
Chapman University Digital Chapman University Digital 

Commons Commons 

Engineering Faculty Articles and Research Fowler School of Engineering 

8-28-2024 

FPCA-SETCN: A Novel Deep Learning Framework for Remaining FPCA-SETCN: A Novel Deep Learning Framework for Remaining 

Useful Life Prediction Useful Life Prediction 

Junde Chen 

Yuxin Wen 

Xuxue Sun 

Adnan Zeb 

Mohammad Saleh Meiabadi 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.chapman.edu/engineering_articles 

 Part of the Other Electrical and Computer Engineering Commons 

https://www.chapman.edu/
https://www.chapman.edu/
https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/engineering_articles
https://digitalcommons.chapman.edu/fowler_engineering
https://digitalcommons.chapman.edu/engineering_articles?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/278?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages


FPCA-SETCN: A Novel Deep Learning Framework for Remaining Useful Life FPCA-SETCN: A Novel Deep Learning Framework for Remaining Useful Life 
Prediction Prediction 

Comments Comments 
This is a pre-copy-editing, author-produced PDF of an article accepted for publication in IEEE Sensors 
Journal, volume 24, issue 19, in 2024 following peer review. This article may not exactly replicate the final 
published version. The definitive publisher-authenticated version is available online at https://doi.org/
10.1109/JSEN.2024.3447717. 

Copyright 
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all 
other uses, in any current or future media, including reprinting/republishing this material for advertising or 
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other works. 

Authors Authors 
Junde Chen, Yuxin Wen, Xuxue Sun, Adnan Zeb, Mohammad Saleh Meiabadi, and Sasan Sattarpanah 
Karganroudi 

https://doi.org/10.1109/JSEN.2024.3447717
https://doi.org/10.1109/JSEN.2024.3447717


IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2024 1

FPCA-SETCN: A Novel Deep Learning
Framework for Remaining Useful Life Prediction

Junde Chen, Yuxin Wen, Xuxue Sun, Adnan Zeb, Mohammad Saleh Meiabadi, Sasan
Sattarpanah Karganroudi

Abstract— The accurate prediction of remaining useful life (RUL) can serve as a reliable foundation for equipment main-
tenance, thereby effectively reducing the incidence of failure and maintenance costs. In this study, a novel deep learning
(DL) framework that incorporates functional principal component analysis (FPCA) and enhanced temporal convolutional
network (TCN) is proposed for RUL prediction. Precisely, FPCA is employed to capture the changing patterns in multi-
stream degradation trajectories. Subsequently, the reconstructed signals from FPCA are fed into a convolutional block for
extracting deep-level features. An enhanced Squeeze-and-Excitation (ESE) block is then incorporated into the network for
adaptive feature recalibration, enhancing the network’s ability to focus on the most relevant information. The framework
includes a TCN module augmented with hybrid attention mechanisms, comprising ESE and spatial attention (SA) blocks,
to optimally capture forward and backward sequence information of the feature tensor. The efficiency and feasibility of
the proposed approach are demonstrated through case studies on both the Commercial Modular Aero-Propulsion System
Simulation (C-MAPSS) and Center for Advanced Life Cycle Engineering (CALCE) battery datasets. The proposed method
achieves the lowest root mean square error (RMSE) of 15.56 on the C-MAPSS dataset and 0.03 on the CALCE dataset.
The comparative studies highlight the superiority of the proposed FPCA-SETCN network over existing deep learning
algorithms.

Index Terms— Remaining useful life prediction, Squeeze-and-Excitation block, Temporal convolutional network, Attention
mechanism, Functional principal component analysis.

I. INTRODUCTION

REMAINING useful life (RUL) prediction is an essen-
tial component of prognostics and health management

(PHM) for mechanical systems. Precise RUL prediction en-
ables the design of maintenance schedules that ensure optimal
operational performance of machinery or its components.
This helps prevent severe performance degradation, and even
mitigating the risk of catastrophic system failures [1]. To attain
this objective, a wide range of innovative solutions have been
developed, which can be broadly categorized into physical-
based and data-driven models [2], [3]. In contrast to physical
models, which require a profound understanding of engineer-
ing domain knowledge and systematic structures, data-driven
models have the capacity to uncover potential relationships
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within the data without domain knowledge. With the rapid
advancement of sensing techniques and computing capacity,
massive degradation signals have become available [4]. The
data-driven approaches are increasingly gaining popularity for
prognostics in various engineering domains.

The data-driven approaches can be loosely categorized
into statistical-based models and machine learning models
[3], [5]. A typical statistical-based degradation model, such
as general path model and stochastic process model, is to
identify a suitable mathematical form to model the degradation
trajectories over time and then predict RUL [2]. However,
most existing statistical-based methods are inadequate for real-
world systems, which are often too complex and intrinsically
difficult to model, especially for multi-stream degradation
signals due to the data dependencies among numerous sensors
[6]. Conversely, the basic idea of a machine learning model
is to directly construct an end-to-end relationship between
the degradation signals and the corresponding RUL of the
mechanical system. Over the past decade, shallow machine
learning models for RUL prediction have been widely used,
such as Support Vector Regression (SVR), Random Forest
(RF), Logistic Regression (LR), and Artificial Neural Net-
works (ANN) [7]. Wang et al. [8] presented a method for
predicting the RUL of lithium-ion batteries using improved ant
lion optimization and SVR, aiming to enhance the accuracy
of RUL prediction, which is crucial for ensuring optimal
performance and safety of battery systems. Medjaher et al.
[9] performed RUL estimation for critical components of
bearings by applying Dynamic Bayesian Networks (DBNs).
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Nevertheless, these methods are completely dependent upon
manual feature extraction and involve a certain degree of
subjectivity.

Recently, in view of the increasing volume of data, deep
learning-based approaches, especially convolutional neural
network (CNN) [10], Long Short-Term Memory (LSTM) [11],
Bi-directional Long-Short Term Memory (BiLSTM) [12], and
Gated Recurrent Unit (GRU) [13], have gained considerable
attention in prognostics due to their accomplishment in han-
dling complex systems [1]. Sateesh et al. [10] proposed a deep
CNN model for the prediction of engine gas path faults. In
their model, convolution and pooling layers were employed to
capture significant patterns of degradation signals at different
time scales. Zhu et al. [6] presented a multiscale convolutional
neural network (MSCNN) for predicting the RUL of bearings.
Instead of using raw vibration signals, they extracted time-
frequency characteristics of vibration signals as inputs for
MSCNN. Similarly, Wang et al. [14] proposed a multiscale
convolutional attention network for predicting the RUL of
machinery, embedding two self-attention modules into the
networks. Despite their impressive performance, both methods
share a common limitation: the local connection structure of
CNNs restricts their ability to capture long-term degradation
features. Additionally, the incorporation of attention modules
in Wang et al. [14]’s method increases the model’s parameters,
leading to higher computational costs.

