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Markets are often viewed as a tool for aggregating disparate private knowledge, a stance 
supported by past laboratory experiments.  However, traders’ acquisition cost of information 
has typically been ignored.  Results from a laboratory experiment involving six treatments 
varying the cost of acquiring signals of an asset’s value suggest that when information is costly, 
markets do not succeed in aggregating it.  At an individual level, having information improves 
trading performance, but not enough to offset the cost of obtaining the information.  Although 
males earn more through trading than females, this differential is offset by the greater 
propensity of males to buy information such that total profit is similar for males and females.  
Looking at individual skills, we find that higher theory of mind is associated with greater trading 
profit, greater overall profit, and an increased likelihood of acquiring information while 
cognitive reflection is associated with greater profit but not a greater propensity to acquire 
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1. Introduction 

The notion that markets aggregate private information has been put forward since Hayek 
(1945) and Muth (1961), but it was Plott and Sunder (1988) who introduced the canonical 
experimental market for studying such a phenomenon.1 The experimental results in their paper 
suggest that markets do aggregate individual traders’ disparate information.  Since the 
publication of those early results, there has been considerable attention given to the 
predictions such markets can yield both in and out of the laboratory.   

With respect to field studies, while Chen and Plott (2002) and Gillen et al. (2017) discuss the 
successful use of prediction markets at Hewlett-Packard and Intel, respectively, firms such as 
Google, Microsoft, Yahoo, and IBM also make use of internal markets for aggregating 
information (see Cowgill et al. 2008).  Pennock et al. (2001) documents the ability of the 
Hollywood Stock Exchange to forecast the success of yet to be released movies, and Berg et al. 
(2003) documents the success of the Iowa Electronic Market for predicting the outcomes of US 
elections.2 In fact, the evidence of markets aggregating information is sufficiently strong that a 
large group of scientists called for the relaxation of various laws to facilitate greater use of 
prediction markets (see Arrow et al. 2008).   

Deck and Porter (2013) provides a recent survey of the experimental evidence for information 
aggregation.  Much of this previous experimental work has either explicitly assumed that 
traders are endowed with information or implicitly assumed that individual traders have 
collected information in the course of their normal activities.  These are non-trivial 
assumptions.  If markets are completely efficient so that prices fully reflect all information held 
by traders, then one would never incur a cost to acquire new information solely for the purpose 
of trading as the cost of the information could not be recovered (Grossman and Stiglitz, 1980).  
The implication is that no trader would seek out costly information and thus such information 
could not be reflected in the price.  The costly collection of information requires that markets 
either do not fully reflect all available information or only do so gradually.3  

The experimental literature directly exploring the effect of costly information acquisition on 
market aggregation is limited to a few studies.  This literature includes the seminal papers of 
Sunder (1992) and Copeland and Friedman (1992) as well as the more recent works of Huber et 
al. (2011), Page and Siemroth (2017), and Asparouhova et al. (2017).  Sunder (1992) introduces 
information cost in two ways.  One is to auction off information to the highest bidder.  With 
repetition, the price of information falls toward zero, and this information is reflected in the 
                                                           
1 Plott and Sunder (1982) has a similar structure, but investigates information dissemination (some traders are fully 
informed of the asset’s true value, while others are uninformed) rather than aggregation (all traders are partially 
informed of the asset’s true value).  Information dissemination is also sometimes referred to as information 
amplification (e.g. Bossaerts et al. 2014). 
2 The success is not universal (see e.g. Jacobsen et al. 2000 and Brüggelambert 2004; Corgnet et al. 2015; Camerer 
et al. 2016). 
3 Hanson and Oprea (2009) show theoretically that traders would still acquire costly information in the presence of 
a market manipulator.  
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price of the underlying asset.  The findings of Copeland and Friedman (1992) are consistent 
with Sunder (1992).  While this approach fixes the amount of information in a market, Sunder’s 
other approach, which enables any trader to purchase information at a fixed price, is arguably 
more directly related to the various prediction markets described above.  In this setting, Sunder 
reports that markets do not fully aggregate information (i.e., the prices do not reflect the true 
asset value) and that those traders who do buy information are able to recoup their 
investment.  While Sunder’s results are suggestive, they are based on only six sessions that 
differ from each other in several potentially important ways including the process determining 
asset value, the price of information, and the experience level of the subjects.  Page and 
Siemroth (2017) extends Sunder (1992) by studying the effect of both traders’ endowments and 
traders’ information heterogeneity on information acquisition, but in an environment with a 
different information structure.  Whereas Sunder (1992) consider the case of aggregate 
certainty in which the collection of all private signals in the market determines the value of the 
asset with certainty, Page and Siemroth (2017) study the case of aggregate uncertainty using 
the ball-and-urn setup developed by Anderson and Holt (1997).  In that case, all private signals 
available in the market do not determine the value of the asset with certainty.  Under this 
procedure, signals which are obtained by observing the color of a ball drawn from a two-color 
urn can never be fully revealing about the actual state of the world because draws are made 
with replacement.  Using experimental markets and theoretical models respectively, Lundholm 
(1991) and Chen et al. (2006) argue that aggregate uncertainty precludes information 
aggregation.  The findings of Page and Siemroth (2017) regarding the limited evidence for 
information aggregation are thus consistent with Lundholm (1991) and Chen et al. (2006). In 
addition to a baseline, Page and Siemroth (2017) designed a public draw treatment in which all 
traders received the same noisy public signal before deciding whether to acquire further 
information.  The treatment was compared to the baseline in which the initial traders’ 
information was privately held.  The authors also considered a second treatment (high 
endowment) in which traders vary in their level of endowment so that half of the traders in the 
market had a level of cash and shares which was twice higher than in the baseline.  In line with 
their conjectures, the authors show that traders are more likely to acquire information in the 
public draw treatment than in the baseline.  Also, traders who received more cash and shares in 
the high endowment treatment acquired more information than the remaining traders. 

Huber et al. (2011) also extend the work of Sunder (1992) by considering the case in which 
traders can bid to become a (possibly fully) informed trader at an early period in the 
experiment following the design of Huber (2007) and Kirchler (2010).  The authors consider a 
total of five different information levels which differ in the exact timing in which a trader learns 
the true value of the asset.  In their fixed cost treatments, they consider different values for the 
cost of being informed early.4 For each treatment, they only impose that the cost of being 
informed at an earlier period is lower than the cost of being informed at a later period.  In line 

                                                           
4 The authors also consider treatments in which information is priced using a Vickrey auction. 
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with Page and Siemroth (2007), they find that informed traders’ earnings (net of the cost of 
information) is lower than uninformed traders’ earnings.  They also show that an increase in the 
cost of information significantly decrease the likelihood of traders to purchase information.  
Finally, they show that an increase in the cost of information led to a decrease in the 
informational efficiency of markets. 

All previous experimental works studied information acquisition in a centralized double auction 
market.  Instead, Asparouhova et al. (2017) assess the extent to which traders acquire costly 
information in a decentralized setting following the theoretical framework of Duffie, Malamud 
and Manso (2014).  In that setup, which aims at mimicking over-the-counter markets, traders 
take either the role of buyers or sellers.  Asparouhova et al. (2017) show both theoretically and 
experimentally that the argument by which traders will be deterred to acquire costly 
information because prices reflect all available information does not hold in a decentralized 
market (Grossman and Stiglitz, 1980).  Instead, traders are willing to acquire costly information 
because prices do not perfectly reflect all available information. 

