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Summary 

-Most ecosystems experience frequent cloud cover resulting in light that is predominantly diffuse 

rather than direct. Moreover, these cloudy conditions are often accompanied by rain that results in wet 

leaf surfaces. Despite this, our understanding of photosynthesis is built upon measurements made on 

dry leaves experiencing direct light.  

-Using a modified gas exchange setup, we measured the effects of diffuse light and leaf wetting on 

photosynthesis in canopy species from a tropical montane cloud forest.  
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-We demonstrate significant variation in species-level response to light quality independent of light 

intensity. Some species demonstrated 100% higher rates of photosynthesis in diffuse light while 

others had 15% greater photosynthesis in direct light. Even at lower light intensities, diffuse light 

photosynthesis was equal to that under direct light conditions. Leaf wetting generally led to decreased 

photosynthesis, particularly when the leaf surface with stomata became wet, however, there was 

significant variation across species. 

-Ultimately, we demonstrate that ecosystem photosynthesis is significant altered in response to 

environmental conditions that are ubiquitous. Our results help explain the observation that net 

ecosystem exchange can increase in cloudy conditions and can improve the representation of these 

processes in earth systems models under projected scenarios of global climate change. 

 

Introduction  

Our understanding of photosynthesis is predominantly based on measurements made on dry 

leaves receiving direct light. But nearly all ecosystems spend considerable time in cloudy conditions, 

which results in diffuse light. When these clouds are accompanied by precipitation events, leaves and 

canopies become wet. Understanding the relationship between photosynthesis and environmental 

conditions is critical for modeling ecosystem primary productivity and research to date has considered 

many of these variables such as temperature (Way & Oren, 2010), light intensity (Ruimy et al., 1995), 

CO2 concentration (Norby & Zak, 2011) and soil moisture (Meir & Woodward, 2010). Explicit tests 

of the effects of diffuse light or leaf wetting on leaf or canopy photosynthesis are exceedingly limited 

with only 11 studies in the last 10 years (diffuse light: Brodersen et al., 2008; Mercado et al., 2009; 

Brodersen & Vogelmann, 2010; Urban et al., 2012; Kanniah et al., 2013; Urban et al., 2014; Cheng et 

al., 2015; Earles et al., 2017; leaf wetting: Letts et al., 2010; Aparecido et al., 2017; Gerlein-Safdi et 

al., 2018). In addition, many of these are conducted in highly controlled lab and greenhouse settings 

which may not reflect the complex environmental conditions and physiological responses that occur 

in the field. 

 Light generally arrives to the canopy in direct, parallel beams but is scattered as it encounters 

particles in the air. If enough radiation is scattered, then the apparent radiation at the plant canopy is 

no longer direct, but rather predominantly diffuse light. For plant canopies, this most commonly 

occurs when clouds and aerosols scatter radiation (Mercado et al., 2009). Here, we define diffuse or 

direct light as conditions where the majority of light arrives in one or the other form, but note that any 

environmental condition will have some proportion of both forms. At ecosystem scales, diffuse light 

can increase primary productivity (Roderick et al., 2001; Gu et al., 2003; Urban et al., 2007; Mercado 

et al., 2009). This increase has largely been ascribed to light penetrating deeper into the canopy and 

reaching more leaf surface area (Gu et al., 2002; Alton et al., 2007; Urban et al., 2007, 2012; Alton, 

2008; Kanniah et al., 2013; Williams et al., 2014; Cheng et al. 2015). Only a few studies have 

explored how diffuse light might alter photosynthesis at the leaf level. These studies have concluded 
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that, at the same total light, diffuse light inhibits photosynthesis by 10 to 20% (Brodersen et al., 2008; 

Urban et al., 2014; Earles et al., 2017). Thus, leaf-level data suggest that diffuse light decreases 

photosynthesis, while ecosystem studies find that it increases productivity. Understanding the effects 

of diffuse light on primary productivity is critical for constraining carbon cycling, particularly given 

that climate change models project an increase to cloud cover and aerosols, which will lead to an 

increase in diffuse light conditions (Warren et al., 2007; Kanniah et al., 2012).  

 In addition to changing the quality of light, clouds often bring precipitation leading to wet 

canopies. Plants in tropical forest ecosystems experience leaf wetting an average of 174 days every 

year; however, it is assumed that limited carbon exchange occurs when the canopy is wet (Dawson & 

Goldsmith, 2018). The presumed mechanism for this reduction is that water on leaf surfaces creates a 

physical barrier for the uptake of CO2 and therefore limits photosynthesis (Ishibashi & Terashima, 

1995; Hanba et al., 2004; Letts et al., 2010). However, this assumes that a film of water entirely 

covers most stomata during a wetting event. Thus, at the leaf scale, whether there is a reduction in 

photosynthesis due to this physical barrier will be species- and context-dependent based on wettability 

of leaf surfaces and spatial distribution of stomata (Aparecido et al., 2017). At the ecosystem scale, 

leaf wetness has been shown to reduce primary productivity and net ecosystem exchange (Misson et 

al., 2005; Mildenberger et al., 2009). However, it is challenging to isolate the effect of leaf wetness 

relative to changes in the intensity and quality of light. In addition, eddy covariance, the primary 

methodology for measuring net ecosystem exchange, does not work under wet conditions and this 

limits our understanding of ecosystem primary productivity during leaf wetting events.   

