 firms consistently underestimated their rivals’

investments. On average, they predicted that φ = 1.00 firms would invest 44.6 ECUs. This

figure was above their own average maximum liquidity (37.0 ECUs), but was slightly less

than their own average return of 49.3 ECUs. We suspect that their prediction about their

18The per period investment figures are averaged over periods 1-30.
19For periods 1-30, No Cost firms earned 28.6 ECUs per period on average. The equivalent figures are

30.1 for Cost, 44.8 for Liquidity φ = 0.01, and 24.6 for Liquidity φ = 0.75.
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Figure 10: Investment and Expectations over Time
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φ = 1.00 rival was influenced by their own return.20

Table 4 presents estimates of specification (6) (and two additional, simpler specifi-

cations) with Liqudity data pooled over φ = 1.00 and φ = 0.75 firms. Across the three

specifications in Table 4, the response to forecast demand is much lower in magnitude than

in No Cost or Cost. When we control for the feasibility of the optimal investment level, the

estimated coefficient on ∆ ln(Costt) of −0.07 is close to, but slightly smaller in magnitude

than the −0.11 estimate for Cost.21

Table 3 contains Liquidity comparisons of the same heuristics previously considered for

No Cost and Cost. As in those treatments, the Liquidity% rule-of-thumb has the lowest

average RMSE. Forecast% and Liqudity% explain the data roughly as well for φ = 1.00

firms; Forecast% has the lowest RMSE for 10 φ = 1.00 firms, whereas Liquidity% has the

20In fact, firms with φ = 1.00 had an average return of 97.2 ECUs per period.
21The estimated coefficient on ∆ ln(Costt) is −0.09 when we drop the first 10 periods from our estimating

sample.
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Table 4: Regression Results

∆ ln(Investm,t) Liquidity

∆ ln(Forecastt) 0.44∗∗ 0.50∗∗∗ 0.56∗∗∗

(0.19) (0.18) (0.20)
∆ ln(Costt) −0.04 −0.07∗∗

(0.03) (0.03)
Feasiblem,t 0.10∗∗∗

(0.03)

R2 0.01 0.01 0.02
Observations 804 804 804

Notes: Pooled OLS coefficient estimates with Driscoll-Kraay standard
errors in parenthesis. Statistical significance: ∗∗∗

< 0.01, ∗∗
< 0.05,

∗
< 0.10.

lowest RMSE for 13 firms. On the other hand, Liqudity% has the lowest RMSE for 22

φ = 0.75 firms (92% of all such firms). Because φ = 0.75 firms were liquidity-constrained,this

result is hardly surprising.

A Kolmogorov-Smirnov test indicates a significant difference between the distribution

of λ̂i for Liquidity φ = 1.00 firms and the analogous distribution for Liquidity φ = 0.75

firms (p = 0.000; nL1.00 = 24, nL0.75 = 24). It also suggests a significant difference in the

distribution of γ̂i across firm types (p = 0.013). However, the distribution of λ̂i for φ = 1.00

firms is not significantly different from the distribution λ̂i for Cost markets (p = 0.106;

nC = 36, nL1.00 = 24). Nor is the distribution of γ̂i significantly different across Liquidity

φ = 1.00 firms and Cost markets (p = 0.269).

This last test result is very interesting. Our Cost participants and our Liquidity partici-

pants who were randomly selected for the φ = 1.00 firm role were from the same participant

population and they saw the exact same instructions (see Appendix II). However, they faced

very different competitive conditions. If both sets of participants made their investments

a function of the competitiveness of their markets, we might expect a significant differ-

ence in estimated heuristics across the two treatments because Cost firms competed with
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equally-liquid rivals whereas φ = 1.00 Liquidity firms had a decided liquidity advantage.

Our finding of no difference suggests that participants in both treatments had a Porterian

blind spot to their competition, because Forecast% and Liquidity% are not functions of

competition—at least not directly.

We can report that:

Result 4 In Liquidity, average investment was inversely related to liquidity.

Result 5 Liquidity φ = 1.00 firms and Cost firms invested similar percentages of

their liquidity, whereas φ = 0.75 firms invested significantly more of their liquidity.

We now summarize our results and conclude.

