
Chapman University Digital Chapman University Digital 

Commons Commons 

ESI Working Papers Economic Science Institute 

12-24-2016 

All-Pay Auctions with Ties All-Pay Auctions with Ties 

Alan Gelder 
Institute for Defense Analyses, abgelder@gmail.com 

Dan Kovenock 
Chapman University, kovenock@chapman.edu 

Brian Roberson 
Purdue University, brobers@purdue.edu 

Follow this and additional works at: https://digitalcommons.chapman.edu/esi_working_papers 

 Part of the Econometrics Commons, Economic Theory Commons, and the Other Economics 

Commons 

Recommended Citation Recommended Citation 
Gelder, A., Kovenock, D., & Roberson, B. (2016). All-pay auctions with ties. ESI Working Paper 16-31. 
Retrieved from http://digitalcommons.chapman.edu/esi_working_papers/209/ 

This Article is brought to you for free and open access by the Economic Science Institute at Chapman University 
Digital Commons. It has been accepted for inclusion in ESI Working Papers by an authorized administrator of 
Chapman University Digital Commons. For more information, please contact laughtin@chapman.edu. 

https://www.chapman.edu/
https://www.chapman.edu/
https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/esi_working_papers
https://digitalcommons.chapman.edu/esi
https://digitalcommons.chapman.edu/esi_working_papers?utm_source=digitalcommons.chapman.edu%2Fesi_working_papers%2F209&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/342?utm_source=digitalcommons.chapman.edu%2Fesi_working_papers%2F209&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/344?utm_source=digitalcommons.chapman.edu%2Fesi_working_papers%2F209&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/353?utm_source=digitalcommons.chapman.edu%2Fesi_working_papers%2F209&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/353?utm_source=digitalcommons.chapman.edu%2Fesi_working_papers%2F209&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laughtin@chapman.edu


All-Pay Auctions with Ties All-Pay Auctions with Ties 

Comments Comments 
Working Paper 16-31 

This paper later underwent peer review and was published as: 

Gelder, A., Kovenock, D. & Roberson, B. All-pay auctions with ties. Econ Theory 7474, 1183–1231 (2022). 
https://doi.org/10.1007/s00199-019-01195-7 

A free-to-read copy of the final published article is available here. 

This article is available at Chapman University Digital Commons: https://digitalcommons.chapman.edu/
esi_working_papers/209 

https://doi.org/10.1007/s00199-019-01195-7
https://rdcu.be/c7kfz
https://digitalcommons.chapman.edu/esi_working_papers/209
https://digitalcommons.chapman.edu/esi_working_papers/209


All-Pay Auctions with Ties

Alan Gelder · Dan Kovenock · Brian Roberson

24 December 2016

Abstract We study the two-player, complete information all-pay auction in which a tie ensues
if neither player outbids the other by more than a given amount. In the event of a tie, each
player receives an identical fraction of the winning prize. Thus players engage in two margins
of competition: losing versus tying, and tying versus winning. Two pertinent parameters are the
margin required for victory and the value of tying relative to winning. We fully characterize the
set of Nash equilibria for the entire parameter space. For much of the parameter space, there
is a unique Nash equilibrium which is also symmetric. Equilibria typically involve randomizing
over multiple disjoint intervals, so that in essence players randomize between attempting to tie
and attempting to win. In equilibrium, expected bids and payoffs are non-monotonic in both the
margin required for victory and the relative value of tying.

Keywords All-pay auction · contest · ties · draws · bid differential

JEL Classification C72 · D44 · D72 · D74

1 Introduction

Eighteen seasons into his playing career, baseball great Frank Robinson famously stated, “Close
don’t count in baseball. Close only counts in horseshoes and hand grenades” (Time magazine, 31
July 1973). Although being close but coming up short does not count for much in baseball, it still
has value in many other contexts. Ties in the business arena can take the form of multi-source or
split-award procurement contracts. A firm that clearly outshines the competition may receive the
full contract; but when competitors fail to adequately distinguish themselves, the contract may
be split between them.1 Political gridlock connotes a tie in which the status quo is perpetuated
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1 For example, in the first great engine war of the mid-1980’s, the U.S. Air Force split the award of a $10 billion
engine contract between General Electric and Pratt & Whitney. A key feature of that split-award decision was
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instead of either party achieving its ideal policy. Even so, for a party that has fallen behind in
numbers, achieving gridlock is a partial victory. In military conflicts, instead of one side dominating
the other, more or less equally matched forces may tie in the sense of a stalemate or a standoff.
Simply having the larger force, of itself, is not enough to win. Winning rather entails far and away
surpassing the opponent by some critical degree.

Contests such as these where players compete by making sunk resource expenditures have long
been modeled with the classic all-pay auction (Baye et al. 1996; Hillman and Riley 1989).2 In its
standard formulation, the prize is awarded to the player with the highest resource expenditure, no
matter how large or small the difference in the players’ expenditures may be. Ties are therefore a
knife-edge event. For many contest settings, however, the magnitude of the expenditure difference
matters, and a tie becomes a viable third outcome. This paper extends the two-player, complete
information all-pay auction by allowing a tie to occur when the difference in expenditures falls
below a specified threshold. We refer to this threshold as the tie margin. The introduction of a tie
margin creates two distinct margins of competition: losing versus tying, and tying versus winning.
As such, players are concerned with both the tie margin and the tie prize, or the prize value that
each player receives in the event of a tie. Under the assumption that winning is preferred to tying
and that tying is preferred to losing, this paper completely characterizes the set of equilibria for
the entire parameter space of tie margins and tie prizes.

As in the classic all-pay auction (with a tie margin of zero), equilibrium in the all-pay auction
with a tie prize and a (strictly positive) tie margin is in mixed strategies. In any mixed strategy
equilibrium of the all-pay auction with ties, each bid (in the support of an equilibrium mixed
strategy) faces either a losing-versus-tying margin of competition or a tying-versus-winning margin
of competition. For example, any bid between zero and the size of the tie margin can at best tie
an opponent’s low bid. Thus, losing-versus-tying is the relevant margin of competition for bids in
this range. For bids above the size of the tie margin, in any equilibrium, players’ mixed strategies
randomize over a set of intervals of bids and systematic gaps in such a way that each bid faces
a single margin of competition: losing-versus-tying or tying-versus-winning. Introducing a strictly
positive tie margin therefore results in a mixed-strategy equilibrium featuring the randomization
of bids across disjoint intervals. These intervals are then further divided into sub-intervals which
have one of two distinct density rates, corresponding to either the losing-versus-tying margin of
competition or the tying-versus-winning margin of competition. We find that there exists a unique
symmetric equilibrium for nearly all parameter configurations. For a range of parameters in which
the tie prize is less than or equal to half of the winning prize, there also exist asymmetric equilibria.

In the unique symmetric mixed-strategy equilibrium, the number of disjoint intervals in the
support—as well as the measure of each interval—is dependent on both the tie margin and the
tie prize. For a given tie prize, the number of disjoint intervals in the support of the symmet-
ric equilibrium (weakly) increases as the tie margin decreases. In the limit, as the tie margin
approaches zero, the number of disjoint intervals becomes arbitrarily large and converges to the
equilibrium of the classic all-pay auction (with a tie margin of zero), in which players continuously
randomize over the entire interval of bids from zero to the value of the winning prize. As a result

the strategic uncertainty as to whether a single proposal would sufficiently dominate the competition and win the
contract outright or whether the proposals would be relatively close and result in a split contract. More recently,
the second great engine war over the contract to supply engines for the F-35 joint strike fighter currently features
a single winner (or supplier), Pratt & Whitney. See Drewes (1987) and Amick (2005) for further details.

2 The list of applications is widespread and includes lobbying, litigation, R&D competitions, college admissions,
election campaigns, warfare, etc. Konrad (2009) and Dechenaux et al. (2015) respectively survey the theoretical
and experimental literature.
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of the discrete jumps between the disjoint intervals, we find that for sufficiently high tie prizes,
expected bids are non-monotonic in the tie-margin. A parallel result is that expected bids are also
non-monotonic in the tie prize for a range of sufficiently low tie margins.

Multiple margins of competition—along the lines of losing-versus-tying and tying-versus-winning—
arise in several related applications. For example, Szech and Weinschenk (2013) build on the work
of Klemperer (1987) in examining a generalized form of price competition with consumer rebates.
In the simplest case, each consumer receives a rebate from exactly one firm and each firm offers
a homogeneous rebate to its distinct subset of the consumers. A profile of prices then results in
one of two outcomes. If there exists a firm whose price is less than its competitor’s after-rebate
price, then that firm wins all of the consumers. Otherwise, each firm wins its own subset of the
consumers. Note that rebates generate a tie margin, and thus this environment features both a
losing-versus-tying margin of competition and a tying-versus-winning margin of competition. This
same issue arises in the context of price competition with tariffs as in Fisher and Wilson (1995),
where tariffs generate a tie margin. It likewise occurs in price competition with segmented con-
sumers and transportation costs as in Shilony (1977), where transportation costs across segments
generate a tie margin. Also related are split-award (procurement) auctions which feature explicit
rules for how awards are split, conditional on the profile of bids received. Recent examples include
Chaturvedi et al. (2014) and Gong et al. (2012).

Our model is naturally connected to several variants of the all-pay auction.3 For example, Szech
(2015) extends Che and Gale’s (1998) model of the all-pay auction with a common bidding cap to
examine the issue of asymmetric tie-breaking rules.4 The tie-margin is zero in that formulation,
but because of the presence of a bidding cap, the choice of a tie-breaking rule (which is equivalent
to a tie prize under risk neutrality) is an important determinant of equilibrium behavior. Stong
(2014) identifies preliminary results for the all-pay auction with ties under incomplete information.
Focusing specifically on a case where the tie margins are relatively large, he likewise identifies that
players randomize their bids over disjoint intervals in equilibrium.5 In the case of an all-pay auction
in which the strategy space is discrete, ties may arise with positive probability (e.g. Bouckaert
et al. 1992; Baye et al. 1994; Cohen and Sela 2007; Cohen and Schwartz 2013). With a discrete
strategy space the gap between feasible bids creates similar losing-verses-tying and tying-verses-
winning tradeoffs as our tie margin. Under the assumption that winning is weakly preferred to
tying and that tying is weakly preferred to losing, Cohen and Sela (2007) argue that the size of
the prize in the event of a tie does not affect the players’ efforts. As we show in this paper, the
discrete strategy space game creates qualitatively different incentives than the continuous strategy
space version of the game.

3 Other contest success functions, aside from the all-pay auction, allow for random noise to play a role, thereby
creating a probabilistic relationship between a player’s expenditure and his probability of winning. The possibility
of ties under alternative contest success functions is discussed in more detail in Gelder et al. (2015).

4 Che and Gale show that if bidders in an all-pay auction have asymmetric valuations for the winning prize,
then an auction-designer can increase expected revenue by introducing a bidding cap that levels the playing field
by reducing the stronger player’s ability to outbid the weaker player. Szech (2015) then goes on to show that
the auction designer can do even better, with regards to equilibrium expected expenditure, by introducing an
asymmetric tie-breaking rule that favors the weaker player (instead of using a symmetric tie-breaking rule where
each player wins the prize with equal probability in the event of a tie).

5 Stong focuses on equilibria where the upper bound of the support is no more than twice the size of the tie
margin (in our map of the parameter space, this corresponds to region II of Figure 1). His model has incomplete
information in that players have privately known valuations of the winning prize and privately known bidding costs.
The ratio of the tie prize to the winning prize is, however, common across players.
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2 Model

The all-pay auction with ties, which we label:

APT{δ, β, v}

is the one-shot, complete-information game in which two players each privately submit a non-
refundable bid xi ≥ 0. The difference between the bids determines the outcome. A player wins a
prize of v > 0 if his bid exceeds his opponent’s by strictly more than δ ≥ 0. If the two bids are
within δ of each other, each player receives βv where β ∈ [0, 1). A player who is outbid by more
than δ receives no prize. Thus, player i’s payoff is as follows:

ui(xi, x−i) =


v − xi if xi − x−i > δ

βv − xi if |xi − x−i| ≤ δ

−xi if x−i − xi > δ

(1)

For much of the parameter space, equilibria are in non-degenerate mixed strategies. Letting Gi
be player i’s bid distribution, and denoting a mass point at x within Gi as αi(x) ∈ [0, 1], we can
write player i’s expected utility for a bid of x as:

ui(x, G−i) = [G−i(x− δ)− α−i(x− δ)] v +

[G−i(x+ δ)−G−i(x− δ) + α−i(x− δ)]βv − x

= G−i(x+ δ)βv + [G−i(x− δ)− α−i(x− δ)] (1− β)v − x (2)

The last line of Equation 2 highlights the two relevant margins of competition. A bid of x narrowly
ties a bid of x+δ and is rewarded with βv, the marginal benefit for tying relative to losing. Similarly,
x beats bids below x − δ, and since these bids otherwise would be tied, the marginal benefit is
(1− β)v.

3 Symmetric Equilibrium

For any given tie margin δ ≥ 0 and tie prize βv ∈ [0, v), the all-pay auction with ties has a
symmetric Nash equilibrium. As illustrated by the different regions in Figure 1, the qualitative
nature of equilibria does, however, vary throughout the parameter space. This section addresses
these different regions in turn and fully characterizes the set of symmetric equilibria. In all but a
few special cases, there is a unique symmetric equilibrium—often with the further distinction of
being the unique Nash equilibrium. Asymmetric equilibria, when they exist, are characterized in
Section 5.

