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symmetric in one feature, for example step lengths, while remaining asymmetric in other 
features, for example joint kinematics 19. Therefore, we reasoned that using an approach 
that allowed simultaneously assessing multiple measures of walking, we can quantitatively 
identify distinct subgroups of walking behaviors beyond those identified via a single 
asymmetry measure, which could inform more specific clinical rehabilitation targets.

Identifying subgroups of walking behaviors requires a heterogeneous sample that 
encompasses the different combinations of gait deviations observed in survivors of stroke. 
Achieving this heterogeneity necessitates a large sample size. However, studies in walking 
post-stroke typically collect small, single site samples: for example, a systematic review 
of 46 studies in walking post-stroke reported sample sizes between 8 and 39 participants 
20 that lack the heterogeneity of walking behaviors observed post-stroke. Additionally, 
activity levels, socioeconomic, and ethnic disparities in post-stroke care across geographical 
locations influence the walking patterns of the samples engaged in research at different 
sites 21–25. Therefore, combining data across different sites increases sample size and 
heterogeneity of behaviors measured in research studies, which ultimately can improve the 
generalizability of research findings to the overall post-stroke population.

Here, we obtained measures derived from ground reaction forces (GRFs), which is the 
simplest data collected across research labs that use instrumented treadmills, to generate 
a multi-site sample and used a data-driven approach to identify subgroups of walking 
behaviors in people post-stroke and controls. We used sparse K-means clustering to obtain 
a subset of features that define walking clusters, and determined whether different levels 
of function and impairment distinguish these walking clusters, such that they are indicative 
of different walking subgroups. We determined whether the observed walking clusters are 
generalizable across research sites. We hypothesized that participants post-stroke will have 
different walking features resulting in different clusters of walking behaviors, which are also 
different from control participants 5,14,26. Our results could provide the basis for designing 
and testing targeted interventions aimed at improving walking quality in people post-stroke.

Methods:
Data Curation

The lack of standardized protocols for collecting, processing, and analyzing walking data 
can limit researchers’ ability to combine walking data 27. However, bilateral ground reaction 
forces (GRFs) measured using instrumented treadmills are commonly collected across 
research sites. These GRFs result from muscles generating forces at each segment which 
then is applied to the ground during walking 28,29, providing insight into how each extremity 
contributes to the main objectives of walking, defined as shock absorption, stance stability, 
and forward progression 29. Additionally, these GRFs can be used to derive spatiotemporal 
walking metrics such as step lengths, step times, and speed 30. Thus, we gathered GRF data 
from individuals with chronic hemiparetic stroke walking at their self-selected speed. We 
gathered data from: Rancho Los Amigos (Rancho, N=7 31), collected from an overground 
force plate at 2500 Hz (Kistler Instrument Corp., Amherst, NY) for the paretic extremity 
only. University of Southern California (USC2018 N=22 9 and USC2021 N=23 12, the first 
author reviewed all data to ensure no duplicates between studies): participants walked for 
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three minutes on a Bertec instrumented treadmill (Columbus, OH, USA) that measured 
ground reaction forces at 1000 Hz. Kennedy Krieger Institute/Johns Hopkins University 
School of Medicine (JHU, N=10 19): participants walked for five minutes on a Motek 
instrumented treadmill (Amsterdam, NL) that recorded forces at 1000 Hz. Emory University 
(Em, N=9 32): participants walked for one minute on a Bertec instrumented treadmill 
(Columbus, OH, USA) that measured ground reaction forces at 1000 Hz. University of 
Pittsburgh (Pitt, N=21 33–35) participants walked between 150 and 320 strides on a Bertec 
instrumented treadmill (Columbus, OH, USA) that measured ground reaction forces at 1000 
Hz (Fig. 1A). We received GRF data for each gait cycle, normalized to 100 points per gait 
cycle, filtered with a fourth order lowpass Butterworth filter with a 15 Hz cut-off frequency 
for JHU and with a 20 Hz cutoff for Pitt. Data from Emory were shared as raw data. We 
filtered data from Em and USC using a 20 Hz cut-off low-pass zero-lag digital Butterworth 
filter.