Considering the temporality in degradation signals, Park et
al. [15] proposed a LSTM model to perform RUL prediction
of batteries. Song et al. [16] reported that using a BiLSTM
framework to predict the RUL of airplane engines can obtain
higher prediction accuracy compared with the SVR, multi-
layer perceptron (MLP), CNN, and LSTM methods. Although
LSTM and its variants have demonstrated their capability in
the application of RUL prediction, they usually require signifi-
cantly more computations than CNN due to the cascading con-
nection structure. To overcome these issues, some researchers
proposed hybrid methods by combining CNN and LSTM
sequentially or in parallel, where spatial features and temporal
features both can be extracted [17]–[19]. In [17], the authors
combined CNN and LSTM in parallel, and then their outputs
were concatenated and passed to a fully connected (FC) layer
to extract features for lithium-ion battery RUL prediction.
Zraibi et al. [18] suggested connecting LSTM layers to the
outputs of CNN layers that can improve prediction accuracy
with acceptable execution time. In another research, Li et al.
[19] trained an enhanced CNN-LSTM RUL prediction model
for aircraft engine with convolutional block attention module
(CBAM) [20]. While this study reported reasonably good
results, the LSTM can only capture one-way sequence depen-
dencies. Moreover, the combined CNN and LSTM architecture
has several drawbacks, such as limited processing sequence
length and poor parallelism. Additionally, existing attention
mechanisms like CBAM are primarily designed for the target
detection domain and have high computational complexity.

To better construct the association between CNN and
LSTM for sequence modeling problems, temporal convolu-
tional network (TCN), proposed by Bai et al. [21], is the
latest improvement. TCN utilizes dilated causal convolution

to distill historical information and makes sure no leakage
from the future into the past, which is very critical for time-
series modeling. It has been proven that TCN has better
performance than CNN and LSTM for time series prediction
[22]–[25]. Only a few attempts have been made to investigate
TCN for RUL prediction. Sun et al. [26] adopted TCN to
forecast the RUL of rotating machinery. They first used local
mean decomposition to obtain multiscale features, then the
extracted features were fed into the TCN. Li et al. [27]
utilized a TCN to predict the turbofans’ RUL based on the C-
MAPSS dataset. Their experimental findings demonstrated that
the TCN outperformed three state-of-the-art (SOTA) methods
including LSTM, 1DCNN, and deep CNN (DCNN). Sharma
et al. [28] trained a TCN model for RUL prediction based
on the same dataset. Their results also indicated the superior
performance of TCN compared to hybrid architectures like
CNN-LSTM and optimized LSTM networks. Despite the
promising results reported in the literature, these methods
failed to address certain limitations associated with TCN.
Specifically, the use of dilated causal convolution in TCN
may lead to information loss, where essential features are lost
and less significant features are retained during training. This
issue poses a potential risk to the accuracy of RUL prediction.
Moreover, TCN is susceptible to data noises and may be
prone to overfitting. In practical scenarios, signals acquired
from operational machines often contain noises and outliers,
which can adversely impact the performance of prediction
models. Therefore, mitigating these challenges is essential for
improving the reliability and robustness of RUL prediction
models. To address these concerns, Cao et al. [29] improved
the TCN and fused it with a residual self-attention mechanism
(TCN-RSA) to extract hidden features. The marginal spectrum
was calculated from the vibration signals and treated as the
input of their model. Wang et al. [30] introduced a soft
threshold TCN with an attention mechanism for machinery
prognostics, where a soft thresholding mechanism was used
as a flexible activation function and the threshold value was
trained by an attention mechanism. Recently, Fu et al. [31]
recommended a dual-task TCN with multi-channel attention
called MCA-DTCN to perform the prediction of RUL and their
proposed method achieved promising performance. In their
method, only the channel attention mechanism was considered.
In addition, raw signals were directly fed into their model. In
practice, transforming degradation signals to reflect intrinsic
characteristics, rather than directly feeding raw signals into
deep learning models, has great potential to boost prognostic
performance [32], [33].

To bridge the aforementioned research gaps, a novel deep
learning framework, noted as FPCA-SETCN, is proposed
to conduct RUL prediction. First, we consider multi-stream
degradation signals as stochastic functions over time, and
use functional principal component analysis (FPCA) to distill
the changing patterns of multi-stream degradation trajectories.
Then, the extracted features are fed into an enhanced TCN
framework, noted as SETCN, to further extrapolate the future
trajectories and predict the RUL. By employing the FPCA
method, the actual degradation process can be reconstructed by
the mean trajectory and a set of unit-specific FPC scores. Then



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (MAY 2024) 3

the reconstructed degradation signals are fed into the proposed
SETCN model. To prevent losing local information resulting
from dilated causal convolution of TCN, an enhanced Squeeze-
and-Excitation (ESE) block is integrated into the TCN frame-
work. Subsequently, combining the ESE block with spatial
attention (SA), a hybrid attention mechanism is embedded into
the network. Following that, the TCN paired with the hybrid
attention mechanism is used to obtain sequence information of
feature vectors. Concretely, two hybrid attention modules are
embedded into the network to highlight the weights of impor-
tant features while lessening the weights of unwanted features,
thereby realizing efficient feature calibration of sequence data.

In brief, the key contributions of this paper can be recapit-
ulated as follows.

• A TCN module is used in the network to obtain the for-
ward and backward sequence information of the features,
and a hybrid attention mechanism is integrated into the
TCN module for capturing the most relevant features.

• The traditional SE-block is optimized by substituting
FC layers with one-dimensional convolutional layers and
ReLU activation function. The enhanced SE-block mit-
igates unnecessary information loss, reduces computa-
tional overhead, and it is more sensitive to vibration
signals, effectively improving the model accuracy.

• The FPCA method is employed to reconstruct the degra-
dation signals, thereby eliminating irrelevant information
and noise. This transformation of degradation signals to
reflect intrinsic characteristics, rather than directly in-
putting raw signals into deep learning models, holds sig-
nificant potential for enhancing prognostic performance.