3.1 Prohibitively large tie margins: δ ≥ (1− β)v where δ > 0

We begin with the case of large tie margins. That is, δ ≥ (1−β)v for δ > 0, or the area depicted by
region I of Figure 1. The tie margin δ is a strict lower bound on the cost of winning versus tying,
and (1− β)v is the added benefit from doing so. Therefore, when this condition holds, players are
content to settle for a tie since the cost of winning exceeds the associated benefit. Not only do
players tie, but they tie with bids of zero in equilibrium:
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Fig. 1: Symmetric equilibrium regions in the parameter space.

Theorem 1 If δ ≥ (1 − β)v and δ > 0, there exists a unique Nash equilibrium in which each
player bids 0 with probability one.

A tie margin of this size is prohibitive in the sense that it completely stymies any active
competition. This is the only parameter range for APT{δ, β, v} in which an equilibrium exists in
pure strategies.

3.2 Limiting Boundaries: β = 0, δ ∈ (0, (1− β)v); and β ∈ [0, 1), δ = 0

Before proceeding to the core of our analysis in regions II through IV of Figure 1, we briefly
consider equilibrium behavior along the limiting boundaries where either the tie prize or the tie
margin is equal to zero. The more familiar of these cases is δ = 0 and β ∈ [0, 1), which is
nothing more than the standard all-pay auction. Player’s simply need to outbid their opponent.
Equilibrium behavior is therefore invariant to the exact specification of the tie prize since, after all,
tying is a zero probability event. Along the vertical axis of Figure 1, winning requires outbidding
the other player by a strictly positive tie margin. Yet the result of tying is no different from losing.
The unique equilibrium for δ ∈ (0, v) and β = 0 then entails a set of mass points, starting at
0 and placed at multiples of δ thereafter.6 With the possible exception of the top mass point,
each contains just enough mass (δ/v) so that beating it by δ exactly compensates for the cost of
bidding. Thus here, as in the standard all-pay auction, the expected equilibrium payoff is zero.
Formally, we have the following:

6 The existence of this equilibrium requires a slight alteration of Equation 1: ui(xi, x−i) = v−xi if xi−x−i = δ.
Otherwise, the incentive would be to have mass points that are slightly more than δ apart. With a continuous
bidding space, however, this would not constitute an equilibrium since payoffs could be improved by placing the
mass points even closer.
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Theorem 2 (Boundaries) If δ = 0 and β ∈ [0, 1), the unique Nash equilibrium coincides with
the standard all-pay auction. That is, each player bids as follows:

Gi(x) =

x/v x ∈ [0, v]

1 x > v

If δ ∈ (0, v) and β = 0, the unique Nash equilibrium consists of each player bidding according to
the following distribution:

Gi(x) =



δ/v x ∈ [0, δ)

2δ/v x ∈ [δ, 2δ)
...

...

zδ/v x ∈ [(z − 1)δ, zδ)
...

...⌊
v

δ

⌋
δ/v x ∈

[(⌊
v

δ

⌋
− 1
)
δ,
⌊
v

δ

⌋
δ
)

1 x ≥
⌊
v

δ

⌋
δ

As we will see, these are indeed limiting equilibria in the sense that for a fixed tie prize,
the symmetric equilibria of APT{δ, β, v} converge to the equilibrium of the standard all-pay
auction as the tie margin goes to zero. Likewise, for a fixed tie margin, the symmetric equilibria
of APT{δ, β, v} converge to the equilibrium outlined above with mass points spaced δ apart as
the tie prize goes to zero.

3.3 Tie prize less than one-half: β ∈ (0, 1/2) and δ ∈ (0, (1− β)v)

Turning to regions II.A and III of Figure 1, for any given β ∈ (0, 1/2) and δ ∈ (0, (1 − β)v),
there is a unique symmetric equilibrium. Precise equilibrium strategies differ from one another as
a function of β, δ, and v, yet each is composed of two fundamental building blocks. The first is
simply a mass point at zero α(0) ∈ (0, 1). Second, the remainder of the bidding strategy consists
of interval pairs, each with continuously distributed mass. Intervals within each pair are disjoint,
have the same length, and have lower bounds that are exactly δ apart. Each interval also has a
uniform distribution but with differing density rates: the lower interval in each pair has a density
rate of 1/[(1− β)v], while the upper interval has a density rate of 1/(βv). One final characteristic
is that there are no gaps between successive interval pairs—the upper bound of the upper interval
of one pair is the lower bound of the lower interval of the next. Figure 2 illustrates examples of
equilibrium strategies with one, two, and three pairs of intervals. The strategy with one interval
pair corresponds to the equilibrium structure of region II.A in Figure 1, while the strategies with
two and three interval pairs match the structure of the top two subdivisions of region III. Successive
subdivisions have successively more interval pairs. Each of the strategies in Figure 2 is plotted
with the same scale, which extends from zero to the value of the winning prize v. The tie margin
δ, however, decreases with each additional interval pair.

By definition, for a Nash equilibrium to hold, players must receive the same expected payoff
from any bid within the support of their strategy.7 The density rates of 1/[(1 − β)v] and 1/(βv)

7 With a mass point at zero, one possible exception is a bid of precisely δ. Tying instead of beating α(0) > 0
leads to a strictly lower payoff at δ compared to bids arbitrarily close to δ from above. However, since distributional
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y1
(1−β)v

y1
βv

0 δ v

(a) One pair of intervals, plus a mass point at zero.

α(0)

y1
(1−β)v

y1
βv

y2
(1−β)v

y2
βv

0 δ 2δ 2δ+y1 v

(b) Two pairs of intervals, plus a mass point at zero.

α(0)

y1
(1−β)v

y1
βv

y2
(1−β)v

y2
βv

y3
(1−β)v

y3
βv

0 δ 2δ 2δ+y1 3δ+y1+y2 v

(c) Three pairs of intervals, plus a mass point at zero.

Fig. 2: Density plots of the unique symmetric equilibrium strategies for various δ when β < 1/2.
Each interval’s mass is labeled in terms of its length yi and density rate: 1/[(1− β)v] or 1/βv.

serve to keep players indifferent between bids within an interval. For instance, if x′ and x are bids in
the lower interval of a given pair (x′ > x), then the cost of going between x′ and x is exactly offset
by the additional mass in the upper interval that can be tied. That is, x′−x = [(x′−x)/βv]×βv.
As is evident from Figure 2, there is also no additional mass to beat by increasing from x to x′:
Gi(x′ − δ) = Gi(x− δ). Likewise, if x′ and x are instead bids within the upper interval of a given
pair, there is no additional mass to tie in [x+δ, x′+δ], so the bidding cost is offset by mass in the
lower interval that can be beat instead of tied: x′−x = [(x′−x)/(1−β)v]× (1−β)v. We also need
to ensure that expected payoffs remain the same across intervals. Without a gap in the support
between successive interval pairs, there is a fluid transition between the upper interval of one pair
and the lower interval of the next. The concern is whether expected payoffs are maintained across
the gap between the lower and upper intervals of each pair. Letting xj be an element of the lower
interval of the jth interval pair, the following must hold for j ∈ {1, . . . , k}, where k is the number
of interval pairs:

ui(xj , G−i) = ui(xj + δ, G−i) (3)

supports are necessarily closed sets, a bid of δ is permitted to be in the support as the endpoint of an interval. Even
still, equilibrium behavior is invariant to imposing a special tie breaking rule where a bid of δ beats a bid of zero—a
bid of δ occurs with zero probability either way. Other examples of select points within equilibrium supports having
lower payoffs due the the presence of mass points include Osborne and Pitchik (1986) and Deneckere and Kovenock
(1996).
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We denote the length of each interval in the jth pair as yj . With just one interval pair (k=1), as
in the top panel of Figure 2, the expected utilities for bids of x1 and x1 + δ are:

ui(x1, G−i) =
[
α(0) + y1

(1− β)v + x1

βv

]
βv − x1

ui(x1 + δ, G−i) =
[
α(0) + x1

(1− β)v

]
v +

[
y1 − x1

(1− β)v + y1

βv

]
βv − x1 − δ

So ui(x1, G−i) = ui(x1 + δ, G−i) implies that:

δ = α(0)(1− β)v + y1 (4)

If there are two or more interval pairs (k ≥ 2), then ui(x1 + δ, G−i) has the additional term of
y2 [β/(1− β)] since a bid of x1 + δ also ties the lower interval of the second interval pair. In which
case, ui(x1, G−i) = ui(x1 + δ, G−i) becomes:

δ = α(0)(1− β)v + y1 + y2

(
β

1− β

)
(5)

Equation 3 yields similar expressions for xj when j ≥ 2. The bids of xj and xj + δ both beat any
mass in the first j − 2 interval pairs, as well as mass in the lower interval of the (j − 1)th pair.
The only relevant intervals are the upper interval of the (j − 1)th pair, the lower interval of the
(j + 1)th pair (if j < k), and both intervals in the jth pair. For j ∈ {2, . . . , k − 1}, Equation 3
implies:

δ = yj−1

(
1− β
β

)
+ yj + yj+1

(
β

1− β

)
(6)

Finally, for j = k, we have:

δ = yk−1

(
1− β
β

)
+ yk (7)

The set of Equations 5, 6, and 7 (or only Equation 4 for case where k = 1) form a system of k
equation with k+1 unknowns: (α(0), y1, . . . , yk). We close this system by requiring that the total
mass in the distribution sum to one:

1 = α(0) +
k∑
j=1

yj
(1− β)βv (8)

Together with equation 8, we refer to this system of k + 1 equations collectively as System (K).
As is shown in the appendix, for any k ≥ 1, this system uniquely defines values for α(0) and
y1, . . . , yk (see Proposition 1). In a symmetric equilibrium, each of these values must also be
strictly positive (if one of the values were zero, then players could not be indifferent between the
upper and lower intervals of an adjoining pair). Although payoff equivalence within the support
is given by System (K), we must also check for potential deviations.

We can quickly rule out the profitability of placing bids within the gaps between intervals. For
instance, when there is only one pair of intervals as in panel (a) of Figure 2, the upper bound of the
lower interval y1 ties the upper bound of the upper interval δ + y1, so there is no additional mass
to tie by bidding in the gap (y1, δ). Neither is there any mass to beat since all bids within this
gap are below the tie margin δ. Therefore, given the added cost, bids within the gap are strictly
dominated. The argument is similar when there are two or more pairs of intervals, as in panels (b)
and (c) of Figure 2. Bids within (y1, δ) still cannot beat any mass, and although these bids may tie
the lower interval of the second pair, the density rate of 1/[(1−β)v] over (δ+y1, δ+y1 +y2] is not
enough to compensate for the cost of bidding. For the gap between the lower and upper intervals
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of the jth pair, (oj , oj), where j ≥ 2, a player’s expected payoff is monotonically decreasing over
the first part of the gap. That is, over (oj , oj + δ− yj − yj−1], where there is no mass to beat that
oj does not already beat, and any additional mass to tie that oj does not already tie has the lower
density rate of 1/[(1 − β)v]. Payoffs over the remainder of the gap, however, are monotonically
increasing since the expected benefit of beating mass in the upper interval of the (j − 1)th pair
surpassing the cost (i.e. (1− β)v/(βv) > 1 for β < 1/2). A deviating player would therefore want
to increase his bid to oj , which is in the support, and beat the (j − 1)th pair entirely.

Ultimately, the number of interval pairs within an equilibrium is pinned down by whether it
is profitable to outbid the support. The point to check is a bid of exactly δ above the maximal
element in the support. Such a bid is a sure win. Bidding any higher is strictly dominated due
to the cost, and bids that are lower either entail a higher cost for tying and beating the same
amount of mass as the maximal element in the support, or they beat some—but not all—of the
topmost interval; and at a density rate of 1/(βv), there is a higher payoff for beating the entire
interval. In equilibrium, there must be enough interval pairs so that the cost of guaranteeing a
sure win is sufficiently high relative to the payoff achieved from the costless bid of zero. Although
the exact number of interval pairs k is implicitly defined, there is a finite set of possible values it
can take. The upper bound of that set bv/δc, where b·c is the floor function, is based on the fact
that intervals within a pair have lower bounds that are spaced δ apart, and a bid of zero strictly
dominates bids greater than v. An explicit characterization of equilibrium is given below.

Theorem 3 For δ ∈ (0, (1 − β)v) and β ∈ (0, 1/2), the game APT{δ, β, v} has a unique sym-
metric equilibrium. Let x? = (α, y1, . . . , yz, . . . , yk) be the unique solution to System (K), where
k ∈ {1, . . . , bv/δc} is implicitly defined as the largest integer for which all elements of x? are
strictly positive. Each player’s bid distribution Gi is then defined as follows:

α+
x

(1− β)v x ∈ [0, y1)

α+
y1

(1− β)v x ∈ [y1, δ)

α+
y1

(1− β)v +
x− δ
βv

x ∈ [δ, δ + y1)

Gi(x) = α+
y1

(1− β)βv +
x− δ − y1

(1− β)v x ∈ [δ + y1, δ + y1 + y2)

α+
y1

(1− β)βv +
y2

(1− β)v x ∈ [δ + y1 + y2, 2δ + y1)

α+
y1

(1− β)βv +
y2

(1− β)v +
x− 2δ − y1

βv
x ∈ [2δ + y1, 2δ + y1 + y2)

...
...