We also collected data for 32 age and gender-matched neurotypical control participants 
using a Bertec instrumented treadmill (Columbus, OH, USA). We used the control data in 
the definition of the different walking clusters, to determine whether individuals post-stroke 
could be comparable to neurotypical adults walking at the reduced speed of people post-
stroke, such that controls and participants post-stroke would belong to the same clusters. 
Control participants were age and sex matched to the participants in the USC2021 study 12.

Participants post-stroke held onto a front handrail during walking in all studies except 
USC2021 12 and Pitt 33–35. Control participants did not hold onto a handrail. The respective 
IRB approved all studies, and all participants provided written informed consent before 
testing. Data collection for neurotypical control participants was approved by the USC IRB 
number HS-19-00430. Data gathering was approved by the USC IRB number HS-19-00075. 
IRB-approved Data Use Agreements (DUA) were established between USC and each 
research institution. Data from Rancho were excluded as they were collected overground; all 
DUAs and data sharing manuals were first implemented with Rancho, which was vital in 
setting up this project. We accumulated GRF data for 92 participants post-stroke (Fig. 1A). 
We compiled information about participant age, sex, time post-stroke in months, paresis, 
mass, treadmill walking speed, and lower extremity Fugl-Meyer score 36 (out of 34 points 
for the motor scale) (Table 1).

Data processing
From the GRF data collected across labs, we used custom code and derived 17 walking 
variables common across all labs. Variable definitions are presented in Table 2. We obtained 
averages across strides for all variables for each participant. Data processing was done using 
custom code written in Matlab 2021b (The MathWorks, Natick, MA).

For data collected in neurotypical adults, leg dominance was defined as the leg they 
would use to kick a ball, which was the right leg for all participants. We compared the 
non-dominant leg of control participants to the paretic leg and the dominant leg to the 
non-paretic leg.
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Stride-by-stride data in a subset of participants post-stroke and controls are available for 
download from the Stroke Initiative for Gait Data Evaluation (STRIDE) database 37 hosted 
by the Archive of Data on Disability to Enable Policy and Research (ADDEP).

Statistical analyses
Statistical analyses were done in RStudio, R version 4.1.2. Since multiple researchers 
collected data, identifying potential acquisition issues and quality assessment was done 
post-hoc. To remove noisy data and outliers, we quantified the mean and standard deviation 
of all variables in our sample, including both participants post-stroke and controls and 
removed participants with datapoints outside of the mean ± 3*standard deviation range 
(Supplementary Table 1). The final sample comprised 81 participants post-stroke and 31 
controls for 112 participants (Fig. 1A). For all analyses comparing participants post-stroke 
with neurotypical controls, we used data with neurotypical control participants walking at a 
matched speed to participants post-stroke.

Given that many walking variables are correlated due to the inherent coordination found 
in the walking pattern, the clusters found in the data can be accounted for by a small 
subset of features. Thus, we used sparse K-means clustering analyses 38, which uses a Lasso 
penalty 39 to derive a sparse subset of features with non-zero predictors. We z-scored all 
variables before analyses, and set K=5 clusters in agreement with prior work identifying 
four subgroups of participants post-stroke 5, and an additional control group. We verified 
that K=5 provided clusters that maximized the between clusters distance via the Krzanowski 
and Lai index40. Using the sparcl package in R, we chose the tuning parameter for the 
Lasso penalty 39, which determines the number of non-zero predictors to use in our analyses 
that maximizes between cluster variance and minimizes within cluster variance. We ran 100 
permutations in a search space between 1 and the square root of the number of candidate 
variables included in the sparse clustering analyses, i.e., sqrt(17) and set the number of 
random starts to 100 to avoid finding a local minimum.

We assessed stability of the clusters identified in this study via the Jaccard similarity index 
41–43. We resampled the 112 participants with replacement via bootstrap to obtain 10,000 
new samples, and identified K=5 clusters for each bootstrap iteration. We then measured the 
proportion of observations consistently assigned to the same cluster over each iteration; this 
proportion is the Jaccard index. A Jaccard below 0.6 indicates that the clusters are unstable, 
a Jaccard between 0.6 and 0.75 shows moderately stable clusters, between 0.75 and 0.85 
stable clusters, and a Jaccard above 0.85 indicates highly stable clusters.