Nowhere on Earth does our limited understanding of the effects of cloudy and wet 

environmental conditions on photosynthesis and ecosystem primary productivity pose more of a 

problem than in tropical forests. Tropical forests account for 50% of the 2.4  0.4 Pg of carbon stored 

by terrestrial vegetation, despite experiencing frequent cloud cover and wetting (Pan et al., 2011; 

Wilson & Yetz, 2016; Dawson & Goldsmith, 2018). Thus, our limited mechanistic understanding of 

photosynthetic carbon uptake during these periods challenges our ability to estimate both current and 

future global carbon budgets.  

We address the simple yet fundamental question, how do photosynthetic rates change when 

the angle of light changes and leaves are wet? Understanding the effects of these common 

environmental conditions on carbon assimilation could improve our estimations of ecosystem primary 

productivity and reveal new insights into how species maximize photosynthesis given different 

environmental conditions. Using a tropical rainforest system that commonly experiences these climate 

conditions, we had three objectives: (1) determine if there are species-specific responses to diffuse 

light conditions and canopy wetting, (2) test if these responses are driven by morphological and 

physiological characteristics that influence light penetration, leaf wetting patterns, and carbon uptake, 

and (3) place the results in the context of common environmental conditions to understand the 

implications for ecosystem primary productivity. Research to date would lead us to hypothesize that 
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diffuse light and leaf wetting both lead to a consistent and demonstrable decrease in photosynthesis; 

however, our results clearly demonstrate that photosynthetic responses to cloudy and wet conditions 

are species-specific. Moreover, we show that increases in photosynthesis under diffuse light can help 

explain ecosystem studies showing similar patterns and contribute to improving the representation of 

these processes in earth systems models.  

 

Materials and Methods  

Study Site and Sampling 

The study was conducted in a tropical montane cloud forest on the Pacific slope of the Cordillera de 

Tilarán mountains in Monteverde, Costa Rica (10°17'43” N, 84°47'37” W, 1532 m a.s.l.). Trees were 

sampled from within a 4 ha long-term forest dynamics plot in the Monteverde Cloud Forest Reserve 

(Nadkarni et al., 1995). The plot is described by Haber et al. (2000) as old growth lower montane wet 

forest. The mean annual temperature is 18.8C, the mean annual rainfall 2519 mm, and average 

annual relative humidity of 97% (Clark et al., 2000, S. Gotsch unpublished data). Climate is relatively 

aseasonal, although there is a dry season extending from February to May. Rainfall during the dry 

season decreases, but fog and wind-driven horizontal precipitation persists and leads to frequent leaf 

wetting (Goldsmith et al., 2013).  

Previous studies in tropical montane cloud forests suggest that solar radiation can be reduced 

by 10% to 66% during fog and wind-driven precipitation events (Clark et al., 2000; S. Gotsch pers. 

comm.). At our study site, we find that midday photosynthetically active radiation (1200 to 1400 solar 

time) is above 410 mol m-2 s-1 81% of the time (Figure S1; S. Gotsch unpublished data). The 

interquartile range of the distribution spans from 496 mol m-2 s-1 to 1381 mol m-2 s-1. While we do 

not have precise data on the fraction of time in direct and diffuse light, we do know the frequency of 

clouds from remote sensing products. Goldsmith et al. (2013) used a remote sensing product to 

demonstrate that clouds were frequently observed in daytime images during both the wet (89  9 %) 

and  dry (52  11 %) seasons. Urban et al. (2012) found that cloudy periods typically increased the 

diffuse index greater than 0.7 compared to less than 0.3 during sunny conditions. From these data, we 

can conclude that (1) diffuse light conditions are a predominant feature in this ecosystem and (2) light 

intensity is at or above the light compensation points of species 81% of midday hours. 

 We selected eight common canopy tree species using plot census data on basal area and 

number of stems collected in 2011 on all individuals >30 cm DBH (Table S1). The species were 

Cecropia polyphlebia Donn. Sm., Conostegia rufescens Naudin, Elaeagia auriculata Hemsl., Ficus 

spp., Heliocarpus americanus L., Meliosma vernicosa (Liebm.) Griseb., Ocotea meziana C.K. Allen, 

and Ocotea tonduzii Standl.. All species are considered canopy emergent (although they have 

different successional patterns) and were only sampled if the tree was mature and sun-exposed. We 

were unable to locate sufficient individuals from a single species of the genus Ficus, which accounts 
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for a high proportion of the plot basal area, but is low in abundance. Branch samples were collected 

from 5 – 7 canopy emergent individuals of each species by using a slingshot to secure a branch at 

least 1 m in length. Once collected, the cut portion of each branch was immediately placed in water 

and the end of the branch recut. The branch remained in the field in the water during all gas exchange 

measurements and measurements were begun within 1 hr of collection.  