α+

∑z−1
j=1 yj

(1− β)βv +
x− (z − 1)δ −

∑z−1
j=1 yj

(1− β)v x ∈ [(z − 1)δ +
∑z−1
j=1 yj ,

(z − 1)δ +
∑z
j=1 yj)

α+

∑z−1
j=1 yj

(1− β)βv +
yz

(1− β)v x ∈ [(z − 1)δ +
∑z
j=1 yj ,

zδ +
∑z−1
j=1 yj)

α+

∑z−1
j=1 yj

(1− β)βv +
yz

(1− β)v +
x− zδ −

∑z−1
j=1 yj

βv
x ∈ [zδ +

∑z−1
j=1 yj ,

zδ +
∑z
j=1 yj)
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...
...

1 x > kδ +
∑k
j=1 yj

Our exposition thus far has focused on arguing that Gi is indeed an equilibrium. Theorem 3
extends well beyond that, however, in asserting thatGi is in fact the unique symmetric equilibrium.
The necessary conditions for establishing uniqueness are presented in the appendix as a series of
lemmata, each successively pinning down the precise form that an equilibrium strategy must take.
The first of these lemmata rules out the possibility of a mass point at any bid greater than zero
(Lemma 1). The following two identify 1/[(1 − β)v] and 1/(βv) as the only permissible density
rates for continuously distributed mass in an equilibrium distribution (Lemmata 2 and 3). In the
process of identifying these density rates, it becomes clear that equilibrium supports must be
composed of interval pairs with systematic gaps (Corollary 1). Specifically, whenever one player’s
support has an interval with a density rate of 1/[(1− β)v], the other player’s must have no mass
δ below it and an interval with a density rate of 1/(βv) placed δ above it. Likewise, every interval
with a density rate of 1/(βv) must necessarily be balanced by the other player placing no mass δ
above it and an interval of density rate 1/[(1− β)v] at δ below it. Beyond that, it is unclear up to
this point how these interval pairs fit together and whether they are symmetric across players.

The next lemma, the first to exclusively focus on β ∈ (0, 1/2), goes a long way in clarifying
how the interval pairs fit together.8 It does so by specifying three properties that must hold for
any mass that is placed δ above a gap in the other player’s distribution (i.e. regions where the
cost differential between any two bids must be fully offset by tying additional mass rather than
beating it). In particular, mass in any such region must be connected, have a density rate of
1/[(1 − β)v], and have a lower bound that is precisely δ above the start of the gap in the other
player’s distribution (Lemma 4). A major implication is that interval pairs cannot overlap. That
is, the upper interval of one pair must always fall below the lower interval of the next. Another
critical linchpin for piecing together the equilibrium structure is that any interval with a density
rate of 1/[(1−β)v] must immediately follow either a mass point or an interval with a density rate
of 1/(βv). Thus there cannot be any gaps between subsequent interval pairs. This result follows by
combining the previous lemma with an additional lemma that eliminates the possibility that an
interval of density rate 1/[(1− β)v] could immediately follow a gap of δ or more (Lemma 5). Any
equilibrium, symmetric or asymmetric, must satisfy these properties. The culmination of these
results is Proposition 1, which identifies that there is indeed a unique symmetric equilibrium.

Several distinct patterns appear in the equilibrium manifold by varying the tie prize βv and
the tie margin δ—especially with regard to the number and width of the interval pairs. Fixing
β at 0.4 and the winning prize v at 100, Figure 3 portrays the support of the unique symmetric
equilibrium when δ ∈ (0, (1−β)v). For any given δ on the vertical axis, the gray and blue shaded
areas of the horizontal cross section at that point form the equilibrium support. For instance,
the three examples of equilibria in Figure 2 are drawn to scale so that they correspond to the
three horizontal red lines in Figure 3. The top red line at δ = 33.33 (or v/3) involves one pair of
intervals: [0, 17.78] and [33.33, 51.11], with respective density rates of 1/60 and 1/40 (alternatively,
1/[(1−β)v] and 1/βv). The second red line at δ = 25 (v/4) has two pairs of intervals, the first pair
in gray ([0, 8.67] and [25, 33.67]), and the second in blue ([33.67, 45.67] and [58.67, 70.67]). Then
at δ = 20 (v/5) there are three interval pairs, marked gray, blue, and gray again ([0, 4.44] and

8 Lemmata 1 and 2 hold for all β ∈ (0, 1) and δ ∈ (0, (1− β)v), while Lemma 3 and Corollary 1 hold over the
same range but exclude β = 1/2.



All-Pay Auctions with Ties 11

0

20

40

60

0 25 50 75 100

Equilibrium Support

T
ie

 M
ar

gi
n 

( δ
 )

β = 0.4

Fig. 3: Support of the unique symmetric equilibrium: β = 0.4, v = 100, and δ ∈ (0, (1−β)v). The
three horizontal red lines correspond to the equilibria in Figure 2 for δ ∈ {v/3, v/4, v/5}.

[20, 24.44]; [24.44, 33.14] and [44.44, 53.14]; [53.14, 60.10] and [73.14, 80.10]). Successive interval
pairs arise at the point where it would otherwise become profitable to outbid the upper bound of
the support by δ. In the uppermost pair, the width of the intervals always increases as δ decreases.
The reverse is true for the second highest pair. Thereafter the effect is non-monotonic—the width
sometimes increasing, sometimes decreasing. The net effect, however, is that as δ decreases, the
intervals and their corresponding gaps become increasingly fine and gradually fill the full range
of bids between zero and the winning prize v. Finally, as the tie margin δ approach zero, the
equilibrium converges to that of the standard all pay auction in which players uniformly randomize
between zero and v at the rate of 1/v. Although for any strictly positive δ there are gaps in the
support, the average density rate over any measurable subset of [0, v] converges to 1/v.

In addition to varying δ, we can also examine the equilibrium manifold for different sizes of
the tie prize. Figure 4 contains eight panels showing the equilibrium support for δ ∈ (0, (1− β)v)
when β ∈ {0.1, 0.3, 0.45, 0.49999, 0.50001, 0.55, 0.7, 0.9} and v = 100. The tie margin is once
again on the vertical axis, and the equilibrium support for a particular δ is the shaded portion of
the horizontal cross section. The scale of the vertical axis varies from panel to panel with changes
in (1 − β)v, but for comparing the width of intervals, the scale of the horizontal axis is constant
across all eight panels. In particular, focusing on the first four panels where β < 1/2, the width
of the widest interval is increasing in β. The maximal width of an interval ranges from 5 in the
first panel with β = 0.1 to just shy of 25 in the fourth panel with β = 0.49999 (the maximum
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occurring at δ = (1− β)v/2 in each case). When a tie has little value, the narrow intervals reflect
a strategy of randomizing almost discretely over distinct bidding levels. Indeed, as β approaches
0, bids are increasingly concentrated near each multiple of δ, so that the distribution converges
to the limiting case in Theorem 2. As a tie becomes more valuable, however, the intervals widen
and players randomize not only across but also within the different bidding levels. Another closely
related feature of the panels with β < 1/2 is that the width of the intervals in the bottommost pair
alternately grow to δ or shrink to zero as β increases to 1/2. This sawtooth pattern is discernible
with β = 0.4 in Figure 3, but it becomes especially prominent in the third and fourth panels of
Figure 4 when β = 0.45 and 0.49999. Notably, by taking on this sawtooth pattern, the bottommost
interval pair is able to make a continuous transition from the equilibrium structure where β < 1/2
to the otherwise qualitatively different structure for β > 1/2.

3.4 Tie prize greater than one-half: β ∈ (1/2, 1) and δ ∈ (0, (1− β)v)

We next consider symmetric equilibria for a tie prize greater than one-half the winning prize.
Specifically, we are turning to regions II.B and IV of Figure 1 where β ∈ (1/2, 1) and δ ∈
(0, (1 − β)v). The increased desirability of tying leads to strikingly different patterns in the
structure of equilibria, as the last four panels of Figure 4 can attest. These differences remain
minimal in region II.B where δ ∈ ((1 − β)βv, (1 − β)v). There, like in region II.A, the unique
Nash equilibrium takes the form depicted in panel (a) of Figure 2; the sole caveat being that with
β > 1/2, the density rate of 1/[(1− β)v] over the bottom interval now exceeds the density rate of
1/βv over the top interval. Real differences to the structure of equilibria only come into play in
region IV with δ ∈ (0, (1− β)βv].

Instead of tightly packed intervals with gaps that are never more than δ apart as we saw for
β < 1/2, equilibria with β > 1/2 are primarily built of intervals that are 2δ in length. Moreover,
as the tie margin δ decreases in size, these equilibria are composed of successively more intervals
of length-2δ. Two other components of the equilibrium strategies are a mass point at zero, and
an occasional pair of intervals with lower bounds at zero and δ. This structure is visible from
the supports in Figure 4 where the intervals of length-2δ are represented by the purple and green
regions—the change in colors based on the presence or absence of the periodically appearing pair
of intervals in gray. Besides just looking at the supports, Figure 5 plots four examples of the
actual equilibrium strategies. These four examples correspond to the equilibrium structure in the
top four subdivisions of region IV (see Figure 1). Each length-2δ interval has a density rate of
1/[(1 − β)v] over the bottom half and 1/(βv) over the top half. Figure 5 also shows that these
density rates apply to the pair of intervals at zero and δ. As with β < 1/2, the tandem density
rates of 1/[(1− β)v] and 1/(βv) allow players to remain indifferent over bids within each interval.
The larger issue is maintaining indifference across intervals.

Consecutive intervals of length-2δ are spaced so that their lower bounds, φj and φj+1, are
always δ/[(1−β)β] apart. This spacing satisfies ui(φj , G−i) = ui(φj+1, G−i) and also ensures that
the bids between the length-2δ intervals are strictly dominated. Expected payoffs monotonically
decrease over (φj + 2δ, φj+1 − δ] since there is no additional mass to tie, and beating mass that
was previously tied cannot compensate for the cost of bidding (i.e. (1−β)/β < 1). Conversely, for
bids in [φj+1 − δ, φj+1), tying mass at a rate of 1/[(1 − β)v] more than covers the bidding cost
(i.e. β/(1− β) > 1), and expected payoffs continue to rise until φj+1. These same arguments also
rule out the possibility of a profitable deviation in [φ1− δ, φ1) or in (φp + 2δ, φp + 3δ], where p is
the total number of length-2δ intervals. Furthermore, for bids above φp + 3δ, winning is already
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Fig. 4: Support of the unique symmetric equilibrium for various β when v = 100. The vertical axis
plots δ ∈ (0, (1− β)v). Shaded regions on the horizontal axis for a given δ mark the support.



14 A. Gelder, D. Kovenock, B. Roberson

α(0)
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(1−β)v 1
βv

0 δ φ1 φ1+δ φ1+2δ v

(a) One interval of length-2δ, plus a mass point at zero.

α(0) 1
(1−β)v 1

βv

0 ψ δ ψ+δ φ1 φ1+δ φ1+2δ v

(b) One interval of length-2δ, an interval pair near zero, and a mass point at zero.

α(0)
1

(1−β)v 1
βv

0 δ φ1 φ1+δ φ1+2δ φ2 φ2+δ φ2+2δ v

(c) Two intervals of length-2δ, plus a mass point at zero.

α(0) 1
(1−β)v 1

βv

0 ψ δ ψ+δ φ1 φ1+δ φ1+2δ φ2 φ2+δ φ2+2δ v

(d) Two intervals of length-2δ, an interval pair near zero, and a mass point at zero.

Fig. 5: Density plots of symmetric equilibrium strategies for various δ when β > 1/2. Equilibria
contain intervals of length-2δ, a mass point at zero, and, periodically, an interval pair near zero.

assured but the bidding cost continues to rise, so these cannot be profitable either. The higher
value of tying precludes the incentive to outbid the distribution by δ.

The lower bound of the first length-2δ interval φ1 is defined to satisfy the indifference condition
ui(0, G−i) = ui(φ1, G−i). These expected utilities are, however, contingent on the presence or
absence of the interval pair at zero and δ. When absent, ui(0, G−i) = α(0)βv and ui(φ1, G−i) =
α(0)v+[δ/(1− β)v]βv−φ1, so φ1 = α(0)(1−β)v+[δβ/(1−β)]. The size of the mass point at zero
is then simply the remainder after each of the length-2δ intervals. Specifically, for p intervals of
length-2δ, α(0) = 1− [δp/(1−β)βv]. Transitioning from the absence to the presence of the interval
pair at zero and δ stems from monitoring a particularly critical potential deviation. Bidding in
(0, min{δ, φ1− δ}] is never profitable since it entails a higher bidding cost without any additional
mass to tie or beat. However, if δ < φ1 − δ, it may become profitable to bid immediately above
δ so as to beat the mass point at zero. Since a bid of δ technically ties a bid of zero, and since
a deviating player would want to bid on the extreme low end of (δ, φ1 − δ) to reduce bidding
costs, we denote the supremum of player i’s expected utility as δ is approached from above by
ui(δ, G−i). (This notation is repeatedly used in the proofs in the appendix.) In equilibrium, we
must have ui(0, G−i) ≥ ui(δ, G−i), so:

δ ≥ α(0)(1− β)v ⇒ δ ≥ (1− β)βv
p+ β

(9)
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For a given p, as soon as Equation 9 fails to hold, the interval pair at zero and δ becomes part
of the equilibrium. With the presence of the interval pair, ui(0, G−i) = ui(φ1, G−i) then implies
the following:

φ1 = α(0)(1− β)v + ψ

(
1 + β

β

)
+ δ

(
β

1− β

)
We can fully specify φ1, α(0), and ψ with the use of two additional equations. The first is the
constraint that the total mass must sum to one:

1 = α(0) + ψ

(1− β)βv + δp

(1− β)βv

The second, δ = α(0)(1− β)v + ψ, comes from equating expected utilities across the intervals at
δ and zero.9 Combining these yields the following:

φ1 = v − δp

(1− β)β ; α(0) = δ(1 + p)− (1− β)βv
(1− β)2v

; ψ = βv − δ
(
p+ β

1− β

)
(10)

The positivity of ψ is based on reversing the inequality in Equation 9. Additionally, the constraint
that α(0) ≥ 0 coincides with the constraint that ψ ≤ δ. Each is satisfied so long as:

δ ≥ (1− β)βv
1 + p

(11)

When Equation 11 holds with equality, α(0) = 0 and ψ = δ, so the interval pair at zero and δ

becomes yet another length-2δ interval. Without a mass point at zero to anchor expected payoffs,
there are a multiplicity of symmetric equilibria, and the lower bound of the support may assume
any value in [0, β2v/(1 + p)] (here, p does not include the newly formed length-2δ interval).
Expected payoffs for these equilibria fall from δβ/(1−β) to 0 as the lower bound increases from 0
to β2v/(1 + p). These two extremes for the lower bound can be seen in Figure 4. For instance, in
the panel with β = 0.7, the first length-2δ interval is formed at δ = 21. As δ approaches 21 from
above (i.e.p = 0), the length-2δ interval is marked in gray and has a lower bound of zero; whereas,
from below, it is marked in purple and has a lower bound at β2v/(1 + p) = (0.7)2 × 100 = 49.
Then at δ = 10.5, a second length-2δ interval comes into being. When approached from above (i.e.
p = 1), the two length-2δ intervals have lower bounds of 0 and 50 = δ/[(1−β)β], colored gray and
green. From below and marked in purple, the lower bounds are 24.5 = (0.7)2 × 100/2 and 74.5.
Hence, transitioning from the presence to the absence of an interval pair at zero and δ involves
jumping from one extreme to the other of the set of equilibria at δ = (1− β)βv/(1 + p). We can
formally characterize the equilibria as follows:

Theorem 4 Let δ ∈ (0, (1 − β)v) and β ∈ (1/2, 1). Also, define p = b(1− β)βv/δc where b·c
is the floor function. If δ 6= (1 − β)βv/(1 + p), there exists a unique Nash equilibrium which is
also symmetric. The characterization is as follows. If p > 1, let φz − φz−1 = δ/(1 − β)β for

9 This is equivalent to Equation 4 with y1 replaced by ψ where the equivalence holds because a bid of ψ+ δ does
not tie a bid of φ1. We can also note that there are no profitable deviations in (ψ, δ) or in (δ + ψ, φ1 − δ] since
there is no additional mass to tie or beat.
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z ∈ {2, . . . , p}. For p = 0, define H(x) = 1. Otherwise, define H : [φ1, ∞)→ [ξ, 1] as:

H(x) =



ξ + x− φ1

(1− β)v
x ∈ [φ1, φ1 + δ)

ξ + δ

(1− β)v
+ x− φ1 − δ

βv
x ∈ [φ1 + δ, φ1 + 2δ)

ξ + δ

(1− β)βv
x ∈ [φ1 + 2δ, φ2)

...
...

ξ + (z − 1)δ
(1− β)βv

+ x− φz
(1− β)v

x ∈ [φz, φz + δ)

ξ + (z − 1)δ
(1− β)βv

+ δ

(1− β)v
+ x− φz − δ

βv
x ∈ [φz + δ, φz + 2δ)

ξ + zδ

(1− β)βv
x ∈ [φz + 2δ, φz+1)

...
...

1 x > φp + 2δ

For p ≥ 1, if δ ∈ [ (1 − β)βv/(p + β), (1 − β)βv/p ), let φ1 = α(0)(1 − β)v + [δβ/(1 − β)] and
α(0) = ξ = 1− [δp/(1− β)βv]. Each player’s equilibrium strategy is:

Gi(x) =


α(0) x ∈ [0, φ1)

H(x) x ≥ φ1

(12)

If δ ∈ ( (1− β)βv/(1 + p), (1− β)βv/(p+ β) ), then φ1, α(0), and ψ are defined by Equation 10.
With ξ = α(0) + [ψ/(1− β)βv], each player has the following equilibrium strategy:

Gi(x) =



α(0) + x

(1− β)v
x ∈ [0, ψ)

α(0) + ψ

(1− β)v
x ∈ [ψ, δ)

α(0) + ψ

(1− β)v
+ x− δ

βv
x ∈ [δ, δ + ψ)

α(0) + ψ

(1− β)βv
x ∈ [δ + ψ, φ1)

H(x) x ≥ φ1

(13)

Finally, for p ≥ 1, if δ = (1−β)βv/p, there is a continuum of symmetric Nash equilibrium (which
also constitutes the full set of Nash equilibrium). Let ` ∈ [0, β2v/(1 + p)]; φ1 = `+ [δ/(1− β)β];
and ξ = δ/(1 − β)βv. The complete set of symmetric equilibria is characterized by the following
strategy:

Gi(x) =



x− `
(1− β)v

x ∈ [`, `+ δ)

δ

(1− β)v
+ x− `− δ

βv
x ∈ [`+ δ, `+ 2δ)

δ

(1− β)βv
x ∈ [`+ 2δ, φ1)

H(x) x ≥ φ1

Once again, this is much more than a statement of existence. Theorem 4 fully characterizes the
set of Nash equilibria for all β ∈ (1/2, 1) and δ ∈ (0, (1− β)v). Moreover, aside from a measure-
zero set (i.e. δ = (1 − β)βv/(1 + p)), the equilibrium specified is unique. In terms of necessary
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conditions, Lemmata 1 through 3 and Corollary 1 again apply. Four additional lemmata are then
required to isolate the exact equilibrium structure. The first specifies that there must be a space
of at least 2δ between any two portions of the support that have a density rate of 1/[(1 − β)v]
(Lemma 6). Given the structure that is already in place for coupling intervals of 1/[(1−β)v] in one
player’s support with intervals of 1/(βv) in the other’s (see Corollary 1), limiting the proximity
of consecutive intervals of a particular density rate is quite powerful. Building on this, Lemma 7
identifies that if either player’s support has a gap of at least δ, which is immediately followed
by a density rate of 1/[(1 − β)v], then the remainder of each player’s distribution is made up of
intervals of length-2δ (although the lower bounds and density rates of these intervals may differ
across players). The existence of such a gap in a player’s support is clarified by Lemma 8, which
also delineates how mass must be distributed below the gap. Symmetry is then finally established
by Lemma 9.

3.5 Tie prize equal to one-half: β = 1/2, δ ∈ (0, (1− β)v)

We conclude our characterization with a sketch of equilibria when β takes on the rather unique
value of 1/2. Equilibria thus far have been typified by the density rates of 1/βv and 1/[(1− β)v].
Moreover, the uniqueness results in Theorems 3 and 4 are largely dependent on these density rates
being distinct from one another. Since these density rates are equal at β = 1/2, uniqueness is easily
lost. A significant exception where uniqueness is maintained is δ ∈ (v/4, (1− β)v) with β = 1/2.
This is the thin gray line separating regions II.A and II.B in Figure 1, and the equilibrium falls
right in step: a mass point at zero, followed by randomization at the rate of v/2 over a lower and
an upper interval.10 Given the smooth transition for these values of δ between the panels where
β = 0.49999 and β = 0.50001 in Figure 4, uniqueness is only natural. These panels also illustrate
that for smaller values of δ, the bottom portion of the distribution is unique. There is either a
mass point at zero with a pair of intervals beginning at 0 and δ, or an isolated mass point at
zero.11 The remainder of the distribution is then characterized by the following property:12

P. Gi contains p = b(1− β)βv/δc intervals of length 4δ, each with a total mass of 4δ/v. These
length-4δ intervals begin at xi, with the bottom of one interval being the top of the next.
The bottom quarter of each length-4δ interval contains no mass; the third quarter (from the
bottom) has 2δ/v, which is uniformly distributed at the rate of 2/v; and the distribution of
the remaining 2δ/v over the second and top quarter is subject to the following constraints:
i. The mass is continuously distributed.
ii. For any x in the top quarter, gi(x) + gi(x − 2δ) = 2/v (where gi(x) is the density rate of

Gi at x).
iii. For any x in the higher of two adjacent length-4δ intervals, gi(x) = gi(x− 4δ) (i.e. density

rates are the same across length-4δ intervals).

Although there tends to be a rich multiplicity of equilibria, the bottom of the distribution gives
further structure to P. In particular, except for the case where δ = v/4p, the set of equilibria for
10 Formally, the equilibrium distribution is equivalent to the one in Theorem 3 with k = 1. It is also equivalent
to Equation 13 in Theorem 4 with p=0. The necessary conditions for this equilibrium are established by part B of
Lemma 12.
11 In particular, the portion of the distribution before H(x) in Equations 12 and 13 of Theorem 4 is the bottom
portion of any equilibrium distribution when β = 1/2 and δ 6= (1 − β)βv/p (where p = b(1− β)βv/δc, as defined
in Theorem 4). Further details on the bottom of the distribution can be found in Lemma 12.
12 This property comprises the entire distribution for the case where δ = (1− β)βv/p.
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Fig. 6: Expected equilibrium bids by tie margin and tie prize; v = 100.

any given δ are payoff equivalent.13 This structure also allows a unique equilibrium to emerge at
δ = v/(4p+ 2). On Figure 4, this corresponds to the pinnacle of the gray triangles at 0 and δ, and
indeed there is a fluid transition here between the panels where β = 0.49999 and β = 0.50001 (for
β > 1/2, this is also the point where the color changes from purple to green).

4 Comparative Statics

The characterization of equilibrium naturally leads to predictions about how aggressively players
compete on average. We can particularly address the question of whether players tend to be more
or less aggressive for various fluctuations in the size of the tie prize and the tie margin. From the
perspective of a policy maker or contest organizer who is trying to achieve some overall level of
competition—be it high or low—this issue is paramount. Following the equilibrium characteriza-
tion in Theorems 3 and 4, Figure 6 plots a player’s expected bid (vertical axis) in terms of both
tie margins (horizontal axis) and tie prizes (different lines within each graph). Fixing the prize for
winning again at v = 100, the left panel shows six values of β < 1/2, while five values of β > 1/2
are represented in the right panel (axes have differing scales across panels). Several features here
are worth highlighting, the first of which we state as a formal result.

Theorem 5 For sufficiently low tie margins (roughly δ < 0.2625 × v), expected equilibrium bids
are non-monotonic in the tie prize. Likewise, for sufficiently high tie prizes (roughly β > 0.3347),
expected equilibrium bids are non-monotonic in the tie margin.

Cutoffs here are based on numerical calculations. In terms of Figure 6, the first part of the
theorem refers to lines that cross, while the second part addresses non-monotonicity within a given
line. Not only is there non-monotonicity in each dimension, but the magnitudes vary considerably.
Fixing β, the largest oscillation is always the first. Thereafter, oscillations occur more rapidly as δ
continues to decrease, but the crest-to-trough distances becomes successively smaller. Increasing
β leads to more volatile oscillations in the sense that the crest-to-trough distances are greater
13 When δ ∈ [v/(4p + 2), v/4p) the expected payoff is (v/2) − 2δp, whereas the expected payoff is δ for δ ∈

(v/(4p+ 4), v/(4p+ 2)).
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Fig. 7: Density plot of strategies for player w (Top) and player y (Bottom) when β < 1/2. Each
interval’s mass is labeled in terms of its density rate (1/[(1− β)v] or 1/βv), and length (yi or wi).

over even shorter wavelengths. The angle of ascent also grows so that each oscillation begins
with a shear vertical jump once β ≥ 1/2. These jumps correspond to the parameter values for
which there is a continuum of equilibria, and every expected bid within the jump is attainable by
some equilibrium. Another thing to note is the convergence of expected bids to v/2, the expected
bid in the standard all-pay auction, as the tie margin decreases to zero. Although the paths to
convergence differ considerably between the two panels. On the left, with β < 1/2, convergence is
entirely from below; whereas on the right, with β > 1/2, the oscillations extend both far above
and below v/2, so that v/2 only becomes a focal point as the oscillations vanish in size.

5 Asymmetric Equilibria

The occurrence of asymmetric equilibria is limited to select portions of the parameter space,
solely arising when β ≤ 1/2.14 We have seen that Lemmata 1 through 5 form a set of necessary
conditions which must hold in any equilibrium, either symmetric or asymmetric, when β ∈ (0, 1/2)
and δ ∈ (0, (1 − β)v) (see the paragraphs following Theorem 3). Taken together, these lemmata
specify that an equilibrium must have the form depicted in Figure 7. Namely, mass points at zero
αw(0), αy(0) ∈ [0, 1), followed by interval pairs with the familiar density rates of [1/(1− β)v] and
1/(βv)—the length of the lower interval in one player’s distribution matching the length of the
upper interval in the other player’s distribution. We label the length of the successive 1/[(1−β)v]
segments for player w as w1, w2, . . . , wk ≥ 0, and likewise for player y as y1, y2, . . . , yk ≥ 0. When
each player’s mass point does indeed have positive mass and when each of the interval pairs has
a positive length, then the equilibrium is necessarily symmetric (see Proposition 1). Asymmetric
equilibria arise when an interval pair has a length of zero or a mass point has no mass.