We used linear models with cluster as a categorical fixed effect to determine whether there 
were significant differences across clusters in participants’ biomechanical features, as well 
as participant demographics and Fugl-Meyer scores. We performed multiple comparisons 
using Tukey-Kramer adjusted critical values. We used the results from these multiple 
comparisons to characterize the cluster-specific walking behaviors, by identifying which 
features were significantly different across clusters. Within each cluster, we used t-tests with 
false discovery rate (FDR) corrected p-values for all spatiotemporal and force variables, 
to compare paretic values relative to non-paretic values to determine asymmetries in each 
cluster.
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a shift towards a control cluster, or a shift towards a different stroke cluster. Taken together, 
our results provide a preliminary cross-sectional analyses to estimate which subject-specific 
walking-related variables could be targeted in interventions to improve mobility and promote 
neuroplasticity in the long term 54.

Our findings complement those of our co-authors who showed speed to be the greatest 
determinant in allocating participants to specific clusters 5, and previous work using speed 
alone to classify participants to ambulation categories 6. Similar to Mulroy, 2003, we 
found one fast cluster of participants post-stroke, one moderate speed cluster and two slow 
clusters. A recent study used paretic and non-paretic kinematic data in 36 stroke survivors 
and identified six distinct walking clusters 55 based on range of motion for the paretic 
and non-paretic side. Like our results, Kim et al. observed different types of impairment 
associated with the different clusters. A potential limitation of these two studies is that 
they comprise single-site datasets, which might be biased by geographical affordances. We 
complement the clusters described by Mulroy by providing insights into both paretic and 
non-paretic spatiotemporal characteristics and forces generated by each limb. One of our 
slow clusters had asymmetric mediolateral forces (Cluster 4), which corresponds to the slow 
extended cluster in Mulroy 2003: this cluster in Mulroy 2003 showed knee hyperextension 
in mid-stance, which limits pre-swing and swing knee flexion and toe clearance, leading to 
frontal plane compensations and asymmetric frontal plane forces, as observed in our study. 
Our other slow cluster, Cluster 5 also corresponds to the very slow velocity and excessive 
knee flexion cluster from Mulroy 2003. Thus, comparison of our clusters to those previously 
reported show consistency of subgroups of walking patterns, and provide additional insights 
into non-paretic function in these subgroups.

The variables that had the largest effect on the between cluster variance, were paretic and 
non-paretic stance times, non-paretic propulsion, speed, paretic step length, paretic and 
non-paretic braking, and non-paretic step length. It is worth noting that none of these 
variables on their own are sufficient to identify the clusters that we observed, similar to what 
was concluded by Mulroy, 2003. For example, speed ranges overlapped for participants in 
Clusters 2 and 3 and for participants in Clusters 4 and 5, yet different stance times and forces 
were observed between clusters despite overlapping speeds, indicating that speed alone 
was not the only factor driving the between cluster differences. Thus, here we show that 
while speed influences many gait features, speed alone is not enough to classify post-stroke 
individuals in more specific subgroups of impairment.

Cluster 3, the moderate speed and asymmetric cluster was not stable or generalizable, 
consistent with the fact that the common impairments of stroke participants, and how they 
compare to control participants within Cluster 3 was less clear. For example, participants 
in Cluster 3 had highly asymmetric forces between the paretic and non-paretic extremity 
whereas control participants within the cluster were not asymmetric. Similarly, at a group 
level, participants within Cluster 3 were the only ones to show marked step length 
asymmetry with longer paretic steps. It could be the case that Cluster 3 is composed 
of participants for whom the measured spatiotemporal and kinetic variables included in 
analyses does not account for variability in the data. Future work will aim to use joint level 
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kinematic, kinetic or EMG measures to determine whether these more specific measures can 
detect evident differences in walking patterns in these individuals.

We observed differences in cluster specific speed and FM scores compared to group level 
averages in these variables. For example, the average FM score for all participants was 24.6 
± 5.6 points, yet as seen in Figure 2D, this average value does not align with any of the 
cluster-specific averages. We also observed that similar levels of impairment measured via 
overlapping FM scores between clusters could be associated with vastly different walking 
speeds: participants in Cluster 1 walked significantly faster than those in Clusters 2 and 3, 
despite no differences in FM scores. Clinically this might imply that participants in Clusters 
2 and 3 have the capacity to walk at faster speeds, given their impairment. Note that these 
differences in behavior and capacity between clusters could inform clinical practice beyond 
group level averages.