This paper provides a systematic examination of information aggregation in centralized markets 
in which traders can obtain costly signals of an asset’s value.  It complements the work of Page 
and Siemroth (2017) by varying the number and the cost of the signals instead of focusing on 
institutional factors and by considering the case of aggregate certainty in line with the previous 
works of Plott and Sunder (1988) and Sunder (1992).  Our work also complements Huber et al. 
(2011) by considering a case in which traders pay for acquiring a signal, as in Sunder (1992), 
rather than for knowing the true value of the asset at an earlier date.  We also extend previous 
works by assessing the effect of making information acquisition decisions commonly known to 
all traders at the beginning of each market.  Finally, we extend previous studies by inquiring on 
the cognitive drivers of information acquisition and traders’ profits. 

Using a total of six different treatments and 240 subjects, our findings show, in line with Huber 
et al. (2011) and Page and Siemroth (2017), that traders, especially males, acquire an excessive 
number of signals thus harming their trading profits.  In addition, our finding regarding the 
negative effect of knowing others’ information purchasing decisions is of particular relevance.  
We are not aware of a similar finding in the experimental literature.  This result suggests that 
the advent of new technologies of information may have had two countervailing effects.  On 
the one hand, information may have become less costly thanks to greater competition between 
news and data providers.  On the other hand, social networks and other web-based 
communication technologies may have made traders more aware of others’ information 
acquisition strategies thus reducing the appeal for information purchasing.  Following Corgnet 
et al. (2017), we also extend previous works by assessing the role of cognitive factors such as 
theory of mind skills and cognitive reflection in understanding individual decisions to acquire 
information.  We find that theory of mind is associated with greater trading profit, greater 
overall profit, and an increased likelihood of acquiring information while cognitive reflection is 
associated with greater profit but not a greater propensity to acquire information.  The fact 
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that both cognitive reflection and theory of mind positively explain traders’ earnings shows the 
robustness of the findings of Corgnet et al. (2017) to the case in which traders decide upon 
costly information acquisition.                       

2. Experimental Design 

The experimental asset markets are similar to the ones in Plott and Sunder (1988) and Sunder 
(1992) in which eight subjects play the role of traders.5 In each of the ten market periods, every 
trader is endowed with e$1200 and four asset shares, where e$ represents the experimental 
currency.  The experimental dollars were converted into US dollars at the rate e$1,000 equals 
US$1.  At the start of a market period, traders were informed that the true value was equally 
likely to be e$50, e$240, or e$490.  Thus, a priori the expected value of an asset was e$260.  
Traders could buy and sell assets using a computerized double auction.6 A market period lasted 
four minutes, after which the true value of the asset was revealed.  Traders were informed of 
their payoff, which equaled their ending cash balance plus the realized value of any assets they 
held when the market closed.  Cash and assets did not carry over from one market period to 
the next.  Further, traders were not allowed to short shares or to borrow money.  To reduce 
variation between treatments and among replications of the same treatment, a single set of 
asset value realizations was used in every session.  This sequence was taken from Plott and 
Sunder (1988).7   

In each market period every trader was endowed with an additional signal purchase budget of 
e$600.  This money could be used before the market began to purchase information about the 
true value of the asset in the upcoming market period.  A signal consisted of one or two clues.  
A clue informed the purchaser of one of the values that the asset did not take.  For example, if 
the asset was worth e$490, a clue could be that the asset was not worth e$50.  Depending 
upon the treatment, traders were able to buy either zero, one, or two signals.8 The e$600 
signal purchase budget could not be combined with the e$1200 that the trader could use to 
buy assets in the market and unused signal purchase budget money was added to the subject’s 
earnings at the end of the trading period.  This important design feature differed from Huber et 
al. (2011) and Page and Siemroth (2017).9 Keeping the signal purchase budget separate ensures 

                                                           
5 In both Plott and Sunder (1988) and Sunder (1992), only a single experimental session was run under each of 
several treatments that varied widely, making specific conclusions about any particular design feature problematic 
(see Corgnet et al. 2015).        
6 The experiment was conducted using Zocalo which is an open-source software used for experimental markets. 
7 The realized states are taken from Market 9 of Plott and Sunder (1998).  Periods 1-5 correspond to the first five 
periods in that session while periods 6-10 correspond to the last 5 periods in that session.  
8 When a trader receives a single signal consisting of one clue, that clue is randomly determined.  Continuing the 
example, if the asset was worth e$490, a trader was equally likely to be informed that the asset was not worth 
e$50 or that it was not worth e$240.  A trader who received a signal that the asset was not worth e$50 would 
expect the asset to be worth e$365 since, conditional on the trader’s information, the asset was equally likely to 
be worth e$240 or e$490 
9 This design feature is not relevant for Sunder (1992) as subjects can borrow money so that there are no liquidity 
constraints. 
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that the total liquidity in the asset market remains fixed regardless of the total amount of 
information acquired by traders and eliminates a liquidity penalty to traders who do acquire 
information. 

To examine the effects of costly information acquisition, we collected data from six different 
treatments.  

In the Baseline, a signal consisting of a single clue costs e$300 and each trader could purchase 
up to one signal.  The clue cost in the Baseline was chosen to be near the maximum possible 
expected value of a clue.  The maximum value of information is obtained when prices do not 
reveal any private information.  In that situation, the value of a clue is maximal when only one 
of the traders acquires information.  To calculate this value, we consider the expected gains 
associated to purchasing one signal given the specific clue received.  Suppose the trader 
received the clue “Not 50.”  Given this signal, the trader would calculate the expected value of 
the asset to be e$365 = 1

2
 × e$240 + 1

2
 ×  e$490.  The remaining traders who did not purchase a 

signal would value the asset at e$260.  Given the initial cash endowment of e$1,200, in this 
scenario the trader who received the signal would purchase four assets at the price of e$260 
per asset.  The trader’s expected trading profit would then be e$3,080 = e$1,200 + 8 × e$365 – 
4 × e$260.  If the trader received the clue “Not 240,” then she would calculate the expected 
value of the asset to be e$270.  Similar to the above scenario, this trader would purchase four 
assets at the price of e$260 per asset, and her expected trading profit would be e$2,320.  
Finally, suppose the trader received the clue “Not 490.”  In this case she would calculate an 
expected value of e$145 and therefore sell her endowment of four assets for e$260 each.  
Thus, her expected trading profit would be e$2,240 = e$1,200 + 4 × e$260.  Thus, a priori the 
expected trading profit of a trader who buys a signal when no other trader does is $2,546.7 
since each clue is equally likely.  The maximum value of a single signal consisting of one clue 
may be determined by subtracting the expected value of the initial portfolio (e$2,240 = 
e$1,200+4 × e$260) from e$2,546.7 giving e$306.7.  We then round to e$300 for the signal 
cost in the Baseline.  By comparison, the minimum possible value of a clue is zero which 
corresponds to the case in which prices fully reveal private information. 

In the Baseline, traders were not informed of the information purchase decisions of the other 
traders as in Huber et al. (2011) or Page and Siemroth (2017). 

The High Cost treatment was similar to the Baseline except that a signal costs e$600.  This cost 
per signal is approximately double the maximum value of a clue thus ensuring that the 
acquisition of information would reduce a trader’s earnings.  