Zeroing out an interval pair or a mass point is not without consequence. Each segment with
a density rate of [1/(1 − β)v] must be immediately preceded by some other mass (see Lemma 5
and the discussion following its proof in Appendix B). So if one player’s mass point does not have
any mass, their first interval must have a length of zero (i.e. if αw(0) = 0 then w1 = 0). Similarly,
when one interval pair has a length of zero, the next adjoining one must be zeroed out as well (so
14 For β = 1/2, asymmetric equilibria occur along parts of the line where δ ∈ (0, v/4]. As noted previously, such
equilibria are governed by Property P. Our focus in this section is β < 1/2.
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Fig. 8: Regions where asymmetric equilibria exist for β ∈ (0, 1/2) and δ ∈ (0, (1−β)v). Adjoining
regions with different forms of asymmetric equilibria are colored differently.

if wj = 0 then yj+1 = 0, and if yj = 0 then wj+1 = 0 for all j ≥ 1). Exhaustively checking for all
forms of asymmetric equilibria is therefore an exercise in varying the combination of interval pairs
which are set to zero (potentially including one player’s mass point). This process is described in
Algorithm 1 in Appendix E.

Omitting a certain combination of interval pairs may form an equilibrium in one part of the
parameter space, while another part of the parameter space may require a different combina-
tion. Figure 8 portrays the portions of the parameter space (with β < 1/2) where any form of
asymmetric equilibrium exists. The changing colors represent the transition from one form of equi-
librium to another between adjoining regions that each have asymmetric equilibria. For instance,
in the triangle formed by (0, v/2), (0, v), and (v/3, v/3) (i.e. by δ ∈ [(1− β)v/2, (1− 2β)v] for
β ∈ (0, 1/3] ), there is only one positive mass point and one interval pair. Player y specifically
has a mass point αy(0) > 0 and randomizes over [0, y1], while player w solely randomizes over
[δ, δ + y1] (the assignment of players to the roles of y and w is of course arbitrary and the roles
and could be switched).15 The adjoining triangle to the right, spanning (v/4, v/2), (v/3, v/2),
and (v/3, v/3), is similar except that, in addition to αy(0) > 0 and y1 > 0, player w also has a
strictly positive mass point at zero: αw(0) > 0. Immediately below the first triangle, there are
also two crescent-shaped regions (with endpoints of (0, v/2) and (v/3, v/3)). Each of these regions
involve two interval pairs with positive lengths (y1, w2 > 0). Player y thus randomizes between
the antipodes of either very low or very high bids, while player w targets bids in the middle.16

15 Solving for this equilibrium, y1 = βv and αy(0) = 1− [β/(1− β)].
16 Player y randomizes over [0, δ] at 1/[(1− β)v] and over [2δ+ y1, 2δ+ y1 +w2] at 1/(βv). Player w randomizes
over [δ, δ + y1] at 1/(βv) and over [δ + y1, δ + y1 + w2] at the rate of 1/[(1− β)v].
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The difference between these two crescents is that player w has a mass point at zero in the lower
crescent, but not in the upper one.

Following suit with the symmetric case, as the tie margin δ decreases, the number of inter-
val pairs included in each asymmetric equilibrium progressively increases.17 Most notably, this
leads again to a convergence result in which the average density rate over any measurable subset
of [0, v] approaches 1/v (the standard all-pay auction rate) as δ goes to zero. It is also worth
mentioning that for δ < v/4, the regions distinguishing one form of asymmetric equilibrium from
another occasionally overlap so that a given point may have multiple distinct forms of asymmetric
equilibria.

6 Conclusion

We theoretically characterize equilibrium behavior in the two-player, complete information, all-
pay auction with ties. Unlike the typical knife-edge formulation of players tying if they submit
precisely the same bid, a tie occurs in our environment if neither player outbids the other by
more than a predetermined amount. This expands the win-loss paradigm so that ties become
a viable third outcome. Such an expansion is vital for studying contests where the distinction
of winning may not be granted to any player; and when it is granted, it requires a quantum
difference in performance (as is the case in military standoffs, political gridlock, and split-award
procurement contracts to name a few). A pervasive feature of equilibrium strategies here is that
players randomize over multiple disjoint intervals. Even when asymmetric equilibria exist, this
feature continues to persist. Intuitively, players randomize their costly bids between attempting
to win and attempting to tie—the spacing between the disjoint intervals reflecting the required
threshold for winning.

There are several natural extensions to this study of ties. Just as the standard all-pay auction
has been used as a building block for studying a variety of dynamic contests (including elimi-
nation tournaments, “best-of” multi-battle competitions, tug-of-wars, and hybrids of these), the
all-pay auction with ties can similarly be used as a basis for more expansive dynamic architec-
tures. A pertinent caveat to our model is that it is fundamentally symmetric. Yet players may
have asymmetric valuations over either of their two margins of competition: the relative value of
winning compared to tying, or the relative value of tying compared to losing. A further caveat
is that the threshold for winning remains constant over all ranges of bids. Winning requirements
could, however, be much more nuanced based on the intensity and level of the competition. The
competition’s very nature may even endogenously determine the size of the threshold. In addition
to these, the all-pay auction with ties may be extended along any of the numerous dimensions in
which the standard all-pay auction has been studied.

17 Three additional examples from Figure 8 will suffice. Of the two crescents with endpoints of (v/3, v/3) and
(v/2, v/4), the upper one has positive values for αy(0), αw(0), y1, w1, and y2, while the lower crescent also has a
positive value for w3. Another crescent between (v/3, v/4) and (v/2, v/4) has positive values for αy(0), αw(0), y1,
w1, y2, w2, and y3 (omitting w3).
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Appendices
A General Necessary Conditions

Here we present the necessary conditions for equilibrium. Our first result limits the occurrence of
a mass point to a bid of zero. If a mass point were to occur elsewhere, the opponent could profit
by either barely tying it from below or slightly beating it from above, which in turn provides an
incentive for moving the mass point. A mass point at zero is different, however, because it cannot
be undercut.

Lemma 1 Let δ ∈ (0, (1− β)v ) and β > 0. A positive mass point may only occur at zero in any
equilibrium.

Proof Suppose that G−i includes a mass point at x∗ > 0 of size α−i(x∗) ∈ (0, 1). For any k ∈
(0, δ), unless Gi either has some mass in [x∗ + δ − k, x∗ + δ] which x∗ can tie or some mass in
[x∗ − δ − k, x∗ − δ) which x∗ can beat, then it is profitable for player −i to move x∗ down since
this reduces the cost of bidding but maintains the probability of a tie and a win. Suppose that Gi
does indeed contain mass in [x∗ + δ − k, x∗ + δ] or [x∗ − δ − k, x∗ − δ) for any arbitrarily small
k. We will show that there exists a k such that placing mass in either interval is not optimal for
player i. In which case, a mass point at x∗ cannot be a best response for player −i. We begin
by showing that for sufficiently small λ, player i strictly prefers a bid of x∗ + δ + λ to a bid of
x∗ + δ − µ, where λ > µ ≥ 0. From Equation 2, we have:

ui(x∗+δ+λ, G−i)− ui(x∗+δ−µ, G−i) = [G−i(x∗+2δ+λ)−G−i(x∗+2δ−µ)]βv

+ [G−i(x∗+λ)−G−i(x∗−µ)− α−i(x∗+λ) + α−i(x∗−µ)](1− β)v − λ− µ

By definition, G−i(x∗+λ)−G−i(x∗−µ) ≥ α−i(x∗). Let y∗ be the next mass point in G−i, if such
a mass point exists. That is, y∗ = min{x ∈ supp(G−i) | x > x∗ and α(x) > 0}. If y∗ does not
exist, then α−i(x∗+λ) = 0. Otherwise, if x∗+λ < y∗, then we still have α−i(x∗+λ) = 0. Hence,
for sufficiently small λ:

ui(x∗+δ+λ, G−i)− ui(x∗+δ−µ, G−i) ≥ α−i(x∗)(1− β)v − λ− µ

Since λ > µ ≥ 0, then ui(x∗+δ+λ, G−i) − ui(x∗+δ−µ, G−i) > 0 holds whenever λ + µ <

α−i(x∗)(1 − β)v; or rather, whenever λ < α−i(x∗)(1 − β)(v/2) (and with the further restriction
that λ < y∗ − x∗ if y∗ exists). So for any k that is less than such a λ, player i strictly prefers a
bid of x∗ + δ + λ to any bid in [x∗ + δ − k, x∗ + δ]. Since bids below zero are not possible, this
completes the proof for x∗ ∈ (0, δ]. For x∗ > δ, we must also rule out the possibility of mass in
[x∗ − δ − k, x∗ − δ). Similar to the previous argument, we will show that player i strictly prefers
a bid of x∗ − δ to a bid of x∗ − δ − γ where γ > 0:

ui(x∗−δ, G−i)− ui(x∗−δ−γ, G−i) = [G−i(x∗)−G−i(x∗−γ)]βv

+ [G−i(x∗−2δ)−G−i(x∗−2δ−γ)− α−i(x∗−2δ) + α−i(x∗−2δ−γ)](1− β)v − γ

≥ α−i(x∗)βv − α−i(x∗ − 2δ)(1− β)v − γ

The inequality follows from observing that G−i(x∗)−G−i(x∗−γ) ≥ α−i(x∗) and that the omitted
terms are weakly positive. Then if γ < α−i(x∗)βv − α−i(x∗ − 2δ)(1 − β)v, player i profits from
moving any mass in [x∗−δ−γ, x∗−δ) up to x∗−δ. Moreover, if α−i(x∗)β > α−i(x∗−2δ)(1−β),
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then such a γ exists, which in turn implies that there is a k that meets our requirements (in
particular, any k < min{γ, λ} where γ and λ satisfy the bounds specified above). Since α−i(x∗−2δ)
necessarily equals zero for x∗ ∈ (0, 2δ), mass points in (0, 2δ) are not a best response. Now suppose
that α−i(x∗)β ≤ α−i(x∗−2δ)(1−β) where x∗ ≥ 2δ. Following the above argument, x∗−2δ can only
be sustained as a mass point in equilibrium if α−i(x∗−2δ)β ≤ α−i(x∗−4δ)(1−β). More generally,
a mass point in equilibrium at x∗−2qδ requires that α−i(x∗−2qδ)β ≤ α−i(x∗−2[q+1]δ)(1−β) for
q ∈ {0, . . . , bx∗/2δc−1}. However, since there are no mass points in (0, 2δ), then provided that x∗

is not evenly divisible by 2δ, there cannot be a mass point at x∗−2qδ. The final case to consider is
a sequence of mass points at 0, 2δ, 4δ, etc. It suffices to show that a mass point at 2δ is not a best
response; any successive mass points would then fail to hold in equilibrium. For α−i(2δ) > 0 to
be sustained in equilibrium, Gi must contain mass in a neighborhood immediately below δ. This,
however, cannot be. Since α−i(2δ) > 0 requires that α−i(0) > 0, player i strictly prefers a bid
slightly above δ to a bid of δ−c where c < α−i(0)(1−β)v. Specifically, ui(δ, G−i)−ui(δ−c, G−i) =
[G−i(2δ)−G−i(2δ−c)]βv+α−i(0)(1−β)v−c > 0 for c < α−i(0)(1−β)v.18 Therefore, k < min{c, λ}
with c and λ meeting their respective bounds satisfies our requirements, so a mass point at 2δ is
not optimal. ut

With mass points limited to zero, the next result stems from the indifference condition that
must hold when players are randomizing between multiple bids. That is, ui(x, G−i) = ui(y, G−i)
for x, y ∈ supp(Gi) where x > y. Using Lemma 1 and Equation 2, we can restate this indifference
condition as:

[G−i(x+ δ)−G−i(y + δ)]βv + [G−i(x− δ)−G−i(y − δ)] (1− β)v = x− y (14)

The added cost of the higher bid must either be compensated by tying mass in [y + δ, x + δ] or
beating mass in [y− δ, x− δ]. Notably, the absence of mass in either of these intervals pins down
the necessary distribution over the other. This principle is formalized in the following lemma.

Lemma 2 For δ ∈ (0, (1 − β)v ) and β > 0, let Gi and G−i be equilibrium distributions for
players i and −i.

A. Let b ≥ 0 satisfy G−i(b) − α−i(b) = G−i(b − c) − α−i(b − c) for c ∈ (0, δ]. If the subset
(a, a] ⊆ (b+ δ − c, b+ δ] is in the support of Gi, then (a+ δ, a+ δ] is in the support of G−i.
Moreover, the distribution over (a+ δ, a+ δ] in G−i is uniform at the rate of 1/(βv).

B. Let b > δ satisfy G−i(b) = G−i(b+ c) for c ∈ (0, δ]. If the subset (a, a] ⊆ (b− δ, b− δ + c] is
in the support of Gi, then (a− δ, a− δ] is in the support of G−i. Additionally, the distribution
over (a− δ, a− δ] in G−i is uniform at the rate of 1/[(1− β)v].

Proof Part A. To show the first claim, suppose that the subset (a+ δ, a+ δ] is not in the support
of G−i. Since G−i also has no mass in [b−c, b), player i strictly prefers a bid of a to any k ∈ (a, a].
This is because the probability of winning or tying remains unchanged but the cost of bidding is
higher (i.e. ui(a, G−i)−ui(k, G−i) = k−a > 0). Hence, (a, a] cannot be in the support of Gi. For
the second claim, suppose that (a, a] is in the support of Gi. Consequently, (a+δ, a+δ] is then in
the support of G−i. Let x, y ∈ (a, a] where x > y. By payoff equivalence, ui(x, G−i) = ui(y, G−i),
which then implies that G−i(x + δ) − G−i(y + δ) = (1/βv)(x − y). Since this equation holds for
any x and y, including values which are arbitrarily close, the result then follows.