Interestingly, our findings show that some commonly reported spatiotemporal impairments 
post-stroke are observed in only a subset of post-stroke participants 8,28,61,66. For example, 
we observed asymmetric stance times only for participants in the fast cluster, and 
asymmetries in step lengths only in Cluster 3 11,61,66,67, as well as varying degrees of 
paretic propulsion that were not uniformly associated with walking speed or impairment 
56. Finally, and surprisingly, we did not observe any asymmetries in the peak vertical GRF 
among our participants. Thus, our results show in a sample of 81 participants post-stroke 
that spatiotemporal asymmetries are less pronounced than what has been shown in the 
seminal literature using smaller samples.

We observed significant differences in participant impairment and function across research 
sites. Consistent with prior literature, control participants’ self-selected walking speed was 
faster than post-stroke participants’7. Similarly, participants from Pitt had lower impairment 
compared to Emory and USC2018, while participants from JHU walked at faster speeds 
than those from Em, and USC. Additional information about activity levels and access to 
post-stroke care across geographical locations could provide information about the causes 
of the differences in impairment and function between sites. Given these differences, we 
assessed generalizability by assessing cluster stability when removing each experimental 
sample from our dataset. This approach assessed both generalizability of the cluster such 
that its definition did not depend on the experimental samples, as well as generalizability 
of the experimental samples such that if a sample needed its own cluster, it would imply 
that participants in that sample are distinct from all other participants. We did not find a 
cluster of participants post-stroke from a single research site. Additionally, 4/5 clusters were 
generalizable across research sites. However, we did find that some research sites did not 
contribute to specific clusters. For example, participants from JHU were not part of Cluster 
4, and participants from Em were not part of the fast cluster, consistent with the significant 
differences in walking speeds observed between both samples. These results confirm that 
some samples may not encompass all different walking behaviors observed after stroke.
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Limitations
There are multiple limitations in our study. First, this study used variables derived from gait 
analyses to identify clusters indicative of subgroups of walking impairment. The variables 
used in this study are easy to capture via GRFs and represent global measures of walking 
that relate to the coordinated action of multiple segments and joints. However, joint-level 
kinematic and kinetic measures might capture impairments that cannot be inferred from 
GRF data alone. Future research efforts should aim to establish standards for data collection 
that allow combining more complex data across sites, such as joint-level kinematics, kinetics 
and EMG patterns. Second, we extracted peak force as the feature representing GRF data 
due to the ease to capture these measures. Future work can assess whether other GRF 
features, such as impulses, or GRFs during more specific points during the gait cycle 
provide more insight into the range of walking impairments in people post-stroke. Third, 
we were also limited in the sample size of control participants which was unbalanced and 
matched in speed to the USC2021 sample only. The sample size across study sites was 
also unbalanced, with samples from Em and JHU consisting of ~10 participants and the 
samples from USC and Pitt consisting of ~20 participants, providing different heterogeneity 
within each sample and different contribution of each site to the overall sample. Stability 
analyses show however, that changes in stability when removing each of the samples were 
not just due to sample size: removing the JHU sample which consisted of 10 participants 
with the highest speeds decreased cluster stability for most clusters, while removing the 
USC2018 sample did not change cluster stability uniformly. We interpret this to indicate 
that the characteristics of the samples had a greater influence on cluster stability than 
did sample size. Future multi-site studies can address these points. Fourth, participants in 
this study were all in the chronic phase of stroke recovery; future work should assess if 
these clusters are consistent or change across recovery phases. Fifth, data were collected 
with participants walking on a treadmill which may induce changes in walking patterns 
compared to overground walking 57. However, some of our clusters were similar to those 
reported by Mulroy 2003 5, indicating consistency of clusters on the treadmill compared to 
overground. In addition, the use of a handrail in some of the experimental protocols could 
have influenced participant’s walking patterns 58. Future work could systematically assess 
whether participants are assigned to the same clusters measured during treadmill walking as 
to during overground walking. Finally, we used average metrics within participants, despite 
different patterns of stride-to-stride variance during post-stroke walking 13. Future work in 
larger samples can include stride-to-stride variance as additional features to characterize 
post-stroke walking patterns.