The Precise treatment was similar to the Baseline except that, for the same price, a single signal 
contained two different clues.  Thus, the e$150 cost per clue was lowest in the Precise 
treatment, and any trader who purchased a signal was fully informed.  In this case the 
maximum value of a signal, e$613.3, was substantially higher than the e$300 signal cost.  Thus, 
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in the absence of fully-revealing prices we would expect this treatment to lead to the greatest 
amount of information acquired by traders. 

In the Full Information treatment, each trader could purchase up to two signals with each 
containing a single clue and costing e$300.  When a trader purchased two signals then the 
trader was fully informed of the actual asset value as the second signal would not be the same 
as the first signal.  In that case, the total cost of acquiring the two signals (e$600) and thus 
being fully informed is set to be approximately equal to the maximum value of being fully 
informed (e$613.3).  Similar to the case of one single clue, the maximum value of acquiring two 
clues was calculated for the case in which no other trader purchases information and markets 
do not reflect private information. 

The Distribution treatment was similar to the Baseline except that traders were informed of the 
total number of signals purchased and thus the total amount of information in the market.  This 
was implemented by writing the number of signals purchased on the board at the front of the 
lab after traders made their signal purchase decision but before trading began.10 A similar 
treatment was conducted in two market sessions in Sunder (1992).  However, the insufficient 
number of sessions did not allow for a statistically meaningful comparison across treatments so 
that this treatment manipulation did not lead to any of the eight main findings reported by 
Sunder (1992).    

The final treatment, referred to as No Information, did not allow traders to purchase any signals 
although they did still receive the e$600 signal purchase budget to be consistent with the other 
treatments.  This treatment allows us to measure the extent to which the markets in which 
costly acquisition of information is allowed can improve the informational efficiency of markets 
in which no private information is available.  In the extreme case in which no trader ever 
purchased any information all six treatments should yield the same behavior and expected 
payoff.  The six treatments are summarized in Table 1.  Note that each treatment deviates in 
only one respect from the Baseline treatment. 

  

                                                           
10 Sunder (1992) varied whether or not traders were informed of how many traders purchased information. 
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Table 1 Summary of Experimental Treatments 
 

Baseline Precise 
Full 

Information Distribution 
High 
Cost 

No 
Information 

Signal Purchasing  
Signal Purchase Budget 600 600 600 600 600 600 
Maximum Signals Trader Could Purchase  1 1 2 1 1 0 
Cost per Signal 300 300 300 300 600 - 
Clues per Signal 1 2 1 1 1 - 
Revelation of Number of Clues Purchased  No No No Yes No Noa 
Market Characteristics  
Number of Traders 8 8 8 8 8 8 
Cash 1200 1200 1200 1200 1200 1200 
Shares 4 4 4 4 4 4 
a In this case it was common information that no one could purchase a signal, but this was not emphasized in the same 
manner that the number of purchased signals was in Distribution. 

 

In every treatment, other than No Information, the total number of signals held by traders is 
endogenous.  For treatments in which the number of clues per signal was one, if the number of 
signals purchased was even, then the experimental software ensured that information was 
balanced in the market with half of those purchasing a single signal given one possible clue and 
the other half given the other possible clue.  For example, if six people purchased one signal 
and the true asset value was e$240 then three people would be given the clue that the true 
value was not e$50 and three would be given the clue that the true value was not e$490.  If the 
number of signals purchased was odd, then the market was as balanced as possible.    

A total of 30 experimental sessions were conducted, five for each treatment.  In each session 
eight subjects entered the laboratory and were seated at isolated workstations.  The subjects 
read computerized instructions specific to the assigned treatment and answered a series of 
comprehension questions.  The comprehension questions and the text of the subject 
instruction for the Baseline are available in Appendix A.  The subjects then participated in a 
practice market that was similar in every way to the main part of the experiment except that 
earnings in the practice market did not impact a subject’s payment.  The main experiment 
lasted for 10 market periods after which subjects completed a short survey, were paid their 
earnings in private, and were dismissed from the experiment.   

Our short survey elicited traits in addition to basic demographic questions.  In particular, we 
elicited cognitive reflection and theory of mind because trader earnings in experimental 
markets have been shown to positively relate to these two measures (see Corgnet et al. 2017; 
Hefti et al. 2016).  We used the seven-item cognitive reflection test (CRT) of Toplak et al. (2014), 
which is an expanded version of the three-question test by Frederick (2005).  These questions 
are designed to have an intuitive but wrong answer and thus can measure how deeply subjects 
are thinking about their responses.  The CRT is commonly used in laboratory experiments and 
has been found to predict who will fall prey to a variety of behavioral biases (see Oechssler et 
al. 2009; Toplak et al. 2011; 2014).  Noussair et al. (2014) and Corgnet et al. (2015; 2017) show 
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that CRT score (i.e., the number of correct responses on the CRT) predicts earnings in 
experimental asset markets.  For theory of mind (ToM), we used the eye-gaze test of Baron-
Cohen et al. (1997).  In this task respondents try to identify a person’s emotional state from a 
picture that reveals only the eyes and the bridge of the nose.  This test is designed to measure 
how well someone can infer the intentions of others.  Bruguier et al. (2010) report that traders 
who score well on the ToM test are better able to predict price changes in experimental asset 
markets with insiders.  Corgnet et al. (2017) and Hefti et al. (2016) also find that those who 
score well on this test are better able to glean insights from market orders (bids, asks, and 
prices).  Subjects were paid US$3 for completing the survey, though none of the individual tests 
were incentivized which is standard practice in the literature.          

The experiments were conducted at the Economic Science Institute at Chapman University.  
Subjects were recruited for a 90-minute session and paid US$7 for participating in addition to 
their salient earnings.  No subject was allowed to participate in more than one session, and no 
subject had previously participated in any information aggregation or prediction market 
experiments at the lab.  A subject’s salient earnings were calculated as their cumulative 
earnings from the 10 market periods, including any unspent signal purchase budget.  The 
average total payment was US$36.80 (inclusive of the participation and survey completion 
payments). 

3. Conjectures 

Although no signals should be purchased if experimental markets are fully efficient, previous 
research has shown that, in a similar market design, asset prices are not fully informationally 
efficient (see Biais et al. 2005; Hanson, Oprea and Porter 2006; Veiga and Vorsatz 2010; Corgnet 
et al. 2015).  Also, studies which have found supportive evidence for information aggregation 
have put forward the need for extensive learning (e.g. Forsythe and Lundholm, 1990; Choo et 
al. 2017).  Using a different informational structure in which there is aggregate uncertainty Page 
and Siemroth (2017) also report that markets are not fully informationally efficient.  Thus, in 
our experiments, we expect that signals will have a positive value as in Grossman and Stiglitz 
(1976) or Hauser et al. (2015).     

Because of this we can expect traders to acquire information.  Further, we expect more 
information to be acquired the greater the perceived benefit of information relative to its cost 
(see Grossman and Stiglitz, 1976 and Huber et al. 2001).  Hence, when the cost of information is 
reduced or the precision of information is increased we anticipate traders buying more 
information.  Additionally, providing feedback that others are acquiring information, which 
reduces the maximum benefit of acquiring information, will lead to less information being 
acquired.  