 

Photosynthesis Data 

We performed light response curves on dry leaves followed by instantaneous measurements 

on wet leaves using a portable infrared gas analyzer (LiCor 6800, LiCor Inc. Lincoln, Nebraska, 

USA) between 20 June and 5 July 2018. For wet leaf measurements, only a single instantaneous value 

was taken to minimize the amount of time high concentrations of water vapor were entering the LiCor 

6800 system. Measurements were made on one fully expanded, mature and healthy leaf between 

09:00 and 14:00. If stomatal conductance showed signs of decreasing compared to measurements 

from other individuals as the day progressed, then measurements were stopped and the individual 

resampled the following day. Light response curves were only measured on dry leaves under direct 

light and diffuse light separately. Leaves were placed in the 6 x 6 cm large leaf chamber (Model 6800-

13) with the accompanying red (65%), green (10%), blue (20%) and white (5%) LED light source and 

allowed to acclimate at a PAR of 1400 mol m-2 s-1 until photosynthesis was stable. The light 

response curves began at the highest PAR value and subsequently decreased. When transitioning 

through each measurement, the leaf was allowed to acclimate under new conditions for at least 2 

minutes. Temperature was held at 22C, CO2 concentration at 400 ppm, and relative humidity at 70% 

when leaves were dry.  

Light response curves under direct and diffuse conditions required a modification to the 

traditional gas exchange system. To allow for quick changes between direct and diffuse light, we 

constructed an integrating sphere with ports for mounting a light source both on the top and side of 

the sphere (Brodersen et al., 2008). When the light source was mounted to the top of the sphere, light 

was predominantly direct, while mounting on the side port produced largely diffuse light at the leaf 

surface. When the light is in each position, some proportion of the light will always be direct and 

some proportion diffuse. While we did not measure the direct and diffuse fractions of light in each 

position, we followed the protocol of Brodersen et al. (2008) who quantified the angle of light in each 

environmental condition (22 for direct light, 105 for diffuse light).  Each port was 6 cm2 to 

accommodate the large light source and reflective covers were installed on ports not in use. To 

determine the amount of light that reached the leaf surface with this modified system, calibration 

curves were conducted in the lab to establish the intensity of light leaving the light source and the 

intensity arriving to the leaf surface (Figure S2). We also confirmed that the visible light spectra was 

not altered by diffusion (Figure S3). Curves under direct light had photosynthetically active radiation 
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(PAR) values that corresponded to 1370, 927, 566, 381, 275, 172, 105, and 39 mol m-2 s-1. Diffuse 

light curves had PAR values of 1210, 858, 634, 397, 286, 206, 128, and 53 mol m-2 s-1.  

Following light response curves on a dry leaf, the leaf was removed from the chamber, misted 

thoroughly on the adaxial surface, lightly shaken to remove any excess water, and placed back in the 

chamber in the same position as before. Instantaneous measurements (not light response curves) were 

then made with wet leaves under direct and diffuse light at 1200 mol m-2 s-1. Dry measurements were 

always conducted before wet measurements because of concerns about our ability to completely dry a 

leaf again following wetting. Leaves were allowed to stabilize with wet surfaces, which took as long 

as 20 to 30 minutes in some cases. Humidity control was turned off. If areas of the leaf became 

noticeably dry, the chamber was opened and the leaf sprayed again. Single instantaneous 

measurements at a PAR of 1210 mol m-2 s-1   were taken with the adaxial leaf surface saturated with 

water under direct and diffuse light. To explore the effects of wetting on photosynthesis as a function 

of which leaf surface was wet, we conducted a follow-up experiment with O. tonduzii leaves from 5 

individuals in the subcanopy. These leaves were wetted on both the ad- and abaxial side following the 

procedure above.  

Measurements on wet leaves inhibited us from reporting stomatal conductance or 

transpiration values. Wet surfaces will increase the concentration of water vapor exiting the chamber 

due to the combination of both transpiration and evaporation of free water from the leaf surface. This 

results in erroneous values for transpiration rates, as the two components cannot be partitioned. In 

addition, the calculation of stomatal conductance also utilizes the concentration of water vapor out of 

the chamber. The calculation of photosynthesis does not require knowing stomatal conductance, but 

instead simply utilizes the flow rate and CO2 concentration into and out of the leaf chamber (Jason 

Hupp, LiCor Biosciences, pers. comm.; Aparecido et al. 2017). Therefore, we report leaf 

photosynthetic rates, but exclude stomatal conductance and transpiration. 

 

Leaf traits 

 The leaf used for the gas exchange measurements was harvested, placed in a sealed plastic 

bag with a damp paper towel and transported back to the lab for measurement of traits including leaf 

wetting capacity, leaf thickness, leaf area, specific leaf area (SLA), and stomatal density. 