The rest of the article is organized as follows. Section II
discusses the methodology to perform the task of RUL predic-
tion. Section III focuses on the algorithm experiments, where
a series of experiments are conducted and the performance is
evaluated and analyzed. Section IV concludes the paper and
gives suggestions for further work.

II. METHODOLOGY

In this section, the proposed FPCA-SETCN framework is
presented in detail.

A. Problem Formulation

For the establishment of a prognostic model, the acquisition
of run-to-failure data for N training entities is assumed. Let
i denote the number of historical units (i = 1, 2, ..., N ),
and Ti represent the total life cycle of the ith training unit,
the corresponding multi-stream degradation signals can be
expressed as D = {Xi, i = 1, 2, ..., N}, where Xi is the
multi-dimensional data of size Ti × S for unit i. The Xi can
be written as

Xi = (xi,1,xi,2, ...,xi,S)

=


xi,1,1 xi,2,1 · · · xi,S,1

xi,1,2 xi,2,2 · · · xi,S,2

...
...

. . .
...

xi,1,Ti xi,2,Ti · · · xi,S,Ti

 (1)

In Eq. (1), xi,s = (xi,s,1, xi,s,2, ..., xi,s,Ti)
′

(s = 1, 2, ..., S)
is the sth features for unit i, each element in xi,s denotes one
observation, and S indicates the total number of features. This
study is dedicated to building a nonlinear prognostic model
f(·), which can effectively integrate multi-dimensional data
for unit i to accurately predict the RUL, as expressed in

hi(t) = f(xi,1,t, xi,2,t, ..., xi,S,t) (2)

B. Temporal Convolutional Network

We adopt a temporal convolutional network (TCN) as the
core component of the proposed model. TCN is a residual
network-based CNN designed for handling sequence data [21].
Different from conventional CNNs, TCN consists of three ma-
jor distinguishing characteristics, including causal convolution,
dilated convolution, and residual connections. Among them,
causal convolution is a strict time-constrained operation, which
is responsible for addressing sequence data and preventing in-
formation leakage from future to past. Compared with standard

Fig. 1. The architectural elements in a TCN.
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convolution, the dilated convolution has a larger convolution
receptive field and it is suitable for handling long-distance
dependencies. The fusion of dilated and causal convolutions
increases the receptive field and preserves the ordering patterns
of sequential input. Besides, residual connections are utilized
to address potential issues with gradient disappearance and
explosion, which may arise due to the increased depth of
the network. The detailed description of these operations is
presented as follows.

1) Causal convolution. The role of causal convolution can
be abstracted to predict yt for a given sequence data X =
{x0, x1, ..., xt} and corresponding filter F = {f0, f1, ..., fK}.
Basically, given X , the causal convolution can be expressed
by

yt = (F ∗X)(xt) =
∑K

k=1
fkxt−K+k, (3)

where K is the number of filters.
2) Dilated convolution. Given a set of input sequence X =

{x0, x1, ..., xt} and convolution kernel f : {0, ..., k−1} → R,
the dilated convolution can be defined by

(F ∗d X)(xt) =
∑K

k=1
fkxt−(K−k)d (4)

where d represents the expansion coefficient. In practice, as the
number of network layers increases, d increases exponentially
by 2, e.g., 1, 2, 4 in sequence. When d = 1, a dilated
convolution reduces to a regular convolution.

3) Residual connection. The residual connection first applies
identity mapping to x, then fuses the input x into the output
F (x) of the model to gain the final TCN output o. It can be
written as

o = ϕ(x+ F (x)) (5)

where ϕ(·) is an activation function. The residual connection
gives the network a better ability to remember historical
information. A dilated causal convolution is a type of causal
convolution that applies a filter over a region that exceeds its
length, achieved by selectively skipping certain input values
with a defined step. Fig. 1 depicts a typical TCN architecture,
where Fig. 1(a) and Fig. 1(b) illustrate the dilated casual con-
volution and the residual block, respectively. Recent research
in a wide range of fields has proven that TCN outperforms
standard cyclic network architectures such as LSTM and
GRUs [21]. Despite the promising performance, the traditional
TCN has some weaknesses, e.g., although expanded by the
dilated causal convolution, the receptive field of TCN is still
limited and it is prone to ignore crucial features.

C. Enhanced SE-Block
The attention mechanism in deep CNNs can allow models

to concentrate on important features while suppressing noise
or irrelevant information. With this benefit, much research has
been done on attention mechanism, which can be generally
divided into channel-wise attention (CA), spatial attention
[20], time attention mechanism, and others [34]. Among them,
the Squeeze-and-Excitation (SE) network is an influential CA
network by explicitly modeling the interdependencies between
channels. The core component of the SE network (SE-Net) is
the SE block, which is composed of the squeeze, excitation,

and reweight operations [35]. Suppose that an intermediate
feature map u ∈ Rh×w×c is the input in the network, the
squeeze operation compresses it by encoding the entire spatial
information across channels as a global feature. To produce
channel-specific statistics, global average pooling is employed
during its execution, defined as

zk=Fsq(uk) =
1

H ×W

H∑
i=1

W∑
j=1

uk(i, j), (6)

where zk denotes the k-th statistic value, uk is the k-th feature
map of the input matrix, Fsq implies the squeeze operation,
H and W indicate the height and width of uk, respectively.
For the global features obtained from the Fsq , the excitation
implements a series of FC, ReLU, FC, and Sigmoid operations
to automatically adjust the relation among channels, thereby
generating weights for each feature channel. The formula of
the excitation operation is written as

s=Fex(W, z) = σ(f(W, z)) = σ(W2ϑ(W1z)) (7)

In Eq. (7), σ represents the sigmoid activation, ϑ denotes the
ReLU function, W1 ∈ R

k
r ×K , and W2 ∈ RK× k

r (Here r
implies a shrinking ratio). It is noteworthy that the weights
W1 and W2 are inferred using two non-linear FC layers. At
last, the reweight operation uses the activation s to rescale
uk channel-by-channel for performing the recalibration of the
original features in channel dimension, expressed as

x̃k=Fscale(sk, uk) = sk ∗ uk (8)

where [x̃1, x̃2, · · · , x̃c] stands for the final output X̃ , and *
symbolizes dot products of elements. To our knowledge, the

Fig. 2. The enhanced squeeze-and-excitation block.
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FC layers of the networks contain a considerable number of
parameters. Therefore, to compress the model volume and
enhance the sensitivity of the SE block for degradation signals,
two one-dimensional convolutional layers in the excitation
process are utilized to substitute for the existing FC layers.
Convolutional layers are more parameter-efficient compared
to FC layers as convolutional layers infer local patterns using
small filters applied across the input space whereas the FC
layers learn global patterns which require more parameters.
Moreover, convolutional layers also have a weight-sharing
technique that allows multiple sets of features within an input
vector to be retrieved by sliding a kernel with the same set of
weights on the input vector. Therefore, two one-dimensional
convolutional layers are used to replace the existing FC
layers of the SE-block since one-dimensional tabular data are
processed in this study. In addition, considering the numerous
exponential calculations of the sigmoid function (f(x) =
1/(1 + e−x)) and the information loss that may occur when
the derivative approaches zero, a ReLU function (f(x) =
max(0, x)) before the sigmoid layer is added to reduce the
amount of calculations and avoid unnecessary information
loss. Fig. 2 portrays the structure comparison of the traditional
SE block and the enhanced one.