18 The notation ui(δ, G−i) is defined on p. 14 as the limit of player i’s expected utility as δ is approached from
above.
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Part B. If (a− δ, a− δ] is not in the support of G−i, then since G−i has no mass in (b, b+ c],
player i strictly prefers a bid of a to any k ∈ (a, a] (i.e. the probability of a win and a tie
remains the same, but k has a higher bidding cost than a). So (a, a] is not in the support
of Gi. For the next part, suppose that (a, a] is in the support of Gi. By payoff equivalence,
we have ui(x, G−i) = ui(y, G−i) for any x, y ∈ (a, a] such that x > y. From this equality,
G−i(x− δ)−G−i(y − δ)− α−i(x− δ) + α−i(y − δ) = (x− y)/[(1− β)v]. Since mass points may
only occur at zero in equilibrium (see Lemma 1), and since this equation holds for any x and y
which are arbitrarily close, the result then follows. ut

Lemma 2 is particularly applicable at the upper and lower bound of a distribution. If xi is
the upper bound of Gi, then any mass in G−i over [xi − δ, xi] must be balanced by mass in Gi,
shifted down by δ in [xi − 2δ, xi − δ], with a density rate of 1/[(1− β)v]. Precisely δ below that,
if there is more mass in G−i, Equation 14 can again be used to identify the necessary density
rate for mass in Gi over [xi − 4δ, xi − 3δ]. This process continues—iteratively moving down the
distribution—and a similar process holds for moving up the distribution. However, the necessary
density rates can only hold in both directions if β = 1/2. We therefore obtain the following result.

Lemma 3 Let δ ∈ (0, (1− β)v ) and β > 0. In any equilibrium, if β 6= 1/2, then all continuously
distributed mass must be uniform at a rate of either 1/(βv) or 1/[(1− β)v].

Proof Let [s0, s0] ∈ supp(Gi) be given such that G−i(s0 − δ) = G−i(s0 − δ) if s0 > δ. By Lemma
2.A, [s0+δ, s0+δ] ∈ supp(G−i) with uniformly distributed mass at the rate of 1/(βv). Likewise, by
Lemma 2.B, if Gi(s0 +2δ) = Gi(s0 +2δ), then the distribution over [s0, s0] in Gi is uniform at the
rate of 1/[(1−β)v]. Suppose instead that Gi(s0 +2δ) < Gi(s0 +2δ). Let [s1, s1] ⊆ [s0 +2δ, s0 +2δ]
such that [s1, s1] ∈ supp(Gi) (by Lemma 1, such an interval must exist since mass points may
only occur at zero). We first show that for β < 1/2 that [s1, s1] /∈ supp(Gi). For any x, y ∈ [s1, s1],
since G−i(x− δ)−G−i(y − δ) = (x− y)/βv, Equation 14 implies that:

G−i(x+ δ)−G−i(y + δ) = (x− y)
(

2β − 1
β2v

)
(15)

Since this holds for x and y which are arbitrarily close, the distribution over [s1 + δ, s1 + δ] must
be uniform at a rate of (2β − 1)/(β2v). For β < 1/2, this contradicts the monotonicity of G−i,
and so [s1, s1] /∈ supp(Gi). This completes the proof for β < 1/2. For β = 1/2, there is simply no
mass in [s1 + δ, s1 + δ]. We therefore turn to the case where β > 1/2.

Suppose for contradiction that Gi(s1 + 2δ) = Gi(s1 + 2δ). By Lemma 2.B, mass over the
interval [s1, s1] in Gi must be uniform with a density rate of 1/[(1− β)v]. Using Equation 14, the
indifference condition u−i(x, Gi) = u−i(y, Gi), with x, y ∈ [s1 − δ, s1 − δ] ⊆ [s0 + δ, s0 + δ] and
x > y implies:19

Gi(x− δ)−Gi(y − δ) = (x− y)
(

1− 2β
(1− β)2v

)
This is a contradiction for β > 1/2, and it is reached if any subset of [s1 +2δ, s1 +2δ] is not in the
support ofGi. Thus, if [s1+δ, s1+δ] ∈ supp(G−i), it must be that [s1+2δ, s1+2δ] ∈ supp(Gi). This
argument holds more generally. Letting [s1+(`−2)δ, s1+(`−2)δ] and [s1+`δ, s1+`δ] ∈ supp(G−i)
for any ` ∈ N, and supposing that [s1+(`+1)δ, s1+(`+1)δ] /∈ supp(Gi), then the density rates over
[s1+(`−1)δ, s1+(`−1)δ] and [s1+(`−3)δ, s1+(`−3)δ] inGi are 1/[(1−β)v] and (1−2β)/[(1−β)2v].
A similar statement holds if [c, c] /∈ supp(Gi) for any [c, c] ⊆ [s1 + (`+ 1)δ, s1 + (`+ 1)δ]. Hence,
19 Recall that Equation 14 is written in terms of player i’s indifference: ui(x, G−i) = ui(y, G−i). So the
corresponding version of Equation 14 for player −i replaces each G−i with Gi.
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by contradiction, [s1 + (` + 1)δ, s1 + (` + 1)δ] ∈ supp(Gi). Mass over intervals that are 2δ apart
in G−i requires that Gi has mass in an even higher interval. However, as we will show next, this
in turn requires that G−i has mass in yet a higher interval.

Again drawing on Equation 14, in order for player i to be indifferent between x, y ∈ [s1 + (`−
1)δ, s1 + (`− 1)δ], where x > y, then:

G−i(x+ δ)−G−i(y + δ) =
(
x− y
βv

)
− [G−i(x− δ)−G−i(y − δ)]

(
1− β
β

)
For ` = 1, the specific value of G−i(x+ δ)−G−i(y + δ) is given by Equation 15. This value then
becomes G−i(x − δ) − G−i(y − δ) for ` = 2. Iterating, we obtain the following general form for
` ≥ 1:20

G−i(x+ δ)−G−i(y + δ) = (x− y)
(

1
β`+1v

)∑̀
j=0

(−1)`−jβj(1− β)`−j (16)

The positivity of Equation 16 for β > 1/2 can be seen by doing a pairwise summation of right-hand
side terms (i.e. sum j = ` with j = `− 1; j = `− 2 with j = `− 3; etc.). Thus, we have:

∑̀
j=0

(−1)`−jβj(1− β)`−j = (1− β)` I(`) + (2β − 1)
b(`−1)/2c∑

j=0
β`−1−2j(1− β)2j > 0

where I(`) is an indicator function equal to 1 if ` is even and 0 otherwise, and b·c is the floor
function. Since Equation 16 is strictly positive for any x, y ∈ [s1 + (` − 1)δ, s1 + (` − 1)δ], then
[s1 + `δ, s1 + `δ] ∈ supp(G−i).

The escalating supports of Gi and G−i ultimately rise above v where bids are strictly domi-
nated, contradicting the initial supposition that G−i have mass over intervals that are 2δ apart
(i.e. there is no pair of intervals [s1 +(`−2)δ, s1 +(`−2)δ] and [s1 +`δ, s1 +`δ] that are both in the
support of G−i for any ` ∈ N). In particular, [s1 + δ, s1 + δ] /∈ supp(G−i), so [s1, s1] /∈ supp(Gi).
Therefore, [s0, s0] has a density rate of 1/[(1− β)v] in Gi. ut

The density rates of 1/(βv) and 1/[(1 − β)v] have intuitive appeal since βv is the marginal
value of tying relative to losing and (1− β)v is the marginal value of winning relative to tying. In
isolating these density rates, we also derive the following corollary result:

Corollary 1 Let δ ∈ (0, (1−β)v ), β > 0, and β 6= 1/2. For any z > z ≥ 0 such that z−z ≤ δ, in
equilibrium the interval [z, z] has a density rate of 1/[(1−β)v] in Gi if and only if [z+δ, z+δ] has a
density rate of 1/(βv) in G−i. In which case, G−i(z−δ) = G−i(z−δ), and Gi(z+2δ) = Gi(z+2δ).

B Proofs Specific to β < 1/2

Lemma 4 Let δ ∈ (0, (1 − β)v ) and β < 1/2. In any equilibrium, any continuously distributed
mass over [0, δ] must be connected, have a lower bound of zero and a density rate of 1/[(1− β)v].
Similarly, if p, q ∈ supp(G−i) such that p < q and G−i(p) = G−i(q), then any continuously
distributed mass in Gi over [p+ δ, q+ δ] must also be connected, have a lower bound of p+ δ, and
have a density rate of 1/[(1− β)v].
20 This pattern is easier to see by writing 2β − 1 as β − (1− β) for ` = 1; and then β2 − β(1− β) + (1− β)2 for
` = 2, etc.
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Proof For z ∈ (0, δ), suppose there exists [z, z+b] ∈ supp(Gi) such that Gi(z) = Gi(z−c), where
b > 0 and c ∈ (0, z]. In equilibrium, ui(z, G−i) ≥ ui(z − c, G−i), and so:

[G−i(z + δ)−G−i(z + δ − c)]βv ≥ c

By Corollary 1, since Gi(z) = Gi(z− c), then any mass in G−i over [z+ δ− c, z+ δ] must have a
density rate of 1/[(1− β)v]. So for some s ∈ [0, c], we have:

[G−i(z + δ)−G−i(z + δ − c)]βv = sβ/(1− β) ≥ c

However, this cannot hold for β < 1/2. The same argument holds for z ∈ [p + δ, q + δ] and
c ∈ (p+ δ, z], where p and q are defined as in the statement of the lemma. ut

Lemma 5 Let δ ∈ (0, (1−β)v ) and β < 1/2. In equilibrium, there does not exist z ≥ 0 such that
Gi(z − δ) = Gi(z) and [z, z] has a density rate of 1/[(1− β)v] in Gi for z > z.

Proof Suppose to the contrary that in equilibrium there exists a z such that Gi(z−δ) = Gi(z) and
[z, z] has a density rate of 1/[(1−β)v] inGi. By Corollary 1, [z+δ, z+δ] has a density rate of 1/(βv)
in G−i. In equilibrium, u−i(z+δ, Gi) ≥ u−i(z, Gi), which can only be satisfied if [z+δ, z+2δ] has
a density rate of 1/(βv) in Gi (since Gi(z − δ) = Gi(z) and β < 1/2). So now z + 2δ ∈ supp(Gi).
We reach a contradiction in that equilibrium requires ui(z + 2δ, G−i) ≥ ui(z + 2δ, G−i), but
ui(z + 2δ, G−i)− ui(z + 2δ, G−i) ≤ (z − z)− (z − z)[(1− β)v/βv] < 0. ut

Since every 1/[(1 − β)v] segment must be preceded by some other mass, equilibrium requires
that at least one player must have a mass point at zero. Moreover, that same player must also have
some mass in [0, δ] that is connected, with a density rate of 1/[(1 − β)v], and a lower bound of
zero (i.e. the properties in Lemma 4). If neither player’s distribution began this way, Corollary 1,
Lemma 4, and Lemma 5 would prohibit the placing of any continuously distributed mass in either
player’s distribution. Assuming that at least one player’s distribution does indeed comply, these
results dictate the pattern for placing any further mass. Labeling the distributions Gw and Gy,
suppose that Gw has a mass point αw(0) ∈ (0, 1) and a 1/[(1 − β)v] segment in [0, δ] of length
w1 > 0. So by Corollary 1, Gy has a 1/(βv) segment of length w1 spanning [δ, δ + w1]. Drawing
on Lemma 4, the gap in Gw following w1 implies that any mass in Gy in the region above δ +w1

must be connected, with a density rate of 1/[(1 − β)v], and a lower bound of δ + w1. If Gy does
indeed have a 1/[(1 − β)v] segment here, say of length y2, then δ above that, Gw has a 1/(βv)
segment of length y2. Every 1/[(1 − β)v] segment must follow in the immediate wake of a mass
point at zero or a 1/(βv) segment, and the occurrence of 1/(βv) segments is wholly determined
by 1/[(1− β)v] segments. Corollary 1 further limits the combined length of adjoining 1/(βv) and
1/[(1− β)v] segments to no more than δ. Any equilibrium must therefore be of the form depicted
in Figure 7. Mass points αw(0) and αy(0) ∈ [0, 1) are followed by alternating 1/[(1 − β)v] and
1/(βv) segments. We again label the length of the successive 1/[(1 − β)v] segments for player w
as w1, w2, . . . , wk ≥ 0, and likewise for player y as y1, y2, . . . , yk ≥ 0. If indeed some wj = 0
then yj+1 = 0, and like dominoes, wj+2 = 0, yj+3 = 0, etc. The principle again being that
a 1/[(1 − β)v] segment can only follow a 1/(βv) segment or a mass point at zero. Symmetric
equilibria are therefore restricted to the case where all yj and wj are strictly positive (and, by
implication, αw(0), αy(0) > 0). As Proposition 1 states, there is a unique equilibrium in which
these are all positive and that equilibrium is symmetric.