Conclusions
We compiled and curated GRF data across multiple research sites in people post-stroke 
and controls. Using simple measures derived from GRFs, we identified five clusters of 
different walking behaviors. Four of these clusters captured walking subgroups that were 
generalizable across study sites. Our findings provide new information about how to classify 
the heterogeneity of gait patterns post-stroke. Identifying more specific types of walking 
impairment and different intervention targets for each subgroup can move the field of 
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neurorehabilitation toward a precision medicine approach 59, and improve the effectiveness 
of rehabilitation interventions.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Data consolidation and quality assessments and demographics for the final sample.
A) Pipeline for participant inclusion. N indicates the sample size at each point for the total 
sample (bold) and the sample from each research site. The final sample size was N=112 
participants. B) Time post-stroke onset in months across all research sites. Participants from 
Pitt were more chronic than those from USC2021 (p=0.033). C) Post-stroke participant 
lower extremity Fugl-Meyer score. The maximum score is 34 points. Participants from Pitt 
were less impaired than those from Em and USC. D) Treadmill self-selected walking speed 
for all participants. Control self-selected speed was significantly higher than the average 
speed in the stroke group (p<0.001). Control participants also walked at speed matched to 
that of a stroke participant of the same age and sex (Control Matched). Participants from 
JHU walked at a significantly greater speed than those from Em and both samples from USC 
(p<0.050).
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Figure 2. The sparse variables make up K=5 clusters with distinct walking speeds and 
impairments.
A) Weights for each of the 17 candidate features for clustering. 8/17 features had non-zero 
weights and were used in clustering analyses. B) Individual observations within each 
cluster, plotted in discriminant component space, colored by cluster. Cluster 1 comprised 10 
participants; four from JHU, three from Pitt, two from USC2018, and one from USC2021. 
Cluster 2, 22 participants; 11 controls, four from Pitt, one from USC2018, and six from 
USC2021. Cluster 3, 34 participants; 11 control participants, one from Em, four from 
JHU, four from Pitt, seven from USC2018, and seven from USC2021. Cluster 4 had 
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16 participants; three controls, three from Em, five from Pitt, three from USC2018, and 
three from USC2021. Cluster 5 had 30 participants; six controls, four from Em, two from 
JHU, three from Pitt, seven from USC2018, and seven from USC2021. C) Participant 
speed (for participants post-stroke and controls) and impairment (for stroke participants) 
were measured via FM score across the different clusters. Only speed was used in the 
cluster definition. Solid horizontal lines indicate post-hoc significant differences between 
clusters (p<0.050). The dashed horizontal line indicates group-level average speed across all 
participants and average Fugl-Meyer (FM) scores for all stroke participants compared with 
the cluster-level speed and FM. P: Paretic NP: Non-Paretic. St: Stance. Sw: Swing. Lat: 
Lateral. Prop: Propulsion. GRF: Ground reaction force.
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Figure 3. Gait features for participants post-stroke and controls within each cluster compared 
to all other participants outside each cluster for a subset of sparse variables used in k-means 
clustering.
C1, … C5 indicates participants included in the respective cluster number, and ~C1, … ~C5 
indicates all participants not included in the respective cluster. Stance and swing times are 
expressed as a percentage of stride duration to account for differences in walking speed. 
Cluster 1: participants post-stroke with a fast-walking speed and asymmetric propulsion; 
Cluster 2: participants post-stroke and controls with moderate speed, short stance times, 
low propulsion, and symmetric steps. Cluster 3: participants post-stroke and controls 
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with moderate speed, short stance times, and asymmetric forces; Cluster 4: participants 
post-stroke with a slow speed and frontal plane force asymmetries; and Cluster 5: post-
stroke participants who walked slowly and symmetrically, with short swing times. Color 
conventions as in Figure 3.
* FDR corrected p<0.010 for all variables indicated as significant. Abbreviations as in 
Figure 2.
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Figure 4. Stability and generalizability of clusters assessed via leave one out approach.
A) Jaccard stability index for each cluster for the entire dataset (horizontal black lines) 
and leaving out each sample. Colors indicate the sample left out to assess the Jaccard. The 
dashed gray line is the line above which clusters are considered stable. The Jaccard Index 
is the proportion of observations consistently assigned to the same cluster over the bootstrap 
iterations. A Jaccard below 0.6 indicates that the clusters are unstable, a Jaccard between 0.6 
and 0.75 shows moderately stable clusters, 0.75 and 0.85 stable clusters, and a Jaccard above 
0.85 indicates highly stable clusters. B) Average and standard deviation of the speed for each 
cluster for the entire dataset in black and the leave one out approach with colors indicating 
the sample left out from analyses.
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Table 1:

Participant Demographics.