D. Functional Principal Component Analysis

Degradation signals inevitably are contaminated by noise,
especially in high-dimensional data, which may have negative
effects on the prognostic model. Extracting the features from
original data that reflect the intrinsic trend has great potential
to boost prediction performance. In this paper, FPCA is
employed for this purpose. FPCA is a statistical technique
employed to characterize a set of random trajectories through
decomposition into a mean function and principal compo-
nent functions, which are essentially eigenfunctions of the
covariance operator. These eigenfunctions create a compact,
orthonormal basis that can be used to represent the actual ob-
served trajectories, and correspond to the fundamental patterns
of variation presented within the random trajectories.

In mathematical notation, assume that longitudinal signal
xi(t), i = 1, 2, ..., N is generated by a square-integrable
random process in a given time domain T . The sequence
xi(t) can be expressed as xi(t) = mi(t) + εi(t), where
mi(t) is a random function with fixed but unknown mean
µi(t) and covariance Cov(x(t), x(t′)) = G(t, t′) for t, t′ ∈
T . εi(t) denotes the measurement noise. Based on Mercer’s
theorem, G(t, t′) =

∑∞
k=1 λikφk(t)φk(t

′), where φk(t) is the
associated k-th orthogonal eigenfunction and λ1 > λ2 > · · ·
are the ordered nonnegative eigenvalues [32]. Therefore, xi(t)
can be broken down into linear combinations of the orthogonal
basis function as

xi(t) = µ(t) +
∑∞

k=1
ξikφk(t) + εi(t) (9)

In Eq. (9), µ(t) represents the mean function summariz-
ing the average characteristics of all degradation signals,∑∞

k=1 ξikφk(t) reflects the random effects that distinguish
stochastic deviations among different degradation signals, ξik
are the FPC scores that are mutually uncorrelated with mean

zero and variance var(ξik) = λk, and cov(ξik, ξik′) = 0
for k ̸= k′. Note that, in most cases, the eigenvalues exhibit
rapid decrease and only a few of them are capable of grasping
the most crucial information of degradation signals. The rest
eigenvalues become negligible. In fact, only considering the
first K eigenvalues is sufficient to accurately approximate the
signals [33], [36]. As a consequence, xi(t) can be approxi-
mated as

xi(t) = µ(t) +
∑K

k=1
ξikφk(t) + εi(t) (10)

The value of K can typically be determined using model
selection criteria such as a fraction of variance, cross validation
(CV), Akaike information criterion (AIC) or others [33], [36].

To solve the FPCA, the mean degradation trend µ(t), covari-
ance G(t, t′), eigenfunctions φk(t), eigenvalues λk and FPC
scores ξi(k) need to be estimated. it can be done by operating
directly with the raw data. First, the mean function and raw co-
variance function can be calculated by µ̂(t) = 1/N

∑N
i=1 xi(t)

and ˆCov(xi(t), xi(t
′)) = (xi(t)−µ̂(t))((xi(t

′)−µ̂(t′))). Note
that the diagonal elements of ˆCov(xi(t), xi(t

′)) should be
removed because they contain measurement noise. Then the
smoothed Ĝ(t, t′) from ˆCov(xi(t), xi(t

′)) can be utilized for
estimating the eigenfunction and eigenvalue at any given time
t by solving the following expression∫

T

Ĝ(t, t′)φk(t)dt = λ̂kφ̂k(t
′), (11)

where the φ̂k are subject to
∫
T
φ̂k(t)

2dt = 1 and∫
T
φ̂k(t)φ̂m(t)dt = 0 if m < k. Then the kth FPC score

ξi(k) can be estimated by

ξi(k) =

∫
φk(t)(xi(t)− µ(t))dt, (12)

which can be estimated by numerical integration. If the time
points vary across units, the raw signals can be first trans-
formed into a basis representation using smooth basis func-
tions, such as B-splines or Fourier basis, then the empirical
estimators of the mean and covariance based on the smoothed
functional data can be used to conduct FPCA [37].

With the estimated components, the reconstructed signals
mi(t) = µ̂(t) +

∑K
k=1 ξ̂ikφ̂k(t) will be used as input for the

deep learning model. It is worth noting that the traditional
method such as principal component analysis can also be
used. However, it encounters some bottlenecks due to data
quality issues. For example, in the process of data acquisition,
some original data may be missing at some time points. The
traditional method is not sufficient to solve these problems.
By contrast, FPCA can overcome the defects of traditional
methods by detecting the dominant modes of variation in a
set of functions using functional data analysis [38].

E. Proposed FPCA-SETCN Model

The main structure of the proposed FPCA-SETCN, which
primarily comprises two modules of feature extraction and
RUL prediction, is illustrated in Fig. 3. First, the FPCA method
is performed on the original data for reducing noises, as
described in Section II D. Here, the B-spline basis function is
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Fig. 3. The architecture of the proposed FPCA-SETCN.