 Leaf wetting capacity was measured as the difference between the mass of a leaf with a dry 

surface and the mass of the same leaf with water on the adaxial surface. To do this, a fresh mass was 

measured immediately upon removal from the plastic bag. Then, with the leaf held flat, the leaf was 

misted using a spray bottle until water was dripping off the leaf. The leaf was then tipped vertically to 

remove any excess water and the mass immediately measured. This process was repeated three times 

for each leaf and the three measurements averaged before determining the intensity of water on the 

leaf surface. The mass (g) of water on the leaf surface was standardized by the leaf area (cm2).  



A
cc

ep
te

d
 A

rt
ic

le
 

This article is protected by copyright. All rights reserved. 

 Leaf thickness was measured at three locations on each leaf and averaged using digital 

calipers (resolution of 0.001 mm; Mitutoyo Corporation, Kawasaki, Japan). Leaf area was measured 

by scanning the leaf with a digital scanner and analyzed using ImageJ (version 1.51S, National 

Institute of Health, USA). Following all of these measurements, leaves were dried in a drying oven at 

50C for approximately 1 week and the dry mass measured to determine specific leaf area and leaf dry 

matter content. Stomatal density was measured by making stomatal impressions using either clear nail 

varnish or dental putty (Thermoclone VPS, Fast Set – Superlight Body). A thin layer of nail varnish 

was applied at three locations on each side of each leaf, allowed to dry, removed and mounted onto a 

glass slide. For species with waxy cuticles or trichomes, dental putty was first applied to the leaf 

surface and then nail varnish applied to the imprint of the dried dental putty to obtain a transparent 

impression of the leaf surface. Images were obtained from three locations on each impression using a 

compound microscope at either 20x or 40x. Guard cell length was measured on five stomata per 

image and the total number of stomata per image was counted.  

 

Data analysis 

 We calculated the effects of diffuse light and wet leaf conditions on photosynthesis by 

calculating the paired difference in photosynthesis measurements for each individual leaf and then 

determining a species-level mean. We calculated the percent change in the same manner, by first 

determining percent change for each individual. To determine if the response to diffuse light or leaf 

wetting differed among species we conducted a one-way analysis of variance (ANOVA) and 

compared means using Tukey’s HSD. For light response curves, we fit a non-rectangular hyperbola 

equation through each individual (Prioul & Chartier, 1977) as  

 

      
                            

            

  
        (1) 

where Anet = net photosynthetic rate,  = quantum yield, PAR = photosynthetically active radiation, Rd 

= dark respiration, and k = convexity factor. The light compensation point was calculated by setting 

Anet to 0 and the light saturation point was calculated as when Anet was 85% of Amax. To compare 

differences in light response curve parameters (including light compensation point, light saturation 

point, and quantum yield) for leaves of a given species experiencing direct vs. diffuse light, we 

conducted a two-tailed paired samples t-test. To determine how the response to diffuse light and leaf 

wetting varied as a function of morphological or physiological traits, we used a linear mixed‐effects 

model with species as a random effect. All data analysis was conducted in R (version 3.4.2) or JMP 

(version 13.2, SAS Institute, North Carolina, USA).  
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Results 

Photosynthesis under direct and diffuse light 

 Species demonstrated diverse leaf photosynthetic responses to light quality (ADIRECT-DIFFUSE), 

with some species having greater photosynthesis under direct conditions and others under diffuse 

conditions (Figure 1). Three species had higher Anet under diffuse light conditions, 2 species had 

higher Anet under direct light conditions, and 3 species showed no significant differences between 

treatments (Figure 2a; F7, 31 = 5.58, p < 0.001). For species demonstrating greater photosynthesis in 

diffuse light, we observed as much as a 3.4  1.0 mol m-2 s-1 difference between measurements (O. 

tonduzii, n=5), which corresponded to a 100% increase in photosynthetic rates. For species with 

greater photosynthesis under direct light conditions, values tended to be greater by 10 to 20%.  When 

leaves were wet, photosynthesis in direct light was reduced, which resulted in diffuse light Anet being 

higher for most species when wet (Figure 2b).   

 Diffuse light also resulted in higher light compensation points (t38 = 1.76, p = 0.04) and light 

saturation points (t38 = 2.62, p = 0.006), but did not alter the quantum yield of photosynthesis (Table 

1; t38 = 0.74, p = 0.23). While there was an overall effect of diffuse light on light compensation points, 

there were pairwise differences for only two species. Heliocarpus americanus had a greater light 

compensation point under direct light while C. rufescens had a greater light compensation point under 

diffuse light. Four species (C. rufescens, E. auriculata, H. americanus, and O. tonduzii) had greater 

diffuse light saturation points, while the other four species showed no significant differences in the 

post hoc pairwise comparisons. The shifts in light saturation point were large, ranging from 153 mol 

m-2 s-1 to 391 mol m-2 s-1. The four species with significant differences in light saturation points 

included two with significantly greater photosynthesis under diffuse light conditions and two with 

equal direct and diffuse light photosynthesis. Thus, it is not universally true that it requires more 

photosynthetically active radiation to reach light compensation and saturation under diffuse light 

conditions.  