Stroke Control

N 81 31

Sex 28F/53M+ 19F/12M

Age 58.9 ± 10.5 [32 – 77] years 63.3 ± 13.6 [24 – 81]

Mass 85 ± 18.6* [47 – 131] kg 73 ± 15.7 [46 – 110]

Speed 0.58 ± 0.24 [ 0.13 – 1.25] m/s SS: 0.84 ± 0.18* [0.48 – 1.43] m/s
Matched: 0.60 ± 0.25 [0.3 – 1.0] m/s

Paresis 42R/39L

Time post-stroke 90 ± 83 [6 – 467] months

Fugl-Meyer Score 24.6 ± 5.6 [7 – 33]

Descriptive statistics are presented as average ± standard deviation with the range in brackets.

F: Female

M: Males

L: Left

R: Right

SS: Self-selected

*
Significant differences between participants post-stroke and controls (p<0.050)

+
p<0.050 significant difference in the frequency of males compared to females in the study sample
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Table 2:

Group-level averages for gait variables in participants post-stroke and control participants walking at matched 
speeds.

Variable Definition
Stroke Control

Paretic Mean ± 
SD

Non-Paretic 
Mean ± SD

Non-dominant 
Mean ± SD

Dominant Mean 
± SD

Speed Treadmill speed 0.58 ± 0.24 0.60 ± 0.18

Step Length (m) Distance between limbs at 
leading limb initial contact 0.37 ± 0.10 0.36 ± 0.11 0.39 ± 0.09 0.39 ± 0.10

Stance Time (s) Time between initial contact 
and lift-off on the same side 0.97 ± 0.25*,+ 1.00 ± 0.28+ 0.86 ± 0.23 0.87 ± 0.23

Swing Time (s)
Time as the time between lift-

off to initial contact on the 
same side

0.47 ± 0.09* 0.43 ± 0.07 0.45 ± 0.06 0.45 ± 0.06

Double Support Time 
(s)

Time from contralateral initial 
contact to ipsilateral foot-off 0.29 ± 0.13+ 0.24 ± 0.19 0.20 ± 0.08 0.21 ± 0.09

Peak Medial GRF 
(N/kg)

medially directed force during 
the contralateral toe-off 28 0.93 ± 0.22* 0.82 ± 0.20 0.85 ± 0.28 0.82 ± 0.26

Peak Lateral GRF 
(N/kg)

Laterally directed GRF during 
loading response −0.24 ± 0.21* −0.39 ± 0.24+ −0.20 ± 0.18 −0.21 ± 0.17

Peak Propulsive 
GRF (N/kg)

Force during ipsilateral push-
off 0.67 ± 0.34*,+ 1.03 ± 0.46+ 0.87 ± 0.34 0.87 ± 0.34

Peak Braking GRF 
(N/kg)

Force during weight 
acceptance/weight transfer −0.86 ± 0.44* −0.75 ± 0.44 −0.80 ± 0.33 −0.84 ± 0.31

Vertical GRF (N/kg) Force due to gravity 10.18 ± 1.05 10.15 ± 0.99 10.2 ± 2.50 10.7 ± 2.68

% Gait Cycle of Peak 
Propulsive GRF

Relative to paretic limb initial 
contact 47 ± 12% 19 ± 22% 57 ± 9% 11 ± 12%

% Gait Cycle of Peak 
Braking GRF

Relative to paretic limb initial 
contact 16 ± 16% 52 ± 17% 16 ± 3% 66 ± 4%

t-tests corrected for multiple comparisons using the Benjamini and Hochberg FDR 60.

*
Significant differences between the paretic and non-paretic extremity of post-stroke participants

+
Significant differences between participants post-stroke and controls

Variables in bold were included in sparse clustering analyses.
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