TABLE I
THE PRIMARY PARAMETERS OF THE MODEL

Layer (Module) Input shape No. of filters Kernel size Output shape Param number Repeated

FPCA (1, 1, 40, 17) - - (1, 1, 40, 4) - 1
Conv2d (1, 1, 40, 4) 20 3 (1, 20, 42, 6) 200 1
LeakyReLU (1, 20, 42, 6) - - (1, 20, 42, 6) - 1
MaxPool2d (1, 20, 42, 6) - - (1, 20, 21, 3) - 1
Dropout (1, 20, 21, 3) - - (1, 20, 21, 3) - 1
ESE-Block
(AvgPool) (1, 20, 21, 3) - - (1, 20, 1, 1) - 1

Conv1d (1, 1, 20) 1 2 (1, 1, 20) 3 2
Sigmoid (1, 20, 1, 1) - - (1, 20, 1, 1) - 1
TCN-Block
(Conv2d) (1, 20, 21, 3) 20 3 (1, 20, 21, 3) 3620 2

ESE+SA Blocks (1, 20, 21, 3) - - (1, 20, 21, 3) - 2
Conv2d (1, 20, 21, 3) 20 3 (1, 20, 21, 3) 3620 2
Add layer 2 × (1, 20, 21, 3) - - (1, 20, 21, 3) - 1
Flatten layer (1, 20, 21, 3) (1, 1260) - 1
Linear (1, 1260) - - (1, 1) 1260 1

utilized and the number of basis functions is set to 4 according
to cross-validation. Then, the reconstructed signals are fed
into a convolutional block for extracting deep-level features,
which consists of a 3 × 3 convolutional layer, a Leaky ReLu
activation function, an average pooling layer, and a dropout
layer. In the model, the convolutional layer is used to extract
high-level feature representations and preserve their spatial
relationship. Global average pooling is utilized to consolidate
global information and simultaneously reduce the number of
parameters in the process. Dropout, on the other hand, is
used to suppress overfitting risk. The Leaky ReLu activation
function is used in this convolutional block and a non-zero

slope is assigned to all negative values, namely

yi =

{
xi, if xi ≥ 0
xi

ai
, if xi<0

(13)

In Eq. (13), the fixed parameter ai is greater than 1, thus a
small positive slope in the negative region is applied, which
enables it to conduct backpropagation even for negative input
values. In the paper, 1/ai = 0.01 is adopted. Following
the convolutional block, an enhanced SE-block is embedded
into the network for adaptive feature calibration. The data
dimension does not change when the feature tensor flows
through the enhanced SE-block, and then the output is fed
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into the TCN module.
TCN cleverly integrates the causal and dilated convolutions,

which can extract advanced temporal and spatial features for
the RUL prediction task. Besides, the residual connections
guarantee a long-term valid usage of long-distance sequence
data. Nevertheless, not all features are equally important for
message transformation. Some features are crucial for RUL
prediction, while others may be negligible. In view of this, the
hybrid attention modules comprised of the ESE and SA blocks
are incorporated into the TCN module for grasping the optimal
features. In the TCN block, two hybrid attention modules are
embedded into the network to heighten the weights of the
important features while lessening the weights of negligible
features. It is worth mentioning that spatial attention is com-
puted by implementing the average-pooling and max-pooling
operations. These two are concatenated and convolved using
a standard convolutional layer, resulting in the generation of a
spatial attention map. The formula of spatial attention can be
written by

Ms(f
′) = σ(fn×n([avgpool(f ′);maxpool(f ′)])) (14)

where f ′ indicates the intermediate features and fn×n rep-
resents a convolution operation with a kernel size of n × n.
In brief, the output of the whole attention mechanism can be
mathematically expressed as

Oc,s(x) = Tc,s(x) ∗Mc,s(x) = Tc,s(x) ∗Ms(Mc(x)) (15)

where c ∈ {1, 2, ..., C} is the index of the channel, x indicates
the input features, s ranges over all spatial positions, Tc,s

represents the feature vector extracted through convolution
operation, and Mc,s refers to the output weight of the whole
attention mechanism (Mc(x) denotes the output of channel
attention). Note that the order of channel-first then spatial
attention is used in our scheme.

After that, normalization of the output feature Oc,s is
done using a sigmoid activation function, which is applied
to all channels and spatial positions without any additional
constraints. The formula of the sigmoid activation function is
written by

σ(Oc,s) = 1/(1 + e(−
Oc,s−avgc

stdc
)) (16)

where avg and std imply the average value and standard
deviation of the feature vector, respectively. At last, the output
of the TCN is operated by a FC layer, which is employed to
implement the RUL prediction task. Mathematically, the FC
operation can be described as

hl(x)=δ(W lhl−1(x) + bl) (17)

where l indexes the layers, h is the output of the networks,
W is the weight matrix, b is a bias vector, and δ(·) implies
the element-wise nonlinear function. Table I summarizes the
major parameters of the proposed FPCA-SETCN.

III. CASE STUDY

A. Experiment Setup and Evaluation Criteria
To evaluate the efficiency of the proposed method, we

conduct the experiments on both the Commercial Modular

TABLE II
DESCRIPTION OF THE 21 SENSORS AVAILABLE IN THE C-MAPSS

DATASET [7].

ID Symbols Description of the characteristic Units

1 T2 Total temperature at fan inlet °R
2 T24 Total temperature at LPC outlet °R
3 T30 Total temperature at HPC outlet °R
4 T50 Total temperature at LPT outlet °R
5 P2 Pressure at fan inlet psia
6 P15 Total pressure in bypass-duct psia
7 P30 Total pressure at HPC outlet psia
8 Nf Physical fan speed rpm
9 Nc Physical core speed rpm
10 Cpr Engine pressure ratio -
11 Ps30 Static pressure at HPC outlet psia

12 Phi Ratio of fuel flow to static pres-
sure at HPC outlet Pps/psi

13 NRf Corrected fan speed rpm
14 NRc Corrected core speed rpm
15 BPR Bypass ratio -
16 farB Burner fuel-air ratio -
17 htBlccd Bleed enthalpy -
18 Nf dmd Demanded fan speed rpm
19 PCNfR dmd Demanded corrected fan speed rpm
20 W31 HPC coolant bleed Lbm/s
21 W32 LPT coolant bleed Lbm/s

Fig. 4. Engine diagram simulated for the C-MAPSS dataset.

Aero-Propulsion System Simulation (C-MAPSS) dataset from
the National Aeronautics and Space Administration (NASA)
[7] and the lithium-ion battery dataset from the University
of Maryland Center for Advanced Life Cycle Engineering
(CALCE) [39]. The C-MAPSS and CALCE datasets are
used for the RUL prediction of turbofan engine and lithium-
ion battery, respectively. To further verify the validity of
the proposed approach, the state-of-the-art RUL prediction
methods are chosen for comparison study. All experiments are
carried on a computer equipped with AMD Ryzen 9 5900HX
processor, 32GB RAM, RTX 3070 GPU.

To investigate the prediction performance of the proposed
approach, four evaluation metrics, including the mean absolute
error (MAE), the root mean square error (RMSE), the
coefficient of determination R-squared (R2), and the explained
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TABLE III
THE RUL PREDICTION ACCURACY ON THE C-MAPSS DATASET.