5 Discussion and Conclusion

We report data from novel laboratory experiments on the cyclicality of investment. In

our Cost treatment, optimal investment is counter-cyclical, yet actual investment was

pro-cyclical. On average, our data are better fit by assuming that participants used in-

vestment rules-of-thumb than by supposing that they invested according to the optimal,

game theoretic investment path. Their investment heuristics involved either investing a

fixed percentage of the market demand forecast or of their liquidity.

Our environment can be viewed as an extended and contextualized proportional-prize

contest. In all No Cost periods, and in Cost periods where α = 1.00, the actual, aver-

age investment exceeded optimal investment. This result is further evidence of “overbid-

ding” in experimental contest settings—even when the repeated contest is given an explicit

investment-competition frame, has a stochastic prize, non-constant effort costs, and a max-

imum effort constraint that is history-dependent. Our conclusion that participants employ
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a liquidity heuristic is also in line with previous contest experiments showing endowment

effects (Price and Sheremeta, 2001; Brookins, et al., 2015).

Behavioral industrial organization has lately turned to the demand side of markets

(Ellison, 2016; Grubb and Tremblay, 2016 and citations therein), but there is a continuing

focus on the supply side of markets (e.g., Cyert and March, 1963). Our paper joins the

latter camp as an empirical example of how bounded rationality affects market competition.

It suggests that investments are not chosen in a purely “rational” manner with clear regard

for rival investment. In the strategy literature, Porter (1980) terms this a competitive blind

spot.

This research sheds some light on how frequent cost changes affect market competi-

tion. Many market experiments explore the effects of changes in demand on competition,

but we are not aware of any closely related experiments examining the effects of frequent

cost changes on competition. Our firms either do not incorporate cost changes into their

decision-making at all, or do so only modestly. Contests and Cournot games are related

(see, e.g., Menezes and Quiggin, 2010), and future research can examine whether our con-

clusions extend empirically to classic Cournot, Bertrand, or Bertrand-Edgeworth markets

with frequent cost changes.

Finally, to the extent that our results are externally valid, they might suggest that

pro-cyclical investment may be a function of competitive blind spots—of firms focusing

inward more than outward to determine investment. Even granting that Fortune 500

firms may “think” game theoretically, many markets contain managers who may employ

heuristics (Busenitz and Barney, 1997) and who may be subject to blind spots. We offer this

conclusion tentatively, however, because individual firms may use suboptimal investment

heuristics, but market competition may select more strategic, more “rational” (though not

necessarily optimal) firms for survival (Alchian, 1950).
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This is the first experimental research to consider the cyclicality of investment, so we

take a broad view, but our paper suggests a number of intriguing, focused extensions. In

particular, with a larger market of four or six firms, will firms that invest strategically

take market share away from firms that invest heuristically? And if our participants are

selectively attentive, is their focus affected by competitive pressure? In the long-run,

does attention turn to more strategically-relevant variables? With open questions like

these, we believe that the cyclicality of investment is a promising avenue for fruitful future

experimental research.
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7 Appendix I

This appendix explains how the optimal investment path is determined. Differentiating Equation
(3) with respect to xit and rearranging yields the following best-response function:

xit =

¿

Á
ÁÀx−it [

Ei
t[Mt+1]

αi
t(∆Mt−1)

] − x−it (1)

Symmetric optimal investment in a period is then:

x∗t =
Ei

t[Mt+1]

4αi
t(∆Mt−1)

(2)

This optimum exists so long as x∗t is feasible, which it is provided that x∗t ≤ φ
iRi

t,∀i.
We construct the optimal investment path over many periods by backwards induction. In Period

T , the firm simply receives revenue RT = sTMT and the game ends. The first actual decision is in
Period T −1. Here, the firm must invest according to (2). In Period T −2, the firm must also invest
according to (2). We must check that, in expectation, investing optimally in Period T −2 will allow
the firm to invest optimally in Period T − 1. The relevant inequality is:

x∗T−1 ≤ φ
isiT−1E

i
T−2[MT−1] (3)

Plugging (2) into the left hand side of (3):

Ei
T−1[MT ]

4αi
T−1(∆MT−2)

≤ φisiT−1E
i
T−2[MT−1] (4)