 We then explored if leaf traits were related to ADIRECT-DIFFUSE. Neither specific leaf area, leaf 

dry matter content, nor leaf thickness explained ADIRECT-DIFFUSE (Figure S4a, S4b, and S4c). 

However, there was a significant negative relationship between ADIRECT-DIFFUSE and increasing leaf 

thickness (F1,37  = 14.62; p < 0.001, r2 = 0.31) when Ficus spp. was removed. Because of the response 

of the light saturation points to diffuse light, we also considered the relationship between the light 

saturation point and ADIRECT-DIFFUSE and found a significant positive relationship (p = 0.002, r2 = 

0.60; Figure S4d). Trait values for all species can be found in Table S2. 

 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le
 

This article is protected by copyright. All rights reserved. 

Photosynthesis of wet and dry leaves 

 Photosynthesis was reduced for six of the species when leaves were wet as compared to when 

leaves were dry under direct light (Figure 3a; F6,28 = 3.49, p = 0.011). Of the remaining species, 

photosynthesis was greater under wet conditions in C. rufescens and showed no change in O. 

meziana. The difference in dry and wet photosynthesis (ADRY-WET) under diffuse light conditions was 

more consistent across species; all species except one had significantly higher Anet under dry 

conditions (all p-values were < 0.025).  

 Across all species, we found a significant positive relationship between ADIRECT-DIFFUSE and 

ADRY-WET (Figure S5a; F1,37 = 19.41, p < 0.0001). Thus, species that had greater Anet under diffuse 

light also had greater Anet under wet conditions. There were also positive relationships between Anet 

under diffuse (Figure S5b; F1,37 = 18.56, p = 0.0001) or wet (Figure S5c; F1,37 = 17.85, p = 0.0002) 

conditions and the Anet (instantaneous) under dry and direct light conditions. Thus, species with a 

lower Anet in dry, direct conditions tended to have greater Anet in diffuse conditions.  

We then explored if leaf water storage capacity and stomatal density were related to the 

ADRY-WET. The ADRY-WET demonstrated a significant positive relationship with leaf water storage 

capacity (Figure S6a; F1,37 = 3.95, p = 0.05, r2 = 0.50) and a significant negative relationship with 

abaxial stomatal density (Figure S6b; F1,37 = 6.77. p = 0.01, r2 = 0.15). None of the species possessed 

adaxial stomata. Thus, leaves that retained more water per unit area and had fewer stomata had a 

greater positive difference between dry and wet Anet values. Surprisingly, the presence of trichomes 

and leaf thickness did not explain the response of Anet to leaf wetting. 

To further explore the photosynthetic response to leaf wetting, we compared photosynthetic 

rates for subcanopy leaves of Ocotea tonduzii when leaves were dry, wet on the adaxial side, and wet 

on the abaxial side (Figure 4). Photosynthesis rates were 68 - 71% lower when the abaxial side of the 

leaf was wet compared to dry leaves (F5,24 = 6.78, p = 0.0005). In post-hoc tests, there were no 

differences between diffuse and direct light photosynthesis within each treatment.   

 

Comparing photosynthesis in common environmental conditions 

 Because clouds commonly reduce total available photosynthetically active radiation (PAR), 

we compared mean species’ photosynthesis for dry leaves given saturating direct light (1200 mol m-2 

s-1) to both wet and dry leaf diffuse light photosynthesis under low light (400 mol m-2 s-1) (Figure 5). 

The value of 400 mol m-2 s-1 was used by analyzing local climate data, which found that fog 

typically reduces total solar radiation to 30 to 40% of maximum values (Haber et al., 2000; S. Gotsch 

pers. comm.). There were significant differences among the three scenarios, driven by significant 

reductions in photosynthesis under low diffuse light and wetting (F2,116= 12.06, p < 0.001). The 

photosynthesis of wet leaves in low diffuse light was 33% (5.56 mol m-2 s-1)  lower than dry and 

saturating direct light conditions (8.49 mol m-2 s-1). However, the mean rates of light-saturated 
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photosynthesis under saturating direct light and diffuse, low light (7.61 mol m-2 s-1) did not differ 

among species in post hoc comparisons.  

 

Discussion 

 Our results demonstrate species-specific differences in photosynthesis depending on the angle 

of light and wetness of leaves. Despite expectations that diffuse light would consistently reduce 

photosynthesis, species ranged from 100% greater photosynthetic rates under diffuse light conditions 

to 15% greater photosynthetic rates under direct light conditions at the same light intensity. We also 

demonstrate that even when diffuse light environments have lower light intensities, photosynthesis is 

equal to that under direct light with high intensities, indicating greater light use efficiency (Figure 5). 