We thus make the following main conjecture regarding information acquisition. 
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Conjecture I (Information Acquisition) 
i) Traders will purchase signals.  
ii) The lower the cost of signals, the more signals traders will buy. 
iii) Given a cost per signal, the more precise a signal, the more signals traders will buy. 
iv) Knowing others’ clue purchase decisions will lead traders to buy fewer signals. 
 

Conjecture 1 leads to the following anticipated treatment effects.  The High Cost and 
Distribution treatments will lead to less information acquisition than the Baseline whereas the 
Full Information and Precise treatments will lead to more information acquisition than the 
Baseline.  Moreover, more information will be purchased in the Precise treatment than in the 
Full Information treatment, but no relative ordering is implied for High Cost and Distribution. 

Because the treatments will differ in the amount of information held by traders, the degree to 
which market prices reflect the true asset value will also differ.  As shown by Grossman and 
Stiglitz (1976) as well as Huber et al. (2011) and Bossaerts et al. (2014), a higher proportion of 
informed traders will lead to an increase in the informational efficiency of a market.  This leads 
us to the following conjecture. 

Conjecture II (Informational Efficiency) 
i) We expect market prices to less accurately reflect true asset values in the High Cost and 
Distribution treatments than in the Baseline. 
ii) We expect market prices to more accurately reflect true asset values in the Precise treatment 
than in the Full Information treatment and to more accurately reflect true asset values in the 
Full Information treatment than in the Baseline. 
iii) We expect that market prices will not reflect true asset values in the No Information 
treatment, and we thus expect all other treatments to have greater informational efficiency 
than the No Information treatment. 
 

At the individual level, we test the robustness of the results established by Hefti et al. (2016) 
and Corgnet et al. (2017) regarding the positive effect of cognitive skills on traders’ earnings.  
Corgnet et al. (2017) show that cognitive reflection and theory of mind positively explain 
traders’ earnings in experimental markets with private information similar to the ones used in 
the current design except for the fact that private signals were exogenously given to traders.  
Hefti et al. (2016) establish the robustness of these findings for the case in which markets are 
prone to bubbles and crashes (Smith et al. 1988).11 As is argued in Corgnet et al. (2017), 
cognitive reflection allows traders to reflect upon publicly available market orders to infer other 
traders’ private information.  Theory of mind is also key in performing well in markets with 

                                                           
11 Both papers used the eye-gaze test to measure theory of minds skills.  For cognitive reflection, Corgnet et al. 
(2017) used the CRT whereas Hefti et al. (2016) used performance on the game of Nim, which measures strategic 
sophistication. 
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private information as it allows traders to identify whether prices are moved by informed or 
uninformed traders (see Bruguier et al. 2010).  Based on previous research, we conjecture that 
the positive effect of cognitive reflection and theory of mind on traders’ earnings will extend to 
the case in which information is acquired by traders instead of being exogenously given. 

Conjecture III (Traders earnings) 
Traders who possess higher cognitive reflection or higher theory of mind skills will achieve 
higher earnings.  

4. Results 

The data include the acquired information and market activity from 240 subjects in a total of 
300 market periods.  Table 2 provides summary information by treatment.  With regard to 
personal characteristics of subjects across treatments there is no significant difference in 
gender composition, however CRT significantly differs between Full Information and No 
Information (t-test p-value = 0.008) and ToM significantly differs between Baseline and No 
Information (t-test p-value = 0.034).12 

 
Table 2 Summary of Data by Treatment 

 
Baseline 

Full 
Information 

High 
Cost Distribution Precise 

No 
Information 

Average Number of 
Purchased Cluesa  

4.76 6.20 3.00 3.32 8.84 - 

Average Trade Volumea 27.52 20.12 31.42 27.80 33.46 25.62 
Average Transaction Priceb       
                | Asset Value = 50 191.51 126.02 191.88 171.64 111.74 242.17 
                | Asset Value = 240 208.92 205.44 209.85 185.45 221.35 243.58 
                | Asset Value = 490 232.08 297.64 225.78 199.26 334.87 254.33 
Average Absolute Price Errorc 132.72 95.20 135.48 145.54 75.59 140.59 
Percent Female 60.00 60.00 57.50 57.50 60.00 62.50 
Average CRT (out of 7) 2.47 1.92 2.27 2.62 2.20 3.10 
Average ToM (out of 36) 25.45 25.72 25.62 26.12 25.52 27.07 
a The reported number is the average across periods and sessions.  b The reported number is the average across 
periods and sessions of the average transaction price in a period of a session.  c The reported number is the average 
across periods and sessions of the absolute difference between the average transaction price in a period and the 
true value that period.   

 

4.1. Conjecture I. Information Acquisition     

We first compare the number of clues that traders acquire by treatment.  The first column of 
Table 3 reports panel regression results with standard errors clustered at the session level.  The 
results (and associated Wald tests shown in the lower portion of Table 3) indicate that more 
information is acquired in Full Information than in the other treatments except for Precise, 
                                                           
12 All other pairwise t-test p-values > 0.05. 
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which has the most information acquisition.  Both High Cost and Distribution lead to less 
information acquisition than the Baseline, but there is not a significant difference between the 
two treatments.13 Our findings thus support Conjecture 1 on information acquisition.  The 
results also indicate that the amount of information purchased does not decline dramatically 
with experience.  This is evidenced by the marginal significance of the coefficient of the Period 
variable, which assumes an integer value from one to ten.  This finding is in line with what Page 
and Siemroth (2017) reported.           

The right two columns of Table 3 compare the number of transactions across treatments.  
These regressions indicate that controlling for the number of signals traders acquire in a market 
period (“Signals” variable), there is no treatment difference in the number of transactions 
across treatments except that Full Information has marginally fewer trades.  The results also 
indicate that with experience the number of transactions falls (the coefficient on Period is 
negative and significant).  Finally, the results in the last column of Table 3 reveal that trade 
volume is not correlated with the underlying value of the asset, but it is inversely related to the 
number of signals acquired (the coefficient on Signals is negative and significant).  

  

                                                           
13 The No Information treatment is excluded from specification [1] in Table 3 as there is no variation in the amount 
of information available.  Mann Whitney tests indicate that in each of the five treatments where traders could 
acquire information, more information was acquired than in No Information (all pairwise p-values < 0.05).   
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Table 3 Regression Results for Information Acquisition and Transactions 
 Number of Clues 

Purchased 
[1] 

 Number of 
Transactions 

[2] 

Number of 
Transactions 

[3] 
Constant 5.28*** 

(0.56)  36.08*** 
(4.73) 

32.30*** 
(5.35) 

Period -0.09* 
(0.05)  -1.56*** 

(0.21) 
-1.45*** 

(0.19) 
Precise 4.08*** 

(0.91)  5.94 
(5.55) 

6.21 
(5.74) 

Full Information 1.44* 
(0.75)  -7.40 

(4.52) 
-8.56* 
(4.98) 

Distribution -1.44** 
(0.71)  0.28 

(5.29) 
1.44 

(5.88) 
High Cost -1.76*** 

(0.61)  3.90 
(5.15) 

5.31 
(5.56) 

No Information -  -1.90 
(5.62) 

1.92 
(6.13) 

Signals -  - -0.80** 
(0.33) 

True Value -  - -0.00 
(0.00) 

Observations 250  300 300 
Significance of Wald tests of coefficient equality 
Precise  
 = Full Information ***  *** *** 

 = Distribution ***    
 = High Cost ***    
 = No Information -    
Full Information  
 = Distribution ***  ** ** 