Models Prediction accuracy on training set Prediction accuracy on test set Training
time

MAE RMSE R2 EV AR MAE RMSE R2 EV AR

Random Forest 12.67 20.34 0.92 0.93 49.16 56.22 -0.83 0.45 15s
Logistic Regression 28.82 42.02 0.63 0.64 42.07 50.72 -0.48 0.24 23s
LSTM 28.30 44.39 0.58 0.59 27.92 34.38 0.31 0.46 95s
RF-VAR 12.57 20.25 0.91 0.91 22.76 28.41 0.53 0.62 14s
LSTM-VAR 28.41 44.28 0.58 0.60 23.15 29.30 0.50 0.57 100s
This study 10.02 12.45 0.92 0.95 12.05 15.56 0.79 0.79 55s

variance (EV AR) are used to facilitate the comparison with
benchmark methods. The expressions of these metrics are
presented as

MAE =
1

N

∑N

i=1
|yi − ŷi|, (18)

RMSE =

√
1

N

∑N

i=1
(yi−ŷi)2, (19)

R2 = 1−
∑N

i=1
(yi − ŷi)

2/
∑N

i=1
(yi − ȳ)2, (20)

EV AR = 1− var(yi − ŷi)/var(yi), (21)

where ŷi, yi, and ȳ are the predicted value, observed value,
and the average of the observed value, respectively. var(·)
calculates the empirical variance relative to the test dataset.
Among these measure params, MAE assesses the deviation
between the observed and predicted values, RMSE depicts
the quadratic mean of the differences between the predicted
values and actual observations, R2 is a statistical metric to
measure the goodness of fit of a model, and EV AR implies
the explanatory power of the model. For both R2 and EV AR,
the best possible value is 1, while greater values are worse for
MAE and RMSE. To set up the experiment, the learning
rate is set to 2 × 10−3 based on empirical evidence [21],
the Adam (adaptive moment estimation) optimizer is chosen
for its adaptive learning rate capabilities and robustness [1],
[40], and the model is trained for 100 epochs to ensure stable
convergence without overfitting. Further, to verify the validity
of the proposed approach, five influential algorithms including
Random Forest, Logistic Regression, LSTM, Random Forest
with Vector Autoregression (RF-VAR), and LSTM with Vector
Autoregression (LSTM-VAR) [41] are selected as the baseline
methods to compare models.

B. Experiments on the C-MAPSS dataset
1) Dataset Description: The C-MAPSS dataset provides a

realistic simulation of a commercial turbofan engine with
multiple embedded sensors continuously monitor the engine’s
health status [7]. Fig. 4 presents a simplified diagram of
a commercial aircraft gas turbine engine, which typically
consists of five modules: high-pressure turbine (HPT), low-
pressure turbine (LPT), fan, high-pressure compressor (HPC),

and low-pressure compressor (LPC). The dataset is divided
into 26 columns, which include the index number of engines,
the number of operational cycles, 3 operational settings, and
21 sensor measurements, respectively. Table II presents the
description for 21 sensors. A total of four datasets with the
corresponding failure modes and operational conditions were
generated. In the paper, we only consider the data with a single
failure mode and a single operating condition to evaluate the
performance. The data contains 100 training units and 100
testing units with 20,631 observation epochs in the training
dataset and 13,096 observation epochs in the test dataset. In
the training dataset, each unit runs until it fails, whereas in
the testing dataset, the operation of each unit terminates at
some random time before system failure. Readings from 21
sensors are collected at each observation epoch for each unit.
Among the 21 sensors, some sensors have constant outputs
with almost no changes throughout the whole life cycle, which
cannot provide any useful information for RUL prediction
[42]. Therefore, as did in [43] and [42], we remove the outputs
of these sensors with indices of 1, 5, 6, 10, 16, 18, and 19
from the C-MAPSS dataset, and the outputs of other sensors
with indices of 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20, and
21 are selected in this work. Consequently, the outputs of 14
sensors and 3 operational settings, a total of 17 indicators are
used as the feature variables and fed into the proposed FPCA-
SETCN model for the RUL prediction on the C-MAPSS
dataset. Before being fed into the proposed framework, all
the data is normalized into the interval of [0,1].

2) Experimental Results: Using the proposed method de-
scribed in Section II E, we perform the model training and test
on the experimental datasets. Table III presents the prediction
performance on the training and test datasets, respectively.
For the comparison purpose, the results based on benchmark
methods are also provided here. From Table III, it can be
observed that the proposed approach achieves the MAE,
RMSE, R2, and EV AR of 10.02, 12.45, 0.92, and 0.95 on
the training dataset, and 12.05, 15.56, 0.79, 0.79 on the test
dataset, respectively, which are the best performance of all the
metrics for the proposed approach compared with those of the
benchmark methods. It should be noted that, for the R2 value,
the Random Forest algorithm also demonstrates competitive
performance with the R2 value of 0.92. Random Forest is
an ensemble learning method comprised of multiple decision
trees. The computational time for 100 epochs of training is
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TABLE IV
COMPARISON WITH RECENT WORK

ID References Year Description RMSE

1 Sateesh et al. [10] 2016 Relevance Vector Regression (RVR) 23.80
2 Sateesh et al. [10] 2016 CNN 18.45
3 Zhang et al. [42] 2016 Extreme learning machine (ELM) 19.40
4 Zhang et al. [42] 2016 Deep belief network (DBN) 18.48
5 Zhang et al. [42] 2016 Multiobjective deep belief networks ensemble (MODBNE) 17.96
6 Kong et al. [44] 2019 CNN LSTM 16.13
7 Chen et al. [1] 2021 Hybrid model 14.53
8 Falcon et al. [45] 2022 Deep LSTM 16.14
9 Falcon et al. [45] 2022 Neural Turing Machine (NTM) 15.89
10 Costa et al. [46] 2022 Variational Autoencoder Recurrent Neural Network (VAE+RNN) 15.81
11 Zhang et al. [47] 2023 Multi-task learning-boosted method (MTLTrans) 16.63
12 Azyus et al. [48] 2023 CNN-GRU 16.29
13 This study 2024 FPCA-SETCN 15.56

Fig. 5. The RUL prediction results of the proposed method

also reported in Table III, It can be observed that the proposed
method is more efficient than LSTM and LSTM-VAR, and
slightly worse than LR, RF, and RF-VAR. The training time
consumption of the proposed method is 55 seconds, which
is close to the average time consumption of the comparison
methods. Fig. 5 demonstrates the predicted RUL versus actual
RUL for all units using the proposed method both on the
training dataset and testing dataset, respectively. The predicted
RULs for all units are very close to the actual RULs as shown
in Fig. 5. Therefore, based on the experimental findings, it can
be concluded that the proposed FPCN-SETCN has presented
competitive advantages in both the accuracy and efficiency for
the RUL prediction task.