Leaf wetting primarily decreased photosynthesis, particularly when the leaf surface with stomata 

became wet. Interestingly, there was no consistent effect of species successional status on the 

response to diffuse light or wetting (e.g. C. rufescens, H. americanus, and C. polyphlebia are 

considered canopy emergent primary successional species). Ultimately, we demonstrate that 

photosynthetic rates vary significantly across species in response to environmental conditions that are 

prevalent, yet, rarely considered in understanding net primary productivity of ecosystems (but see 

Mercado et al., 2009). Below, we expand on the mechanisms that might explain these differences and 

explore the implications for ecosystem primary productivity.  

 

Photosynthesis under diffuse light 

 Our results indicate that some species have greater photosynthesis under diffuse light while 

others have greater photosynthesis under direct light. Previous research has suggested that diffuse 

light results in higher absorption of light in the upper palisade layer, resulting in less light penetrating 

deeper into leaves and leading to a 10 -15 % reduction in the photosynthetic rates of two herbaceous 

species (Brodersen et al., 2007; Brodersen and Vogelmann, 2010; Earles et al., 2017). These studies 

also propose that sun-grown leaves have greater direct light photosynthesis relative to diffuse light 

due to a thicker palisade mesophyll (and greater overall thickness) that facilitates light penetration 

deeper into the leaf (Smith et al., 1997). Limited light penetration may be true in some species, but 

our results suggest that this is not universal. While all leaves were sun-exposed, species with greater 

photosynthesis under diffuse light were thicker, a characteristic of sun leaves, but also had low light 

saturation points, a characteristic of shade leaves (Figure S4c & S4d). This suggests that 

photosynthesis under diffuse conditions is driven by more than just leaf thickness. Leaf biochemistry 

could explain these responses. Enhanced diffuse light photosynthesis could be driven by greater 

chloroplast concentration in the upper layers of palisade mesophyll cells or by improved efficiency 

through greater electron transport rates (Jmax), the maximum rates of carboxylation (Vcmax), or the 

quantum yield of photosystem II (PSII) (Hogewoning et al., 2012; Oguchi et al., 2011; Earles et al., 
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2017). Understanding the mechanisms driving differences in photosynthesis in diffuse light would add 

to our ability to predict the response of primary productivity to changing cloud cover conditions 

(Karmalkar et al., 2011)  

 In natural conditions, diffuse light is often accompanied by changes to light intensity. Diffuse 

light is the result of scattering due to aerosols and clouds which typically results in less total light 

arriving at the canopy (Oliphant et al., 2011; Kanniah et al., 2012). But this reduction in light intensity 

may not lead to reduced photosynthesis. In our study site, midday light levels are above 400 mol m-2 

s-1 81% of the time, meaning that all study species spend the majority of the time above their light 

saturation point (Figure S1).  The average response across species demonstrate that the increase in 

diffuse light photosynthesis can compensate for reduced light intensity, ultimately increasing the light 

use efficiency of forest canopies (Figure 5). The improved light use efficiency of leaves of certain 

species in diffuse light adds an additional explanation to studies that demonstrate greater ecosystem 

productivity under these conditions.  

The spectral quality of light also changes in diffuse conditions with increased percentage of 

blue wavelengths and red to far-red ratios (Navratil et al., 2007; Grant, 1997; Reinhardt et al., 2010). 

These spectral changes are known to increase stomatal aperture and total photosynthetic rate 

(Shinazaki et al., 2007; Dengel and Grace, 2010) and lead to greater canopy productivity (Urban et al., 

2007). While this study did not test spectral quality (direct and diffuse light had similar spectra), these 

potential changes would only further increase photosynthesis under diffuse light. Thus, the reduction 

in diffuse light photosynthesis for some species in this study may be compensated for by increased 

stomatal conductance.  The total photosynthetic rate of a canopy will be dependent on species-level 

responses to directionality, intensity, and spectral quality, with the net effect largely increasing 

photosynthesis in diffuse light. 

 

Photosynthesis during leaf wetting 

 Wetting of the adaxial surface of the leaf resulted in reduced photosynthetic rates in six of 

eight species. This is similar to Aparecido et al. (2017), who found reductions in photosynthesis in 

nine out of ten species from a temperate savanna and tropical rainforest. However, both studies 

demonstrate notable variation across species. The proposed mechanism of water creating a CO2 

diffusion barrier (Ishibashi & Terashima, 1995; Hanba et al., 2004; Letts et al., 2010) misses a key 

point; in many tree species (and this study) wetting mostly occurs on the adaxial side of a horizontally 

oriented leaf, while most species have stomata predominantly on abaxial sides of leaves. Leaf wetting 

should also change the water status of the leaf through foliar water uptake (e.g. Berry et al., 2018), 

create a more humid boundary layer on the bottom of the leaf, and scatter light. However, all of these 

effects should increase stomatal conductance and photosynthesis, which would explain the increased 

photosynthesis during wetting in C. rufescens. It is possible that C. rufescens has greater stomatal 

conductance or foliar water uptake under wet conditions, driving the increased photosynthesis. But for 
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species with reduced photosynthesis in wet conditions, this leaves us with the lack of a clear 

mechanism. Despite this, we find that species capable of storing greater quantities of water on their 

leaf surfaces and those that have fewer stomata show the greatest reductions in photosynthesis when 

wet (Figure S6). While these relationships cannot resolve the mechanism(s), they suggest that traits 

that confer water retention and carbon uptake are linked to photosynthesis under wet conditions.  