 = High Cost ***  *** *** 
 = No Information -   ** 
Distribution  
 = High Cost     

 = No Information -    
High Cost  
 = No Information -    

*, **, and *** denote significance at the 10%, 5%, and 1% level respectively.  Standard errors are 
clustered at the session level.  Number of clues and number of transactions are market period level 
observations.  Results produced with panel regressions with standard errors (reported in 
parentheses) clustered at the session level.  As no signals are available for purchase in the No 
Information treatment, the data from these sessions are excluded from specification [1].  The 
number of observations is equal to the number of sessions (25 or 30) multiplied by the number of 
market periods (10). 
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4.2. Conjecture II. Informational Efficiency 

We now turn to the conjecture regarding informational efficiency.  We want to assess how well 
market prices reflect aggregate information and reveal the underlying value of the asset when 
information is costly.  Figure 1 plots the average price per period averaged over sessions for 
each treatment.  The square markers in the figure indicate the underlying true value of the 
asset each period.  Appendix B contains plots of all transactions for each session by treatment.  
Casual inspection of Figure 1 suggests that prices do not closely match asset value.  The 
observed path prices are fairly flat and even the Full Information and Precise treatments which 
have the most information still do not come close to approaching prices of 50 or 490 when 
those are the true values of the asset. 
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Fig. 1  Average Market Prices by Period for Each Treatment 

Panel A. Treatments expected to exhibit lower informational efficiency than Baseline 

 

Panel B. Treatments expected to exhibit higher informational efficiency than Baseline 

 

 

To quantify the degree to which prices reflect the underlying value, we present Table 4.  The 
dependent variable in this regression is the absolute price error, calculated as the absolute 
difference between the observed “price” in a period and the true value of the asset (see Table 2 
for descriptive statistics on the absolute price error across treatments).  The analysis is 
conducted separately for both the average price in a period and the closing price which we 
define as the average of the last three transactions in the period.  Three specifications are 
reported for each measure of observed price and standard errors are clustered at the session 
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level.  The first specification (Columns [1] and [4]) includes binary dummy variables for each 
treatment, a variable indicating the market period, and an intercept.  The second specification 
(Columns [2] and [5]) augments the first with variables corresponding to the number of signals 
acquired in the period, the number of transactions in the period, and the asset value (50, 240, 
or 490).  The regression results (and associated Wald tests at the bottom of Table 4) indicate 
that in terms of average price the Full Information and Precise treatments yields smaller 
absolute errors than the other treatments, but that the other treatments including No 
Information yield similar results.  When considering closing prices the results differ as there is 
evidence that the No Information treatment has a greater absolute price error, at least in 
comparison to the Baseline, which would be expected as information is revealed through the 
course of trading.  In each specification, period is positive and significant, but this may be due 
to the fact that the last three periods had extreme true value realizations (e$50 or e$490) 
which are cases in which prices are less in line with true value than when the value of the asset 
is e$240 (see Figure 1).  Our results support the relative ordering of treatments in terms of 
informational efficiency stated in Conjecture II.  However, the difference in informational 
efficiency fails to reach statistical significance when comparing Baseline and the treatments 
that were predicted to exhibit less informational efficiency, High Cost and Distribution.  The 
coefficient on Signals in specification two (Columns [2] and [5]) is negative but not significant.  
This seems to suggest that an increase in information does not reduce absolute price error; 
however, the amount of information is correlated with the treatments.  Specification three 
(Columns [3] and [6]) considers the direct effect, absent the possible collinearity issues of 
specification [2], of the number of signals on absolute price error.  The results clearly indicate 
that absolute price error is diminishing in total information thus confirming our Conjecture II 
that treatments characterized by more information acquisition will lead to greater 
informational efficiency. 
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Table 4 Analysis of Absolute Price Error 
 Average 

Price 
[1] 

Average 
Price 
[2] 

Average 
Price 
[3] 

Closing 
Price 
[4] 

Closing 
Price 
[5] 

Closing 
Price 
[6] 

Constant 50.06*** 
(7.91) 

14.30 
(23.19) 

61.44*** 
(8.18) 

56.27*** 
(8.79) 

2.40 
(29.03) 

75.22*** 
(9.90) 

Period 15.03*** 
(1.08) 

10.16*** 
(1.06) 

14.75*** 
(1.20) 

12.48*** 
(1.37) 

8.05*** 
(1.23) 

12.09*** 
(1.50) 

Precise -57.13*** 
(-18.48) 

-63.96*** 
(16.60) 

- -64.28*** 
(22.23) 

-74.77*** 
(18.71) 

- 

Full Information -37.52*** 
(12.41) 

-25.05** 
(10.50) 

- -55.05*** 
(12.64) 

-37.22*** 
(10.48) 

- 

Distribution 12.82 
(8.81) 

6.95 
(7.72) 

- 6.17 
(11.98) 

-1.00 
(10.86) 

- 

High Cost 2.76 
(7.18) 

-7.71 
(6.02) 

- 9.33 
(7.31) 

-4.76 
(10.87) 

- 

No Information 7.87 
(8.09) 

-8.91 
(14.81) 

- 19.12** 
(8.21) 

-0.34 
(17.98) 

- 

Signals - -3.90 
(2.80) 

-6.01*** 
(1.54) - -4.69 

(3.26) 
-8.55*** 

(1.73) 
Transactions - 0.93** 

(0.36) 
- - 1.50*** 

(0.48) 
- 

True Value - 0.22*** 
(0.03) 

- - 0.23*** 
(0.03) 

- 

Observations 300 300 300 300 300 300 
Significance of Wald tests of coefficient equality 
Precise  
 = Full Information  **   *  
 = Distribution *** ***  *** ***  
 = High Cost *** ***  *** ***  
 = No Information *** **  *** ***  
Full Information  
 = Distribution *** **  *** **  
 = High Cost ***   *** **  
 = No Information ***   ***   
Distribution  
 = High Cost  **     
 = No Information       
High Cost  
 = No Information       
*, **, and *** denote significance at the 10%, 5%, and 1% level respectively.  Results produced with panel 
regressions with standard errors (reported in parentheses) clustered at the Session level.  The number of 
observations is equal to the number of sessions (30) multiplied by the number of market periods (10). 