Rearranging and plugging in siT−1 = 1/2 yields:

Ei
T−1[MT ]

Ei
T−2[MT−1]

≤ 2φiαi
T−1(∆MT−2) (5)

Because Ei
t[Mt+1] = µ + ρMt, this becomes:

µ + ρ(µ + ρMT−2)

µ + ρMT−2
≤ 2φiαi

T−1(∆MT−2) (6)

Rearranging, we get:

MT−2 ≥
µ + ρµ − 2φiµαi

T−1(MT−2)

2φiραi
T−1(MT−2) − ρ2

(7)

If this condition on the value of the market is satisfied, the agent can, in expectation, invest the
optimal amount in Period T − 1. Inequality (3) must also hold for all periods from 1 to T − 2.
Given our parametrization, it holds for all periods. Finally, in Period 1, Firm i can invest optimally
because x∗1 = 31.25 and both firms have 64.00 available to invest.
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8 Appendix II

This appendix contains the complete experimental instructions for all three treatments. The No
Cost instructions are presented as the default. Changes to the instructions for the Cost participants
and for the φ = 1.00 Liquidity participants are identified by ⟨ angle brackets ⟩. The φ = 0.75 Liquidity
participants receive the lone instruction change identified by ⟪double angle brackets ⟫.

Introduction

Welcome. You have volunteered to participate in an experiment where your choices will influence
how much real money you earn. Your earnings, including your $7.00 show-up fee, will be paid to
you privately, in cash, at the end of the experiment.

Please remain quiet and do not communicate with other participants or attempt to observe their
decisions. You will be asked to leave the lab if you violate these rules. Please read the following
instructions carefully. Then click the ‘Finish Instructions’ button when you are ready to move on.

The Basics

In today’s experiment, you will be randomly and anonymously paired with another participant.
You will interact with this same participant throughout the entire experiment, but your identity
will remain anonymous. This experiment is composed of periods. In each period, you will have
funds available to either keep or invest. Your funds will be denominated in Experimental Currency
Units, or ECUs for short. 60 ECUs will be worth $1.00 at the end of the experiment.

Investing

Each period, you will decide how much to invest. You will be able to invest as little or as much
as you like, so long as your investment is less than a maximum amount which will depend on your
return from the previous period’s investment. Your return on investment will be determined by
these three factors:

1. The market demand

2. Your investment decision

3. Your paired participant’s investment decision

Together, your investment decision and your paired participant’s investment decision will determine
your market share.

Market Shares

If you invest X ECUs and your paired participant invests Y ECUs in a given period, your market
share, which we will call S, in the next period, will be calculated according to the following formula:

S = X/(X +Y)

In other words, your market share will be your investment divided by the sum of both your in-
vestment and your paired participant’s investment. You and you paired participant will make your
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respective investment decisions at the same time without knowing each other’s choices.

It is important to remember that your investment decision in a particular period, say Period 3,
determines your market share in the next period, or Period 4 in this example. You will only learn
how much your paired participant invested in Period 3, in Period 4. Your paired participant will
only learn how much you invested in Period 3, in Period 4.

Note: If both you and your paired participant chose to invest the same amount (i.e. X=Y), your
market share next period will be S = 0.50 or 50%.

Period Profit

Your profit in a particular period will be determined by your market share (which, again, will depend
on your investment decision in the previous period), by market demand, and by an investment cost.

Let’s refer to your market share as S, to market demand as M , and to your investment cost as C.
Your period profit will be calculated according to the following formula:

Period Profit = S ×M −C

In other words, you period profit will be your share of the market demand minus the amount you
spend on investing.

Your Investment Maximum and Minimum

The amount of funds you will have available to invest in any given period will be limited by your
return on last period’s investment according to the following formula:

Investment Maximum = 100% × S ×M

⟪ Investment Maximum = 75% × S ×M⟫

The computer interface will remind you of your current investment maximum. Your investment
minimum will always be:

Investment Minimum = 5

Investment Costs

The investment cost parameter will determine your total investment costs; its value will be 1.0.
Suppose you invest X ECUs in a particular period. Your investment costs will be:

C = 1.0∗X

where 1.0 is the investment cost parameter.