The results from this study demonstrate at least three different ways for maximizing 

photosynthesis given wet conditions. The first way, which has long been presumed to be the most 

common, is that species in wet ecosystems need to avoid being wet for extended periods; i.e. these 

species have leaf surface properties (cuticle structures or waxy layers) that make them very 

hydrophobic (Smith and McClean, 1989; Fernandez et al., 2017). However, Goldsmith et al. (2017) 

demonstrates that tropical rainforest leaves are largely hydrophilic, so many species must be able to 

maximize photosynthesis despite having leaves where water spreads across the surface. Secondly, 

species can have suites of leaf traits that maximize daily carbon gain through higher photosynthetic 

rates during dry conditions, thus compensating for low photosynthesis during wet conditions. Finally, 

other species may have stomata on abaxial surfaces where wetting is less likely to occur, thus 

minimizing the inhibition of photosynthesis during wetting events (Aparecido et al., 2017). With 

recent estimates demonstrating that tropical rainforest canopies experience wetting on more than half 

the days of the year (Dawson and Goldsmith, 2018), it is logical that multiple functional strategies 

have evolved to maximize photosynthesis.  

 

Ecosystem implications 

 Changes in light intensity, light quality and leaf wetting often occur in tandem, such as when 

clouds bring rainfall and diffuse light simultaneously. We find that when leaves are wet, 

photosynthetic rates are greater or equal under diffuse versus direct light conditions (Figure 2b). The 

fact that species with greater direct light photosynthesis had lower values under wet conditions while 

those with greater diffuse light photosynthesis were relatively unaffected reinforces a critical point: 

that the response to diffuse light and wet conditions varied similarly across species. In other words, 

species with greater photosynthesis under diffuse light tended to have greater photosynthesis in wet 

conditions. It is possible that the structural and functional traits that maximize photosynthesis in 

diffuse light might also serve similar functions for leaf wetness. Additionally, it is likely that films of 

water on leaf surfaces cause some additional scattering functionally resulting in diffuse conditions 

even if incoming light is predominantly direct (Egri et al., 2010).  

 These results provide an additional explanation for ecosystem studies demonstrating that 

diffuse light conditions can increase the light use efficiency and total carbon stored (Gu et al., 2002; 

Urban et al., 2007, 2012; Alton, 2007; Kanniah et al., 2012; Williams et al., 2014; Cheng et al., 2015). 

This diffuse fertilization effect (Roderick et al., 2001) posits that diffuse light can penetrate deeper 

into complex canopies and illuminate many understory leaves. Our results find that increased 
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ecosystem diffuse light photosynthesis could also be explained by a species assemblage that has 

increased leaf photosynthesis in diffuse light.  Ecosystem photosynthesis of wet canopies is less clear, 

as standard methods (e.g. eddy covariance) do not work in wet conditions and disentangling the 

effects of canopy wetting from diffuse light remains challenging.  

Anthropogenic climate change will alter cloud cover, influencing light intensity and quality as 

well as the frequency and duration of leaf wetting. While understanding how cloud patterns will 

change given future climate scenarios remains difficult, ensemble models such as CMIP5 project 

major changes to precipitation variability (e.g. dry sunny days vs. cloudy and rainy days) in the future 

(e.g. Polade et al., 2014). At tropical latitudes, models project an increase in cloud cover and higher 

cloud bases, which may lead to increased diffuse light periods (Norris et al., 2016). Additionally, 

Mercado et al. (2009) modeled an increase in the diffuse radiation fraction from 1960 to 1999, leading 

to a 23.7% increase in the net ecosystem exchange (NEE). Similar research on the ecosystem effects 

of leaf wetting on productivity remains limited (Dawson and Goldsmith, 2018).  Linking the 

integrated effects of changing cloud patterns to empirical data on changes in ecosystem productivity 

will be a key feature to improving models. 

 

Conclusions 

 Almost every measurement of leaf-level photosynthesis is made on a dry leaf experiencing 

direct light. However, this is a vast oversimplification of the complex environmental conditions 

experienced by most plants. It is easy to assume that diffuse light and leaf wetting are conditions 

under which we would expect minimal photosynthesis and therefore only nominal contributions to 

ecosystem primary productivity. However, our results indicate that photosynthesis does not cease 

under these conditions. In fact, certain species can double their photosynthetic rates under diffuse 

light conditions. Even at lower light intensities, diffuse light photosynthesis can still equal or be 

greater than direct light photosynthesis at saturating light intensities. This may help explain the 

growing number of studies that demonstrate higher net ecosystem exchange when it is cloudy 

(Roderick et al., 2001; Gu et al., 2003; Urban et al., 2007; Mercado et al., 2009).  Rather, the single 

most detrimental effect on photosynthesis is likely to be when canopies are wet. However, this is not 

driven by CO2 limitation as reductions still occur despite wetting only in areas without stomata. 