 

Overall, our findings indicate that market prices do not perfectly reflect the underlying value of 
the asset in line with the recent works of Corgnet et al. (2015) and Page and Siemroth (2017).  
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We study further the extent to which our markets aggregate information by following the 
procedure of Plott and Sunder (1988) which assesses how close individual transaction prices are 
to the true value of the asset versus the predictions of the prior information (i.e. Walrasian) 
model (see, for example, Lintner, 1969) over an entire session.14 Under full revelation, market 
prices reflect all of the available information.  Note that full revelation cannot occur in a 
rational expectations equilibrium without the presence of noise traders (see Grossman and 
Stiglitz, 1976).  However, full revelation predictions constitute a useful benchmark to assess the 
extent to which prices aggregate private information.  In any market with at least two clues full 
revelation implies that prices should equal the true value of the asset.  In a market with no 
acquired clues the predicted price is 260, which is the average of the three possible asset 
values.  In a market with only one clue, the predicted price is the average value of the two non-
eliminated possible values.  Let TV denote the true value of the asset.  For the prior information 
model, each trader updates her belief of the asset value based on any clues that are purchased, 
but does not update her beliefs based on market observables.  Under this model, any trader 
would sell any held asset at a price above her private belief of the value.  Similarly, any trader 
would buy as many assets as possible at any price below her private belief.  Given each trader’s 
prior information, one can calculate the excess demand at any price.  The prior information 
model assumes excess demand will equal zero, but given the discrete nature of the market it is 
possible for a range of prices to generate zero excess demand.  Let 𝑃𝑃PI and 𝑃𝑃PI denote the 
minimum and maximum price consistent with the prior information model, respectively.  We 
define the mean absolute deviation from true value (𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇) and the mean absolute deviation 
from prior information (𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃) as follows where 𝐼𝐼 is the set of transactions.15  

𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇 = �|𝑃𝑃𝑖𝑖 − 𝑇𝑇𝑇𝑇|
𝑖𝑖∈𝑃𝑃

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃 = �max (𝑃𝑃𝑖𝑖 − 𝑃𝑃�𝑃𝑃𝑃𝑃 ,  𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑃𝑃𝑖𝑖 , 0)
𝑖𝑖∈𝑃𝑃

 

For each treatment, other than No Information where the two variables coincide, we conduct a 
sign test on the value 𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇  − 𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃, where each term is calculated at the session level.  The 
results indicate that observed prices are more consistent with the prior information model than 
with the true value for Baseline, High Cost, and Distribution.  For the Full Information and 

                                                           
14 Plott and Sunder (1988) also consider the Maximin model but we do not evaluate it here because Corgnet et al. 
(2015) have shown that the prior information model was the most accurate model to predict asset prices in these 
markets.  
15 𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇 is not equivalent to the absolute price error variable noted in Tables 2 and 4.  While the absolute price 
error measures the difference between the average price per period and the true asset value, the  𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇 sums 
the magnitudes of the deviations between price and true value for each transaction in a session across all periods. 
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Precise treatments, true value and prior information predictions have similar explanatory 
power.16   

The lack of full information aggregation implies that acquiring costly information may be 
profitable to a trader.  This is the case because signals are only valuable in informationally 
inefficient markets.  But the fact that market prices do not equal the true value of the asset 
does not mean prices do not provide any information about the underlying value of the asset.  
For each session, we calculate the correlation between the average price in a period and the 
true value of the asset that period.  The average correlation between price and value was 0.90 
for Full Information and 0.91 for Precise.  Based on Mann Whitney tests of session level 
correlation, the correlation is greater in Full Information and Precise than in any other 
treatment (all p-values < 0.05).17 For Baseline and High Cost the average correlations are 0.69 
and 0.59 respectively.  These two treatments are not different from each other (p-value >0.05), 
but both have higher correlation than Distribution and No Information (all p-values <0.05).  The 
average correlations in Distribution and No Information are 0.27 and 0.13, respectively, and 
these two treatments do not differ from each other (p-value > 0.05).  Thus, with the exception 
of the Distribution treatment, the average market price can convey information when traders 
can acquire costly information.  This is an important but subtle point.  Viewed in isolation the 
average price in a market may not be informative.  However, once the central tendencies of a 
market are identified then minor changes in price patterns can reveal substantial insights into 
the traders’ private signals. 

4.3. Conjecture III. Individual Behavior      

In contrast to Page and Siemroth (2017) who focus on risk aversion and market experience, we 
investigate the cognitive aspects of the decision to purchase information.  In specifications [1] 
and [2] of Table 5, we report the results of panel regressions with standard errors clustered at 
the session level with the dependent variable (Information Acquisition dummy) set to one if the 
trader purchased any information and zero otherwise.18 Specifications [3] and [4] of Table 5 
report results of similar analyses using panel probit regressions.  The independent variables for 
cognitive reflection and theory of mind are standardized scores based on the number of correct 
answers on each test (Appendix C provides more information about subject performance on 
the CRT and ToM tests).  In both specifications, males are significantly more likely to purchase 
information than females even when controlling for cognitive reflection and theory of mind.  

                                                           
16 Formally we test the null hypothesis of no MAD difference between the prior information predictions and the 
true value against the alternative that the prior information predictions lead to a lower MAD.  Using session level 
data, the p-value for the sign test is 0.0313 for Baseline, High Cost, and Distribution.  For both Full Information and 
Precise the p-value is 0.500. 
17 The correlation between average price and true value is not different between Full Information and Precise.   
18 We focus on this variable rather than on the number of clues purchased because at the level of the individual in 
a market clues purchased can take on limited values that differ by treatment. Refer to Appendix D for results 
corresponding to the same specification as regression [4] in Table 5 but with number of clues as the dependent 
variable. 
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On average, males acquired 28% more signals than females.  This finding is consistent with the 
fact that risk-averse individuals are less likely to acquire costly information (see Cabrales, 
Gossner and Serrano, 2017; Page and Siemroth, 2017) because women typically exhibit higher 
degrees of risk aversion than men (e.g. Croson and Gneezy, 2009).  In addition, a higher theory 
of mind score is marginally related to an increase in information acquisition. 

Table 5 Influence of Trader Characteristics on Decision to Acquire Information 
 Information 

Acquisition 
Dummy 

[1] 

Information 
Acquisition 

Dummy  
[2] 

Information 
Acquisition 

Dummy 
[3] 

Information 
Acquisition 

Dummy 
[4] 

Information 
Share 

 
[5] 

Constant 0.49*** 
(0.05) 

0.59*** 
(0.07) 

-0.00 
(0.24) 

0.49* 
(0.26) 

0.11*** 
(0.01) 

Male 0.12** 
(0.06) 

0.13** 
(0.06) 

0.54** 
(0.26) 

0.54** 
(0.26) 

0.04** 
(0.02) 

Cognitive 
Reflection 

0.01 
(0.02) 

 

0.01 
(0.02) 

0.11 
(0.10) 

0.12 
(0.11) 0.00 

(0.01) 

Theory of Mind 0.04* 
(0.02) 

0.05* 
(0.02) 

0.20* 
(0.10) 

0.20* 
(0.11) 

0.02** 
(0.01) 

Period -0.01* 
(0.00) 

-0.01* 
(0.00) 

-0.04* 
(0.02) 

-0.04* 
(0.02) 

0.00 
(0.00) 

Precise - -0.04 
(0.08) 

- -0.24 
(-0.35) 

0.00 
(0.00) 

Full Information - -0.07 
(0.08) 

- -0.36 
(0.36) 

(-0.00) 
(0.00) 

Distribution - -0.19** 
(0.08) 

- -0.90*** 
(0.30) 

-0.00 
(0.01) 

High Cost - -0.22*** 
(0.07) 

- -0.95*** 
(0.25) 

-0.00 
(0.00) 

Observations 2,000 2,000 2,000 2,000 1,97619 
*, **, and *** denote significance at the 10%, 5%, and 1% level respectively.  The regressions include a random 
effect for each subject.  Standard errors (reported in parentheses) are clustered at the session level.  Data from the 
No Information treatment is excluded as these traders did not have the option to acquire signals.  Results for 
specifications [1], [2], and [5] are produced with panel regressions.  Specifications [3] and [4] report results for 
panel probit regressions corresponding to the analyses conducted in Specifications [1] and [2], respectively.  The 
number of observations is equal to the number of subjects (200) multiplied by the number of market periods (10).  
For specifications that include Information Share, the number of observations was reduced because this value is 
undefined when individuals could purchase information but no one in the market did. 