Proposition 1 Let δ ∈ (0, (1− β)v ) and β < 1/2. For any k ∈ N, there is a unique equilibrium
satisfying the constraint that y1, w1, . . . , yk, wk are all strictly positive. Moreover, that equilibrium
is symmetric (i.e. y1 = w1, . . . , yk = wk and αy(0) = αw(0)).
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Proof In equilibrium, all points within the support must have the same expected payoff. This
property must particularly hold at each break in each player’s support. Given the constraint that
y1, w1, . . . , yk, wk are all strictly positive, each player’s support has k breaks. For player w:

uw(δ, Gy) = uw(w1, Gy)

uw(2δ + w1, Gy) = uw(δ + y1 + w2, Gy)

uw(3δ + y1 + w2, Gy) = uw(2δ + w1 + y2 + w3, Gy)

uw(4δ + w1 + y2 + w3, Gy) = uw(3δ + y1 + w2 + y3 + w4, Gy)

In general, for an even integer q:

uw

qδ +
q−1∑

j≥1, odd
wj +

q−2∑
j≥2, even

yj , Gy

 = uw

(q−1)δ +
q−1∑

j≥1, odd
yj +

q∑
j≥2, even

wj , Gy



uw

(q+1)δ +
q−1∑

j≥1, odd
yj +

q−2∑
j≥2, even

wj , Gy

 = uw

qδ +
q−1∑

j≥1, odd
wj +

q∑
j≥2, even

yj , Gy


Corresponding equations for player y merely reverse the roles of all wj and yj . Across players, this
system has a total of 2k equations with 2k + 2 unknowns (i.e. αy(0), αw(0), y1, w1, . . . , yk, wk).
We close the system by requiring the total mass in each distribution to sum to one:

1 = αw(0) +
k∑
j=1

wj
(1− β)v + yj

βv

1 = αy(0) +
k∑
j=1

yj
(1− β)v + wj

βv

These mass constraints and the system of indifference conditions can be written in matrix form,
where each row in the matrix represents an equation. The matrix for the case of k = 4 is as follows:

−1 1 0 1
(1−β)v

1
βv

1
(1−β)v

1
βv

1
(1−β)v

1
βv

1
(1−β)v

1
βv

−1 0 1 1
βv

1
(1−β)v

1
βv

1
(1−β)v

1
βv

1
(1−β)v

1
βv

1
(1−β)v

−δ (1−β)v 0 0 1 β
1−β 0 0 0 0 0

−δ 0 (1−β)v 1 0 0 β
1−β 0 0 0 0

−δ 0 0 1 1−2β
β 0 1 β

1−β 0 0 0

−δ 0 0 1−2β
β 1 1 0 0 β

1−β 0 0

−δ 0 0 −1 1 1 1−2β
β 0 1 β

1−β 0

−δ 0 0 1 −1 1−2β
β 1 1 0 0 β

1−β

−δ 0 0 1 −1 −1 1 1 1−2β
β 0 1

−δ 0 0 −1 1 1 −1 1−2β
β 1 1 0





1

αy(0)

αw(0)

y1

w1

y2

w2

y3

w3

y4

w4



= 0

The top two rows are the mass constraints for players y and w. The third and fourth rows
correspond to uw(δ, Gy) = uw(w1, Gy) and uy(δ, Gw) = uy(y1, Gw); the fifth and sixth to
uw(2δ + w1, Gy) = uw(δ + y1 + w2, Gy) and uy(2δ + y1, Gw) = uy(δ + w1 + y2, Gw). Each suc-
cessive pair of rows correspond to the indifference conditions over the next jump in each player’s
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support. The above matrix with k = 4 is also useful for visualizing the general form for an ar-
bitrary k. We denote the system for a given k by Akx= 0. The matrices A1 , A2 , and A3 are
all partitions of the above matrix A4 . For A1 , it is the partition formed by the first four rows
and five columns of A4 . The matrix A2 comprises the first six rows and seven columns, and the
first eight rows and nine columns form the matrix A3 . In general, Ak has rk = 2k + 2 rows and
ck = 2k + 3 columns. The matrix Ak−1 constitutes the first rk − 2 rows and ck − 2 columns of
Ak . Elements in the last two rows and columns of Ak fit a clearly defined pattern. For k ≥ 2, the
first three elements of rows rk− 1 and rk are {δ, 0, 0}. The fourth and fifth elements are shown in
the matrix for k ≤ 4. For k ≥ 4, the fourth and fifth element of row rk − 1 is the fourth and fifth
element of row rk − 2; and for row rk it is the fourth and fifth elements of row rk − 3. Elements
six through ck of rows rk − 1 and rk are the same as elements four through ck − 2 of rows rk − 3
and rk − 2. Besides rows rk − 1 and rk, the only nonzero elements of columns ck − 1 and ck are in
rows 1, 2, rk − 3, and rk − 2. The last two elements of rows 1 and 2 follow the established pattern
for the mass constraints: {1/[(1− β)v], 1/(βv)} and {1/(βv), 1/[(1− β)v]}. For rows rk − 3 and
rk − 2, the last two elements are {β/(1− β), 0} and {0, β/(1− β)}.

We obtain our uniqueness result by showing that the rk rows of Ak are linearly independent
for any k ∈ N. The rk rows are linearly independent if and only if the system Akx= 0 has a
unique solution. We proceed by induction. Table 2 shows the unique solution to the system when
k ∈ {1, 2, 3}, and it is also relevant that the unique solution is symmetric in each case. Now
suppose that for k ≥ 3 that the rk rows of Ak are linearly independent. In the matrix Ak+1 , rows
1 through rk+1 − 4 are still linearly independent. This follows because the last two columns of
rows 3 through rk+1 − 4 only contain zeros, and rows 1 and 2 are always linearly independent of
each other because of their second and third elements. Since rows 1, 2, rk+1− 3, and rk+1 are the
only rows with nonzero elements in column ck+1 − 1, and since rows 1, 2, rk+1 − 2, and rk+1 − 1
are the only rows with nonzero elements in column ck, then if each of these groups of four rows
are linearly independent, then all rk+1 rows are linearly independent. For the first group (rows 1,
2, rk+1 − 3, and rk+1), linear independence can be seen by looking at columns 2, 3, ck+1 − 2, and
ck+1 − 1: 

1 0 1
βv

1
(1−β)v

0 1 1
(1−β)v

1
βv

0 0 1 β
1−β

0 0 1 1


Linear independence for the second group (rows 1, 2, rk+1− 2, and rk+1− 1) can be seen from

columns 2, 3, ck+1 − 3, and ck+1: 

1 0 1
(1−β)v

1
βv

0 1 1
βv

1
(1−β)v

0 0 1 β
1−β

0 0 1 1


Thus the rk+1 rows of Ak+1 are linearly independent, so Ak+1x = 0 has a unique solution.
We next demonstrate that the unique solution is symmetric. That is, αy(0) = αw(0) and y1 =
w1, . . . , yk = wk. As we stated earlier, for k ∈ {1, 2, 3}, the unique solution to Akx=0 is indeed
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Table 2: Unique solution to the system Akx=0 for k ∈ {1, 2, 3}.

k = 1 αy(0) = αw(0) [δ − (1− β)βv] / [(1− β)2v]

y1 = w1 [(1− β)βv − βδ] / (1− β)

k = 2 αy(0) = αw(0) (1− 2β)δ / [(1− β)2v]

y1 = w1
[
(1− 2β2)βδ − (1− β)2β2v

]
/ [(1− β)(1− 2β)]

y2 = w2 ([1− β]v − 2δ)(1− β)β / (1− 2β)

k = 3 αy(0) = αw(0) δ − (7β2 − 7β + 6)(1− β)βδ + (1− β)3β3v

(1− β)3(1− 3β + 2β2 + β3)v
y1 = w1 (1− 2β)βδ / (1− β)2

y2 = w2
[
([1− 3β]β + 1)βδ − (1− β)2βv

]
/ [1− 3β + 2β2 + β3]

y3 = w3
[
([6− 2β]β − 3)βδ + (1− β)3βv

]
/ [1− 3β + 2β2 + β3]

symmetric (see Table 2). With symmetry, the system Akx=0 collapses to the following system,
which we call Bkx=0:

−1 1 1
(1−β)βv

1
(1−β)βv

1
(1−β)βv

1
(1−β)βv · · · 1

(1−β)βv

−δ (1−β)v 1 β
1−β 0 0 · · · 0

−δ 0 1−β
β 1 β

1−β 0 · · · 0

−δ 0 0 1−β
β 1 β

1−β 0
...

...
...

. . . . . .
...

−δ 0 0 0 0 1−β
β 1 β

1−β

−δ 0 0 0 0 0 1−β
β 1





1

αy(0)

y1

y2

y3
...

yk



= 0

By construction, if Bkx=0 has a unique solution, then it must coincide with the unique solution
of Akx= 0. The matrix Bk has k + 1 rows and k + 2 columns, and Bk−1 makes up the first k
rows and k+ 1 columns of Bk . The last column only has three nonzero elements: 1/[(1−β)βv] in
the first row, β/(1 − β) in the second to last row, and 1 in the last row. The only other nonzero
elements of the last row are the first and second to last elements: −δ and (1 − β)/β. Since the
linear independence of Bk−1 guarantees that the first k rows of Bk are still linearly independent,
we just need to check that the last row is also linearly independent. Since the last row is only
one of three rows with a nonzero element in the last column (the other two rows being the first
and second to last), it suffices to check that these three rows are linearly independent. This can
be seen from the above matrix. Therefore, Bk has a unique solution. The sufficient conditions for
equilibria when δ ∈ (0, (1− β)v ) and β < 1/2 are established in Section 3.3. ut

C Proofs Specific to β > 1/2

Lemma 6 Let δ ∈ (0, (1 − β)v ) and β > 1/2. In any equilibrium, the subset of Gi that has a
density rate of 1/[(1− β)v] in [z, z + 2δ] for z ≥ 0 is connected.

Proof Suppose to the contrary that for some z ≥ 0 that the subset of Gi with a density rate of
1/[(1 − β)v] in [z, z + 2δ] is disconnected. That is, Gi contains at least two intervals, [a1, b1],



30

[a2, b2] ⊂ [z, z + 2δ] where b1 < a2, with density rates of 1/[(1 − β)v]; furthermore, the density
rates in a neighborhood immediately above b1 and immediately below a2 differ from 1/[(1− β)v].
By Corollary 1, the intervals [a1 + δ, b1 + δ] and [a2 + δ, b2 + δ] have a density rate of 1/(βv) in
G−i. So in equilibrium, u−i(b1 + δ, Gi) = u−i(a2 + δ, Gi):

[Gi(a2 + 2δ)−Gi(b1 + 2δ)]βv + [Gi(a2)−Gi(b1)] (1− β)v = a2 − b1

This can be rewritten using Lemma 3 as:[
r

(1− β)v + s

βv

]
βv +

[
m

(1− β)v + n

βv

]
(1− β)v =

r

(
β

1− β

)
+ s+m+ n

(
1− β
β

)
= a2 − b1 (17)

Here, r and s denote the respective lengths of the support ofGi in [b1+2δ, a2+2δ] with density rates
of 1/[(1− β)v] and 1/(βv); m and n and defined similarly for [b1, a2]. Suppose for contradiction
that r = 0. Using Corollary 1, [b1 + δ, a2 + δ] in G−i must contain a portion of length s with
density rate 1/[(1−β)v], a portion of length m with density rate of 1/(βv), and a portion of length
n with no mass. Thus,

s+m+ n ≤ a2 − b1 (18)

With r = 0 and β > 1/2, Equations 17 and 18 can only be jointly satisfied if n = 0 and if
s+m = a2− b1. Our next step is to show that if an interval [c, c] has a density rate of 1/[(1−β)v]
in Gi (where the density rates differ in neighborhoods immediately above c and immediately below
c), then Gi has no mass in the interval ( c− (c− c)β/(1− β), c ]. This follows from observing that
u−i(c− δ) > u−i(x− δ) for x ∈ ( c− (c− c)β/(1− β), c ] when β > 1/2. Specifically,

[Gi(c)−Gi(x)]βv + [Gi(c− 2δ)−Gi(x− 2δ)] (1− β)v − c+ x

≥ (c− c)
(

β

1− β

)
− c+ x > 0

Thus, for an interval of length `, at most [(1 − β)/β]` of the interval may have a density rate
of 1/[(1 − β)v]; in which case, the bottom [(2β − 1)/β]` of the interval contains no mass. Hence,
m < (a2 − b1)[(1 − β)/β], with a strict inequality since there is a space with no mass below a2.
Likewise, s < (a2 − b1 −m)[(1− β)/β], and so for β > 1/2:

m+ s <

(
1− β
β

)(
3β − 1
β

)
(a2 − b1) < a2 − b1

Therefore, it must be that r > 0. So there exists at least one interval [a3, b3] ⊂ [b1+2δ, a2+2δ] inGi
with a density rate of 1/[(1−β)v] (with different density rates immediately above b3 and below a3).
Since [a2, b2] and [a3, b3] are within a 2δ interval (i.e. b3−a2 ≤ 2δ), then the same argument we just
used for [a1, b1] and [a2, b2] implies that there is an interval [a4, b4] ⊂ [b2 + 2δ, a3 + 2δ] in Gi with
a density rate of 1/[(1−β)v]. In general, [ak, bk] ⊂ [bk−2 +2δ, ak−1 +2δ] is in Gi and has a density
rate of 1/[(1−β)v], where k ∈ {3, 4, . . .}. The sequence of ak is then unbounded (ak+2−ak > 2δ),
rising to bids that are strictly dominated. This contradicts our original supposition that the subset
of Gi with a density rate of 1/[(1− β)v] in [z, z + 2δ] is disconnected. ut

We can now largely piece together what an equilibrium strategy must look like. Lemma 7 all
but characterizes the nature of equilibria when β > 1/2. It states that if there is an interval of
length δ or greater that is not part of a player’s support, and it is immediately followed by an
interval with a density rate of 1/[(1 − β)v], then each player’s distribution over all higher bids
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must be of a specific form. Namely, the remaining portion of each player’s support is made up of
connected intervals of length 2δ with a density rate of 1/[(1−β)v] over a lower portion and 1/(βv)
over the remainder.