Furthermore, the performance investigation is carried out
by comparing our results to those of recent research studies
as demonstrated in Table IV. It can be observed that the
proposed approach has delivered a competitive performance
and outperforms most of the existing methods except the
one used in reference [1]. In [1], a hybrid method that
combines shallow learning and deep learning was proposed,
which contains multiple different modules, such as LSTM,
handcrafted features, fully connected layers, and regression
modules, which unavoidably makes the model more complex.
By contrast, the proposed method is a single model and it
achieves a comparable result relative to the hybrid model
used in reference [1]. The experiment results suggest that the
proposed model effectively captured the underlying patterns in
the data and made highly accurate RUL predictions. This high-
lights the efficacy and superiority of our proposed approach
in modeling the complex relationships within the dataset.

C. Experiments on the CALCE battery dataset

To ensure the scalability and generalizability of the proposed
method, we further conducted experiments on the CALCE
battery dataset. The CALCE battery dataset contains data
from charging and discharging tests of different lithium-ion
batteries. The battery cell has a rated capacity of 1.1A/h. In
the charging process, the batteries were charged at a constant
current (CC) of 0.55A until the battery voltage reached 4.2
V, and then entered a constant voltage (CV) mode until the
battery current dropped below 0.05A. The discharge process
of these batteries involved a CC of 0.55A until the voltage of
the four battery groups dropped to 2.7V. The CS2 35 battery
was selected in our experiment. A total of 882 instances are
included in this dataset, where 617 samples are for training
and 265 samples for test. The capacity of batteries is tested as
the target variable, while the other indicators such as the cycle,
resistance, state of health (SOH), constant current charge time
(CCCT), and constant voltage charge time (CVCT) are used as
the input variables. Fig. 6 depicts the metrics distribution and
capacity degradation change features of the battery. Table V
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(a) Features for input of model. (b) Capacity degradation curve of battery.

Fig. 6. The characteristics of signals collected from battery.

TABLE V
THE RUL PREDICTION ACCURACY ON THE CALCE BATTERY DATASET

Models Prediction accuracy on training set Prediction accuracy on test set Trainingtime
MAE RMSE R2 EV AR MAE RMSE R2 EV AR

Random Forest 0.02 0.03 0.98 0.98 0.02 0.03 0.98 0.98 2s
Logistic Regression 0.05 0.08 0.82 0.83 0.05 0.07 0.89 0.89 3s
LSTM 0.04 0.06 0.90 0.92 0.05 0.07 0.91 0.92 77s
RF-VAR 0.02 0.03 0.98 0.98 0.02 0.03 0.98 0.98 3s
LSTM-VAR 0.03 0.04 0.95 0.96 0.03 0.05 0.94 0.95 113s
This study 0.02 0.04 0.95 0.96 0.02 0.03 0.97 0.98 106s

Fig. 7. The prediction performance of different methods on the CALCE dataset.
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TABLE VI
ABLATION EXPERIMENTS ON THE C-MAPSS DATASET

Ablation approach MAE RMSE R2 EV AR
Time
(s)

Traditional SE-block 12.73 17.60 0.73 0.74 63
Delete ESE-block 13.97 18.46 0.77 0.78 43
Delete ESE+SA 18.76 23.50 0.52 0.71 22
Delete FPCA 13.57 18.38 0.76 0.76 190
This study 12.05 15.56 0.79 0.79 55

summarizes the training and test accuracy of different methods
on the CALCE battery dataset, and the comparative analysis
of test results for different methods are portrayed in Fig. 7.

From Table V it can be observed that the proposed approach
has attained a promising performance compared to that of
other SOTA methods, even though the optimum regressor
algorithms are adopted. On the training set, the proposed
approach has achieved the average MAE, RMSE, R2, and
EV AR of 0.02, 0.04, 0.95, and 0.96, where the MAE of 0.02
is the top performance of all the compared methods. On the
test dataset, the proposed approach has attained the average
MAE, RMSE, R2, EV AR of 0.02, 0.03, 0.97, and 0.98,
respectively, which are superior to those of other compared
methods except for the RF and RF-VAR. Nonetheless, the
RF is an ensemble learning (EL) method, which consists
of multiple decision tree (DT) algorithms. In contrast, the
proposed FPCA-SETCN is an independent network method
and it attains competitive performance in the experiments of
the CALCE battery dataset, which can also be reflected in
Fig. 7. From Fig. 7 it can observed that the predicted curve
of the capacity degradation is generally consistent with their
true curve of the battery capacity degradation change, and
the efficacy of the proposed approach is superior to that of
all other compared methods, which demonstrates the validity
and feasibility of the proposed approach. Besides, it is worth
mentioning that the training time consumption of the proposed
method is 1 minute and 46 seconds, which is more efficient
than LSTM-VAR and slightly worse than the other compared
methods. The key explanation for this is that the computational
complexity of the model is increased somewhat due to the
newly added modules, such as the ESE and SA modules,
which results in a slight increase in training time consumption.
Nevertheless, the largest discrepancy in training time between
our method and the benchmark methods is no more than 2
minutes, which does not pose a significant challenge for the
current hardware level.

D. Ablation study

To further evaluate the prediction performance of the pro-
posed approach, we implement ablation study on the model,
where we analyze the efficacy of the newly added modules
on the original TCN and FPCA component on the test set of
both the C-MAPSS and CALCE battery datasets. We sepa-
rately remove the newly added attention mechanism and the
FPCA module from the proposed FPCA-SETCN architecture

TABLE VII
ABLATION EXPERIMENTS ON THE CALCE DATASET

Ablation approach MAE RMSE R2 EV AR
Time
(s)

Traditional SE-block 0.03 0.04 0.96 0.96 126
Delete ESE-block 0.03 0.05 0.95 0.95 76
Delete ESE+SA 0.04 0.05 0.95 0.95 65
Delete FPCA 0.05 0.05 0.94 0.96 115
This study 0.02 0.03 0.97 0.98 106

Fig. 8. The flowchart of ablation experiments.

to investigate the performance of the ablation models. Table VI
and Table VII display the ablation experiment results on the C-
MAPSS and CALCE datasets, respectively. The computational
time on training is also provided in both Tables. Fig. 8 depicts
a flowchart of the ablation experiments, and the detailed
procedure and result analysis are presented as follows.