⟨ Investment costs will be determined by how much you choose to invest and by whether market
demand increased or decreased last period. The investment cost parameter will determine your
total investment costs; its value will be either 1.0 or 0.5. Suppose you invest X ECUs in a particular
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period. If market demand increased or stayed the same last period, your investment costs will be:

C = 1.0∗X

where 1.0 is the investment cost parameter. On the other hand, if market demand decreased last
period, your investment costs will be:

C = 0.5∗X

where 0.5 is the investment cost parameter. In other words, if market demand decreased last period,
your investment this period will be half as expensive as if market demand had instead increased or
stayed the same last period. Put another way: When market demand falls, investment costs
fall. The computer interface will remind you of your current investment cost parameter in each
period. ⟩

Cumulative Profit

Take a second look at the above formula for period profit. If your investment cost is less than
your investment maximum, you will earn a positive period profit. Anytime your period profit is
positive, your cumulative profit will increase. The computer interface will remind you of your
cumulative profit throughout the experiment. You will be paid your cumulative profit at the end
of the experiment.

Market Demand

As mentioned above, market demand (M) will increase, stay the same, or decrease from period-to-
period. Market demand will increase, stay the same, or decrease randomly.

Let’s denote market demand this period by M1, and market demand last period by M0. Here’s
how market demand will be determined:

M1= 10 + 0.9∗M0 + R

In other words, this period’s market demand will be the number 10, plus 90% of last period’s market
demand, plus R.

R is short for “random,” and it denotes a random number picked by the computer. The actual value
of R will vary each period, i.e., it will be randomly drawn each period. Although it will vary, there is
a 99% chance that R will be some number from −26 to +26; on average, it will be 0. Another way
to think about this is that if the computer picked, say, a 1,000 random numbers, the average of
these 1,000 random numbers would be 0.

The computer interface will give you a market demand forecast each period. Because R is 0 on
average, this forecast will be:

Marketdemandforecastof nextperiod′s M = 10 + 0.9∗(M thisperiod)

Note: Actual market demand can, and very likely will, differ from the forecasted value because while
R is 0 on average, it is random!
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Additional Information

Again, you will not learn how much your paired participant has invested in a period until the next
period. However, each period, the computer interface will ask you for a prediction about your paired
participant’s investment before you submit your own investment. Importantly, this prediction will
not be shared with your paired, or any other, participant!

The computer interface will also ask you for a prediction about next period’s market demand.

The Calculator

The computer interface will contain a calculator. You can use this calculator to “test out” different
investment amounts. The calculator will use the predictions you enter about your paired partici-
pant’s investment and about market demand to provide you with an estimate of what your return
might be next period given various hypothetical investments. Note: Using the calculator is entirely
optional.

Remember: Your actual market share and thus your period profit will depend on your paired par-
ticipant’s decision as well as your own.

Final Words

In each period click on the ‘Make investment decision’ button when you are ready to make your
investment decision. The calculator will no longer be available in that period. Three input boxes
will appear and you will indicate your own investment decision, your prediction about your paired
participant’s investment, and your prediction about next period’s market demand. Be sure to click
the ‘Invest’ button to finalize your decisions, followed by a button that will show you the results
and which will advance you to the next period.

If you have any questions, please remain seated and silent but raise your hand so that a proctor
can come answer your question privately. When you have finished reading the instructions, please
click on the ‘Finish instructions’ button to begin the experiment. You can review your hardcopy of
these instructions at any point during the experiment.

Quick Summary

� This experiment is composed of many periods

� In each period, you will make an investment decision

� You will have an investment maximum and an investment minimum

� Your investment decision and your paired participant’s investment decision will determine
your market share for the next period

⟨ Investment costs partly depend on a parameter that can change depending on what market
demand did last period; when market demand falls, investment costs fall ⟩

� Market demand changes randomly each period (see above for the formula)
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� Your period profit will increase with your market share and with market demand

⟨Your period profit will increase with your market share and with market demand and
will decrease with your investment costs ⟩

� Your cash earnings at the end of the experiment will include all of your period profits

35


	Experimental Evidence on the Cyclicality of Investment
	Recommended Citation

	Experimental Evidence on the Cyclicality of Investment
	Comments

	tmp.1522693111.pdf.8cpYT