 
 

                                                           
19 In 24 markets (out of 2,000) in which traders could purchase information no traders buy any information so that 
Information Share could not be calculated. 
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Finally, we test conjecture III by studying trader earnings as a function of their cognitive skills.  
Table 6 reports the results of panel regressions for trader earnings (excluding the cost of 
acquiring signals).  The results reveal that information does help traders earn a profit in the 
market.  In specification [2] of Table 6 the coefficient on Information Acquisition, is positive and 
highly significant.  In specification [3] of Table 6 the coefficient on Information Share, the 
number of signals purchased by a trader divided by the total number of signals purchased in the 
market period, is also positive and highly significant.  The positive relationship between 
Information Share and trader profit puts forth that traders who are able to buy information 
when others do not will be able to extract more value from their purchased clues.  The capacity 
to anticipate others’ clue purchasing behavior requires understanding other people intentions.  
Because theory of mind skills capture one’s capacity to read other people intentions, it could 
explain why traders who scored higher on the theory of mind test were more likely to buy clues 
when others did not thus holding a higher Information Share than other traders (see column [5] 
of Table 5).  Interestingly, cognitive skills do not predict a trader’s Information Share thus 
putting forth that such behavior is specific to high theory-of-mind traders. This result nicely 
complements the work of Bruguier et al. (2010) who show that theory of mind skills could help 
a trader predict the presence of insiders in the market.  Our finding goes one step further by 
showing that theory of mind skills can also help traders predict others’ information purchases 
decisions thus being able to buy when others do not.  

  



21 
 

Table 6 Influence of Trader Characteristics on Trading Profit 

 Trading 
Profit 

[1] 

Trading 
Profit 

[2] 

Trading 
Profit 

[3] 

Trading 
Profit 

[4] 

Trading 
Profit 

[5] 

Constant -54.90** 
(26.85) 

-128.11*** 
(32.58) 

-126.67*** 
(35.88) 

-159.54*** 
(30.81) 

-127.76*** 
(28.00) 

Male 135.83** 
(61.96) 

112.17** 
(55.13) 

131.36** 
(65.99) 

112.28** 
(55.05) 

131.09** 
(66.18) 

Cognitive Reflection 79.96** 
(34.85) 

83.51*** 
(32.19) 

87.39** 
(37.82) 

82.32** 
(33.40) 

89.04** 
(38.79) 

Theory of Mind 82.67** 
(34.36) 

78.07** 
(32.16) 

85.74** 
(34.47) 

76.32** 
(32.18) 

86.01** 
(34.53) 

Period 0.00 
(0.00) 

1.26* 
(0.73) 

-0.00 
(0.00) 

1.30* 
(0.75) 

0.00 
(0.01) 

Information 
Acquisition - 185.20*** 

(31.75) - 191.40*** 
(32.38) - 

Information Share - - 663.77*** 
(134.52) - 660.88*** 

(134.23) 

Precise - - - 17.97 
(26.74) 

10.58 
(28.26) 

Full Information - - - 31.88 
(22.62) 

18.74 
(14.24) 

Distribution - - - 13.97 
(44.03) 

-23.05 
(36.06) 

High Cost - - - 44.38* 
(25.27) 

1.93 
(24.62) 

No Information - - - 63.46** 
(31.23) - 

Observations 2,400 2,400 1,976 2,400 1,976 
*, **, and *** denote significance at the 10%, 5%, and 1% level respectively.  Results produced with panel 
regressions with standard errors (reported in parentheses) clustered at the session level.  The regressions include a 
random effect for each subject.  As no signals are available for purchase in the No Information treatment, the 
variable Information Share is undefined for this treatment and therefore data from these sessions are excluded 
from specifications [3] and [5].  The number of observations is equal to the number of subjects (240 or 200) 
multiplied by the number of market periods (10).  For specifications that include Information Share, the number of 
observations was reduced because this value is undefined when individuals could purchase information but no one 
in the market did. 

 

Conducting similar analyses by treatment yields the same finding, having information leads to 
greater trading profit (see specifications [4] and [5] of Table 6).  The results in Table 6 also 
reveal that trading profits are higher for men, those with a high cognitive reflection score, and 
those with a high theory of mind score.  These results are in line with Conjecture III thus 
confirming the results of Corgnet et al. (2017) in a context in which traders decide upon 
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information acquisition and the amount of information in the market is thus endogenously 
determined by traders.20   

While the results in Table 6 demonstrate the benefits of having information, they ignore the 
actual cost of that information.  As it turns out, the benefit of information is less than its cost in 
each of the treatments considered.  On average, traders only recoup 43.9% of their information 
cost.  This is evidence of over-acquisition of information corroborating the results of Huber et 
al. (2011) and Page and Siemroth (2017).  Over-acquisition is also demonstrated by the fact that 
traders consistently bought information in the High Cost treatment, when the cost of a signal 
was higher than its maximum possible value (see Table 2 for descriptive statistics).  Overall, 
high cognitive reflection scores and high theory of mind scores are associated with greater total 
profit (including the cost of acquiring signals).  Interestingly, the greater total profit of males is 
offset by their greater propensity to acquire information.  The result is that on net there is no 
difference in total profit between males and females.  These conclusions are supported by the 
estimations in Table 7. 

 

  

                                                           
20 Following Corgnet et al. (2017), we also expect fluid intelligence to relate positively to trader earnings.  However, 
we could not collect such measure (e.g. Raven test) given time constraints.  Instead, we asked subjects to self-
report their SAT scores which can be seen as an alternative measure of fluid intelligence (Stanovich, 2009).  We 
find that SAT scores, for those (85% of subjects) who reported it, relate positively although not significantly to 
trader profits.  This is perhaps not surprising given the mild correlation between Raven scores and self-reported 
SAT scores (ρ = 0.11).  See Corgnet et al. (2017) who reported this correlation for 732 subjects of the lab database 
at the same institution where we conducted our experimental sessions. 
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Table 7 Influence of Trader Characteristics on Total Profit 

 Total 
Profit 

[1] 

Total 
Profit 

[2] 

Total 
Profit 

[3] 

Total 
Profit 

[4] 

Total 
Profit 

[5] 

Total 
Profit 

[6] 
Constant -194.40*** 

(28.14) 
-117.14*** 

(35.07) 
-187.74*** 

(36.60) 
-215.48*** 

(24.23) 
-100.64*** 

(32.00) 
-181.66*** 

(30.64) 
Male 75.22 

(54.38) 
100.19* 
(55.67) 

111.38* 
(62.39) 

82.28 
(52.04) 

103.46* 
(54.76) 

113.04* 
(61.68) 

Cognitive 
Reflection 

89.53*** 
(29.78) 

85.79*** 
(32.61) 

88.97** 
(38.94) 

79.88** 
(31.28) 

81.81** 
(33.90) 

86.46** 
(39.59) 

Theory of 
Mind 

72.12** 
(30.39) 

76.97** 
(30.95) 

83.17** 
(32.87) 

67.77** 
(31.22) 

76.13** 
(31.62) 

83.11** 
(33.49) 

Period 1.75 
(1.44) 

0.42 
(0.85) 

2.11 
(1.74) 

1.75 
(1.44) 

0.43 
(0.86) 

2.10 
(1.75) 