1) Ablation on improvement of SE-block: First, we remove
the enhanced SE block and use the traditional one to in-
corporate it into the network for investigating the efficacy
of the enhanced SE block. We notice a slight decrease in
the result of the ablated model, where the test MAE and
RMSE values of using the traditional SE block rise to 12.73
and 17.60 (increased by 0.68 and 2.04) on the C-MAPSS
dataset. The test MAE and RMSE values on the CALCE
battery dataset also rise to 0.03 and 0.04 (both increased by
0.01), and the test R2 and EV AR drop to 0.96 (decreased
by 0.01 and 0.02), respectively. It is evident that the ablated
model experiences a notable decline compared to the proposed
architecture of FPCA-SETCN. In terms of computational time,
we observe that the running time with the traditional SE block
is 8 seconds slower on the C-MAPSS dataset and 20 seconds
slower on the CALCE battery dataset compared to using the
optimized SE block we proposed. Results indicate that the
utilization of the optimized SE block significantly reduces
computational overhead. These findings highlight the potential
of the proposed model for accelerating model training and
inference processes.

2) Ablation on attention modules: Subsequently, the ESE
block is deleted in the network. An obvious drop in ac-
curacy on this ablation model and the MAE and RMSE
values on test dataset increase to 13.97 and 18.46 (increased
by 1.92 and 2.90) on the C-MAPSS dataset, as shown in
Table VI. Similar phenomena are observed on the CALCE
battery dataset. Next, we further remove the whole attention
mechanism, including the ESE and SA modules. The MAE
value of this ablation model rises to 18.76 and increases by
6.71 relative to that of the proposed approach. The RMSE
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value of this ablated model also rises to 23.50 and increases
by 7.94 on the C-MAPSS dataset. Likewise, the test MAE
and RMSE values of this ablated model increase to 0.04
and 0.05 (both increased by 0.02), and the test R2 as well
as EV AR drop to 0.95 (decreased by 0.02 and 0.03) on the
CALCE battery dataset. Based on the experimental results, it
is evident that the attention modules significantly contribute to
the performance enhancement of the proposed approach. The
absence of the ESE+SA block results in a notable decrease
in accuracy compared to the FPCA-SETCN model. However,
it is important to acknowledge that, there is an increase in
training time. While the incorporation of attention modules
introduces a sacrifice in running time, the overall efficiency
gains achieved during model prediction are substantial.

3) Ablation on FPCA: The third part of the ablation ex-
periment is to evaluate the effect of the FPCA in the RUL
prediction. To do so, we eliminate the FPCA module and only
use the SETCN to compare the models. We have observed
that the test accuracy of the ablated model has a significant
decrease on the C-MAPSS dataset, where the R2 drops to 0.76
(decrease by 0.03) and the RMSE rises to 18.38 (increase
by 2.82). Similarly, on the CALCE battery dataset, the test
MAE and RMSE values of the ablated model also rise
to 0.05 (increased by 0.03 and 0.02), and the test R2 and
EV AR drop to 0.94 and 0.96 (decreased by 0.03 and 0.02),
respectively. The results of the ablation experiment indicate
that the performance of the proposed approach is significantly
affected by the FPCA module, compared to the performance
achieved with the aggregated FPCA module.

E. Discussion and Analysis

This study has presented a novel end-to-end neural network
architecture, namely FPCA-SETCN, to perform the RUL
prediction task. In contrast to recent studies, the accuracy
of the proposed approach outperforms the results of most
existing methods on both the C-MAPSS and CALCE battery
datasets. The proposed approach has shown superior advan-
tages and it achieves favorable results in extensive experiments
of RUL prediction. The significant improvements in perfor-
mance achieved by the proposed approach can be attributed to
the optimized TCN module, which incorporates Leaky ReLu
activations and effectively integrates causal and dilated con-
volutions. This integration prevents information leakage from
the future to the past and facilitates backpropagation, even for
negative input values. Besides, the residual connections in the
TCN module ensure a long-term valid usage of long-distance
sequence data. Moreover, the hybrid attention mechanism that
contains the ESE and SA blocks is embedded into the network,
boosting its ability to extract multidimensional features and
effectively leverage inter-channel correlations and spatial point
characteristics. Beyond that, instead of directly feeding raw
signals into deep learning models, the degradation signals have
been transformed to reflect intrinsic characteristics by FPCA,
which has also potentially boosted the prognostic performance
of the proposed approach. Conversely, the other methods are
commonly-used machine learning methods or single neural
networks. The inadequacy of feature extraction in the models

constrains the effectiveness of the prediction. Based on the
experimental analysis, it can be inferred that the proposed
approach has achieved a higher level of effectiveness than
traditional methods, exhibiting an impressive performance for
RUL prediction.

IV. CONCLUSION

Accurately predicting the RUL of mechanical systems is
paramount to their maintenance and health management in
industrial fields. In this article, a novel FPCA-SETCN deep
learning framework was proposed to achieve a reliable and ro-
bust RUL prediction. Our approach leverages FPCA to extract
changing patterns of multi-stream degradation trajectories and
an enhanced TCN with ESE and SA hybrid attention blocks
for adaptive feature calibration and optimal feature selection.
Concretely, the FPCA method is first used for dimensionality
reduction to remove useless information and noise, thereby
extracting the crucial features of data. Then, the TCN module
is used as the backbone network, and the traditional SE-
block is enhanced by substituting the FC layers with the one-
dimensional convolutional layers and ReLU activation layer,
which prevents unnecessary information loss and decreases the
amount of calculations. Combining the ESE and SA blocks,
a hybrid attention mechanism is incorporated into the TCN to
grasp the optimal features and obtain the sequence information
of feature vectors. The proposed framework has the capability
to amplify the important features while lessening the weights
of negligible features, thus the prediction accuracy can be
notably enhanced. Through comprehensive case studies based
on the C-MAPSS and CALCE datasets, we validated the effec-
tiveness and feasibility of our approach and demonstrated its
superiority over existing deep learning algorithms. However,
it is important to acknowledge that, our proposed method
may exhibit certain limitations. One potential shortcoming
is the computational complexity. Advanced model pruning
algorithms can be incorporated to mitigate the computational
complexity of the model while maintaining its impressive
prediction performance. Moreover, the proposed method can
be further extended to other engineering domains and explore
the use of additional attention mechanisms to further enhance
the precision of RUL prediction.
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