Importantly, the directionality and magnitude of these changes are likely to be highly species-specific. 

Ultimately, understanding the effects of light quality and leaf wetting on photosynthesis, as well as 

how this varies among plant functional types, will allow us to better constrain estimates of primary 

productivity in earth systems models.  
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Tables 

Table 1. Light response curve parameters for eight canopy tree species from a tropical montane forest in Monteverde, Costa Rica.  
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Cecropia polyphlebia 11.00  0.76 0.087  0.013 18.5  1.5 630.8  81.6  10.29  1.21 0.082  0.024 23.3  3.7 672.7  125.4 

Conostegia rufescens 4.69  0.42 0.046  0.006 5.0  2.3 221.7  39.2  7.69  0.47 0.042  0.003 10.4  3.0 494.0  105.2 

Elaeagia.auriculata 11.42  0.28 0.068  0.010 12.6  2.0 411.8  59.1  10.27  0.42 0.094  0.027 17.6  2.7 586.2  77.0 

Ficus spp. 11.71  1.25 0.061  0.013 17.1  4.2 830.7  233.1  9.79  0.79 0.062  0.015 16.8  4.0 734.7  183.5 

Heliocarpus americana 12.89  1.42 0.056  0.003 21.8  2.5 649.1  133.2  12.81  1.10 0.047  0.004 19.4  3.2 802.9  110.2 

Meliosma vernicosa 6.28  1.01 0.073  0.013 12.5  1.5 342.4  67.4  5.91  1.21 0.090  0.023 14.3  3.2 440.2  125.2 

Ocotea meziana 7.73  1.22 0.073  0.015 10.6  2.4 392.9  121.7  8.93  0.89 0.061  0.006 7.8  2.0 352.3  41.1 

Ocotea tonduzii 5.73  1.44 0.058  0.005 13.4  3.3 349.2  80.0  9.18  0.79 0.082  0.030 16.4  1.7 740.6  229.8 

 

Leaves were exposed to either direct or diffuse light and the values were derived from curves on 5-7 individuals of each species. Data are means  standard 

error. The  is the quantum yield of photosynthesis. All parameters were derived by fitting a non-rectangular hyperbola equation through each individual 

(Prioul & Chartier, 1977) and averaging the parameters for each species. 
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Figure Captions 

Figure 1. Light response curves conducted under direct (closed circles) or diffuse (open circles) light 

conditions for eight canopy tree species occurring in a tropical forest in Monteverde, Costa Rica (n = 

5-7 individuals). The x-axis represents photosynthetically active radiation (PAR). Each panel (a-h) 

represents a different species. Data was collected using the LiCor LI-6800 modified with an attached 

integrating sphere to create diffuse light conditions. Temperature was held at 22C, CO2 concentration 

at 400 ppm, and relative humidity at 70%. Data are means  standard error.  

Figure 2.  The difference between leaf photosynthesis (A) values observed under direct and diffuse 

light conditions for eight canopy tree species occurring in a tropical forest in Monteverde, Costa Rica. 

Measurements were taken at a light level of 1210 mol m2 s-1 when leaves were dry (a) or wet (b) and 

are reported as the absolute difference in photosynthesis. Values that are above zero had greater 

photosynthesis under direct light conditions while those below zero had greater photosynthesis under 

diffuse light conditions. Points represent the average of 5-7 individuals  standard error with the box 

plot representing the distribution of all species. 

Figure 3. The difference between photosynthesis (A) values taken when leaves are dry and wet on the 

adaxial surface for eight canopy tree species occurring in a tropical forest in Monteverde, Costa Rica. 

Measurements were taken at a light level of 1210 mol m2 s-1 when light was direct (a) or diffuse (b) 

and are reported as the absolute difference in photosynthesis. Values that are above zero had greater 

photosynthesis when leaves were dry while those below zero had greater photosynthesis when leaves 

were wet. Points represent the average of 5-7 individuals  standard error with the box plot 

representing the distribution of all values. 

Figure 4. Photosynthetic rates for subcanopy leaves of Ocotea tonduzii when dry, wet on the adaxial 

surface (top of leaf), and wet on the abaxial surface (bottom of leaf). Leaves were located 5-10 meters 

off the ground under a closed canopy. Measurements were taken under both direct (circles) and 

diffuse (triangles) light conditions. Data represent means of 5 individuals per treatment  standard 

error. 

Figure 5. Boxplot of photosynthetic rates observed under three common environmental conditions; 

(1) full sun (dry leaf, direct and saturating light), (2) cloudy conditions (dry leaf, diffuse, and low 

light), or (3) rain or fog conditions (wet leaf, diffuse, and low light). Box plots represent the aggregate 

of eight different canopy tree species (n = 5-7 per species).  High light or low light values were 

calculated from light response curves and chosen as 1200 mol m-2 s-1 (saturating light) or 400 mol 

m-2 s-1 (low light). Significant differences were determined using Tukey’s HSD and are denoted on the 

figure. 
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