Information 
Acquisition - -195.44*** 

(36.15) - - -193.67*** 
(37.52) - 

Information 
Share - - -371.23*** 

(121.74) - - -372.53*** 
(121.74) 

Precise - - - 22.40 
(29.39) 

14.29 
(24.24) 

23.03 
(32.24) 

Full 
Information - - - -36.60 

(33.56) 
-51.13** 
(21.97) 

-35.77 
(34.64) 

Distribution - - - 35.75 
(50.74) 

-1.06 
(37.26) 

30.24 
(55.46) 

High Cost - - - -43.38 
(40.79) 

-86.65*** 
(26.23) 

-51.27 
(39.75) 

No 
Information 

- - - 131.21*** 
(37.84) 

12.85 
(27.99) - 

Observations 2,400 2,400 1,976 2,400 2,400 1,976 
*, **, and *** denote significance at the 10%, 5%, and 1% level respectively.  Results produced with panel 
regressions with standard errors (reported in parentheses) clustered at the session level.  The regressions include a 
random effect for each subject.  As no signals are available for purchase in the No Information treatment, the 
variable Information Share is undefined for this treatment and therefore data from these sessions are excluded 
from specifications [3] and [6].  The number of observations is equal to the number of subjects (240 or 200) 
multiplied by the number of market periods (10).  For specifications that include Information Share, the number of 
observations was reduced because this value is undefined when individuals could purchase information but no one 
in the market did. 
      

5. Discussion 

Much has been made of the success of markets in aggregating information; however, the 
aggregation in these markets is only as good as the information held by the traders.  If traders 
are willing to invest in costly information under the belief that it can be used profitably in the 
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market, then there is likely to be considerable privately held information.  However, with well-
informed traders previous studies have found prices reflect aggregate private information (Plott 
and Sunder, 1988).  Informational efficiency in the market reduces the benefit from acquiring 
information.  So no one should acquire costly signals and there will be no information for the 
market to aggregate (see Grossman and Stiglitz, 1976).  

This paper uses controlled laboratory experiments to investigate the puzzle of information 
aggregation when information is costly.  Data were collected for a total of 240 subjects from six 
different experimental treatments that varied the cost of information and the amount of 
information that traders could acquire.  In none of the treatments studied did the prices reveal 
more information than what is predicted by the prior information model.  In fact, the prior 
information model best predicted prices in all treatments except for the two in which traders 
could become perfectly informed of the asset’s value.  The low level of informational efficiency 
of markets implied that private signals had a positive value.  However, when studying individual 
behavior, we observe that information acquisition was counterproductive as those who did 
acquire more signals increased trading profits while decreasing their total profits, similar to 
Huber et al. (2011) and Page and Siemroth (2017).  This finding echoes previous research on the 
sunk cost fallacy as well as previous works on overbidding in the experimental literature on 
contests (Dechenaux et al. 2015).     

At the individual level, those with higher cognitive reflection scores and those with higher 
theory of mind scores tended to earn greater trading profits and total profits than those with 
lower scores.  This extends the previous findings of Corgnet et al. (2017) to the case in which 
information is acquired at a cost and the level of information in a market is endogenous.  
Interestingly, males earned higher trading profits than females but this did not translate to a 
difference in total profit as males also tended to purchase more information.    

While more research is warranted, as a whole our results suggest that, when information is 
costly for traders to acquire, markets may not fully aggregate the available information.  This 
partly explains why traders acquire information at a cost.  On the top of that, traders, especially 
males, are willing to acquire costly information to increase their gross earnings, possibly due to 
greater competitiveness and a search for status (e.g. Von Rueden et al. 2011).    
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Appendix A. Subject Instructions 
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Appendix B. Transaction Data by Session 

We present plots of transaction prices (red circles) by period.  The width of the period reflects its 240 second duration and trades are 
shown according to when they occurred.  The true value is listed in parentheses at the bottom of each period and displayed as a 
solid horizontal line.  The average price per period is listed at the top of each period.  The price(s) predicted by the prior information 
model is (are) displayed as a dashed horizontal line(s). 
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Appendix C. Information on CRT and ToM Responses 

CRT Instrument 

Taken from Frederick (2005): 

(1) A bat and a ball cost $1.10 in total. The bat costs a dollar more than the ball. How much 
does the ball cost? ____ cents 
[Correct answer: 5 cents; intuitive answer: 10 cents] 

(2) If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 100 machines 
to make 100 widgets? ____ minutes 
[Correct answer: 5 minutes; intuitive answer: 100 minutes] 

(3) In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it takes 48 
days for the patch to cover the entire lake, how long would it take for the patch to cover 
half of the lake? ____ days 
[Correct answer: 47 days; intuitive answer: 24 days] 

Taken from Toplak et al. (2014):  

(4) If John can drink one barrel of water in 6 days, and Mary can drink one barrel of water in 
12 days, how long would it take them to drink one barrel of water together? _____ days  
[correct answer: 4 days; intuitive answer: 9] 

(5) Jerry received both the 15th highest and the 15th lowest mark in the class. How many 
students are in the class? ______ students  
[correct answer: 29 students; intuitive answer: 30]  

(6) A man buys a pig for $60, sells it for $70, buys it back for $80, and sells it finally for $90. 
How much has he made? _____ dollars 
[correct answer: $20; intuitive answer: $10]  

(7) Simon decided to invest $8,000 in the stock market one day early in 2008. Six months 
after he invested, on July 17, the stocks he had purchased were down 50%. Fortunately 
for Simon, from July 17 to October 17, the stocks he had purchased went up 75%. At this 
point, Simon has: a. broken even in the stock market, b. is ahead of where he began, c. 
has lost money 
[correct answer: c; intuitive response: b] 
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Table C.1 Distribution of CRT scores 
CRT score % of subjects 

0 18.7 
1 23.3 
2 14.6 
3 16.7 
4 7.9 
5 7.9 
6 6.2 
7 4.6 

Mean 2.43 
Std. Dev. 2.04 

Theory of Mind Instrument 

This is an example of one of the 36 eye gaze questions taken from Baron-Cohen (1997): 

Fig. C Example of an eye gaze test question 

 

 

Table C.2 Distribution of ToM eye gaze test scores 

 

  

Eye gaze score 0-9 10-15 16-20 21-25 26-30 >30 Mean Std. Dev. 

% of subjects 0.4 2.5 8 31 45 12.5 26 4.45 
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Appendix D. Relation between trader characteristics and clues purchased 

Table D Influence of Trader Characteristics on Number of Clues Purchased 
 Number of clues 

Purchased  
[1] 

Constant 0.62*** 
(0.08) 

Male 0.11 
(0.08) 

Cognitive Reflection 0.03 
(0.04) 

Theory of Mind 0.06* 
(0.03) 

Period -0.01* 
(0.01) 

Precise 0.51*** 
(0.12) 

Full Information 0.18** 
(0.09) 

Distribution -0.19*** 
(0.07) 

High Cost -0.22*** 
(0.07) 

Observations 2,000 
*, **, and *** denote significance at the 10%, 5%, and 1% level respectively.  This panel regression includes a 
random effect for each subject.  Standard errors (reported in parentheses) are clustered at the session level.  Data 
from the No Information treatment is excluded as these traders did not have the option to acquire clues.  The 
number of observations is equal to the number of subjects (200) multiplied by the number of market periods (10). 
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