Lemma 7 Let δ ∈ (0, (1−β)v ) and β > 1/2. Let φ1 ≥ 0 be the lowest bid such that Gi(φ1−δ) =
Gi(φ1) and [φ1, φ1 + c] has a density rate of 1/[(1 − β)v] in Gi for c ∈ (0, δ]. If φ1 exists,
then in equilibrium, any portion of the support weakly greater than φ1 + c − δ in Gi and G−i

must have a distribution of the following form. For j ∈ {1, . . . , k}, k ∈ N, let φj and ϕj satisfy
φj+1 ≥ φj + ϕj + 3δ, ϕj+1 ∈ [max{φj + 3δ − φj+1, −δ}, δ], and ϕ1 ∈ [c − δ, δ]. Then Gi has a
density rate of 1/[(1−β)v] over [φj , φj +ϕj + δ] and 1/(βv) over [φj +ϕj + δ, φj + 2δ]; and G−i
has a density rate of 1/[(1 − β)v] over [φj + ϕj , φj + δ] and 1/(βv) over [φj + δ, φj + ϕj + 2δ].
All other bids weakly greater than φ1 + c− δ are not in the support of Gi or G−i.

Proof Since [φ1, φ1 +c] has a density rate of 1/[(1−β)v] in Gi, then by Corollary 1, G−i(φ1−δ) =
G−i(φ1+c−δ) and [φ1+δ, φ1+c+δ] has a density rate of 1/(βv) in G−i. Since φ1+δ ∈ supp(G−i),
then in equilibrium, u−i(φ1 +δ, Gi) ≥ u−i(φ1, Gi). Using the density rates permitted by Lemma 3
and recalling that Gi(φ1 − δ) = Gi(φ1), we have:

u−i(φ1 + δ, Gi)− u−i(φ1, Gi) = [Gi(φ1 + 2δ)−Gi(φ1 + δ)]βv − δ

=
[
τ

βv
+ µ

(1− β)v

]
βv − δ ≥ 0

Here, τ and µ are the lengths of the support over [φ1 + δ, φ1 + 2δ] in Gi that have density
rates of 1/(βv) and 1/[(1 − β)v], respectively. So τ + µ ≤ δ. Suppose µ = 0. Then τ = δ (or
rather [φ1 + δ, φ1 + 2δ] has a density rate of 1/(βv) in Gi), so Corollary 1 implies that G−i(φ1 +
2δ) = G−i(φ1 + 3δ) and [φ1, φ1 + δ] has a density rate of 1/[(1 − β)v] in G−i. Since φ1 + c and
φ1 + δ ∈ supp(Gi), ui(φ1 + c, G−i) = ui(φ1 + δ, G−i), so:

[G−i(φ1 + 2δ)−G−i(φ1 + c+ δ)]βv + [G−i(φ1)−G−i(φ1 + c− δ)](1− β)v = δ − c

By Lemma 6, any mass in G−i over [φ1 + c+ δ, φ1 + 2δ] must have a density rate of 1/(βv) (since
any mass with a density rate of 1/[(1−β)v] would be disconnected from [φ1, φ1 +δ]). The same is
true for mass in Gi over [φ1 + c− 2δ, φ1 − δ], so any mass in G−i over [φ1 + c− δ, φ1] necessarily
has a density rate of 1/[(1− β)v]. Thus, for q, r ∈ [0, δ − c], we have:[

q

βv

]
βv +

[
r

(1− β)v

]
(1− β)v = δ − c

Lemma 6 is satisfied if G−i has a density rate of 1/[(1−β)v] over [φ1− r, φ1 + δ] and 1/(βv) over
[φ1 +δ, φ1 +δ+c+q]. Substituting q = δ−c−r, the second interval becomes [φ1 +δ, φ1−r+2δ].
Using Corollary 1, Gi has a density rate of 1/[(1 − β)v] over [φ1, φ1 − r + δ] and 1/(βv) over
[φ1 − r + δ, φ1 + 2δ].

Now suppose instead that µ > 0. Lemma 6 implies that the interval [φ1, φ1 + µ + δ] has a
density rate of 1/[(1− β)v] in Gi. Then, by Corollary 1, [φ1 + δ, φ1 + µ + 2δ] has a density rate
of 1/(βv) in G−i. Since φ1 + δ ∈ supp(G−i), u−i(φ1 + δ, Gi) ≥ u−i(φ1 + µ, Gi), or rather:

[Gi(φ1 + 2δ)−Gi(φ1 + δ + µ)]βv ≥ δ − µ

A density rate of 1/[(1−β)v] is not permitted in Gi over [φ1 +δ+µ, φ1 +2δ], so the entire interval
must instead have a density rate of 1/(βv). In which case, G−i has a density rate of 1/[(1− β)v]
over [φ1 +µ, φ1 + δ]. Combining the results for the cases where µ = 0 and µ > 0, Gi has a density
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rate of 1/[(1− β)v] over [φ1, φ1 + ϕ1 + δ] and 1/(βv) over [φ1 + ϕ1 + δ, φ1 + 2δ]; and G−i has a
density rate of 1/[(1− β)v] over [φ1 + ϕ1, φ1 + δ] and 1/(βv) over [φ1 + δ, φ1 + ϕ1 + 2δ], where
ϕ1 ∈ [c− δ, δ].

We next must show that this pattern holds for the remainder of the distribution. To do so, we
first note that by Corollary 1, Gi(φ1+2δ) = Gi(φ1+ϕ1+3δ) and G−i(φ1+ϕ1+2δ) = G−i(φ1+3δ).
Either φ1 +ϕ1 + 3δ− (φ1 + 2δ) ≥ δ or φ1 + 3δ− (φ1 +ϕ1 + 2δ) ≥ δ. Let x̂ be the next element in
either support. That is, x̂ = min{x ∈ supp(Gi)

⋃
supp(G−i) | x ≥ min{φ1 + 3δ, φ1 + ϕ1 + 3δ}}.

If x̂ does not exist, then we are done. Otherwise, [x̂, x̂ + e] has a density rate of 1/[(1 − β)v] in
either Gi or G−i for e ∈ (0, δ]. If x̂ ≥ max{φ1 + 3δ, φ1 + ϕ1 + 3δ}, then the conditions of the
lemma are again satisfied, so the pattern continues (this includes the case where ϕ = 0). For the
case where min{φ1 + 3δ, φ1 + ϕ1 + 3δ} ≤ x̂ < max{φ1 + 3δ, φ1 + ϕ1 + 3δ}, suppose without loss
of generality that ϕ1 > 0. Then x̂ ∈ supp(G−i). Since u−i(x̂, Gi) = u−i(φ1 + ϕ1 + 2δ, Gi), then:

(δ − ϕ1)
(

1− β
β

)
+ [Gi(x̂+ δ)−Gi(x̂− δ)]βv = x̂− (φ1 + ϕ1 + 2δ) ≥ δ − ϕ1

Since β > 1/2, the equation can only be satisfied if Gi(x̂+ δ)−Gi(x̂− δ) > 0. This mass must be
in [φ1 +ϕ1 + 3δ, x̂+ δ] with a density rate of 1/[(1−β)v], and so the conditions of the lemma are
satisfied yet again.21 The pattern thus continues as long as there is any remaining mass to place
in Gi or G−i. ut

Lemma 8 Let δ ∈ (0, (1− β)v ) and β > 1/2. If max{Gi(2δ), G−i(2δ)} < 1 in equilibrium, then
φ1 exists. Moreover, any mass in either player’s distribution below min{φ1, φ1 +ϕ1} is limited to
a mass point at zero, a lower interval at a density rate of 1/[(1− β)v], and an upper interval at a
density rate of 1/βv. The mass points and lower intervals may be distributed according to one of
three forms, with the upper intervals following Corollary 1:

A. αi(0) > 0 and α−i(0) > 0. Lower intervals begin at zero and have length ψk ∈ [0, δ) for
k ∈ {i, −i}. This is also the only possible equilibrium form when φ1 does not exist.

B. αi(0) > 0 and α−i(0) ≥ 0. Player i’s lower interval begins at zero and has length ψi ∈ [0, 2δ].
Player −i has no lower interval.

C. αi(0) > 0 and α−i(0) = 0. Player i’s lower interval begins at zero and has length ψi ∈ [δ, 2δ).
Player −i’s lower interval begins at ψi − δ and has length ψ−i ∈ (0, 2δ − ψi).

Proof The existence of φ1 when max{Gi(2δ), G−i(2δ)} < 1 is trivial if αi(0) = α−i(0) = 0. It is
likewise trivial if Gi(δ) = Gi(0) and G−i(δ) = G−i(0). We must therefore consider the cases where
at least one player has a mass point at zero and at least one player has strictly positive mass in
(0, δ]. By Lemma 3 and Corollary 1, any mass in (0, δ] must have a density rate of 1/[(1− β)v].
For k ∈ {i, −i}, let [µk, Mk] denote the lowest interval in Gk with a density rate of 1/[(1− β)v].
Without loss of generality with respect to players, there are four cases.

Case 1: αi(0) > 0, α−i(0) > 0, µi < δ, µ−i < δ. Since αi(0), α−i(0) > 0, then Mi, M−i < δ.
Otherwise, elements of the support in [µk, δ] would have a strictly lower expected payoff than
elements in (δ, Mk]. If µi > 0, then to maintain payoff equivalence with zero, the other player’s
support must have mass over [δ, µi + δ] which can be tied. But by Lemma 6 and Corollary 1,
neither player has mass in [δ, µk + δ]. So µi = µ−i = 0. They also imply that player i has no
mass in [Mi + δ, M−i + 2δ] and player −i has no mass in [M−i + δ, Mi + 2δ]. The length of at
21 Even if ϕ1 = δ, it is always the case that x̂− (φ1 + ϕ1 + 2δ) > 0. This follows because, as we saw in the proof
of Lemma 6, when β > 1/2, an interval with a density rate of 1/[(1 − β)v] cannot immediately follow an interval
with a density rate of 1/(βv).
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least one of these intervals is weakly greater than δ. So if Gi(δ + M−i) < 1 or G−i(δ + Mi) < 1,
then φ1 exists, and any mass below min{φ1, φ1 +ϕ1} is distributed according to the first form in
Lemma 8.

Case 2: αi(0) > 0, α−i(0) ≥ 0, µi < δ, µ−i ≥ δ. With µ−i ≥ δ, there are two subcases:
[µ−i, M−i] ⊆ [δ, µi + δ] and µ−i ≥ Mi + δ. (Corollary 1 prohibits anything else.) Suppose first
that [µ−i, M−i] ⊆ [δ, µi + δ]. Therefore, µi > 0. For player −i, µ−i > δ is strictly dominated by
µ−i = δ since Gi(0) = Gi(µ−i − δ) and Gi(2δ) = Gi(µ−i + δ) (see Lemma 6 and Corollary 1). In
equilibrium, ui(0, G−i) = ui(µi, G−i), so:

[G−i(µi + δ)−G−i(δ)]βv = µi ⇒
(
M−i − µ−i
(1− β)v

)
βv = µi

Since β > 1/2, the last equality implies that M−i − µ−i < µi. However, with µ−i = δ and
M−i < µi + δ, player i could profitably deviate by shifting µi down to M−i − δ. So this is not
an equilibrium. For the second subcase, suppose now that µ−i ≥ Mi + δ. By Lemma 6 and
Corollary 1, Gi(Mi + 2δ) = Gi(Mi), so φ1 exists if Gi(Mi) < 1. Also, µ−i ≥ Mi + δ means that
G−i(δ) = G−i(µi + δ), so we can only have ui(0, G−i) = ui(µi, G−i) if µi = 0. If α−i(0) > 0,
then Mi < δ; otherwise, Corollary 1 sets the upper bound of Mi at 2δ. Thus any mass below
min{φ1, φ1 +ϕ1} is distributed according to the second form in Lemma 8. Although it is possible
for Mi + δ > 2δ when α−i(0) = 0, we still have G−i(Mi + δ) < 1. A contradiction arises if
G−i(Mi + δ) = 1, since Gi(Mi) would also equal one by Corollary 1. But both cannot equal one
since Gi has more mass:

Mi − µi
(1− β)v + αi(0) > Mi − µi

βv

Case 3: αi(0) > 0, α−i(0) = 0, µi < δ, µ−i < δ. By Lemma 6 and Corollary 1, player i has
no mass in [M−i + δ, Mi + 2δ], and player −i has no mass in [Mi + δ, M−i + 2δ]. At least one
of these intervals has a length weakly greater than δ, so if Gi(M−i + δ) < 1 or G−i(Mi + δ) < 1,
then φ1 exists. Any mass below min{φ1, φ1 +ϕ1} must be distributed according to the third form
in Lemma 8. This is seen by demonstrating that M−i < δ, Mi ≥ δ, µi = 0, µ−i = Mi − δ, and
Mi ≥ δ. Since αi(0) > 0 and µ−i < δ, then M−i < δ. The result that µi = 0 follows because
M−i < δ and G−i(δ) = G−i(µi + δ) (see Lemma 6 and Corollary 1). Without additional mass to
tie, µi > 0 is strictly dominated. Similarly, µ−i = max{0, Mi − δ} since Gi(Mi) = Gi(µ−i + δ).
We can pin down µ−i further. Since α−i(0) = 0, unless Mi ≥ δ, player i would have a strictly
lower payoff over [µ−i+ δ, M−i+ δ] than over [0, Mi]. Thus µ−i = Mi− δ and Mi ≥ δ. It remains
to show that G−i(Mi + δ) = 1 is not an equilibrium. If indeed G−i(Mi + δ) = 1, then the total
mass in Gi and G−i is described as follows:

Gi : 1 = αi(0) + Mi

(1− β)v + M−i − µ−i
βv

(19)

G−i : 1 = M−i − µ−i
(1− β)v + Mi

βv
(20)

Since δ, µ−i ∈ supp(G−i), and since µ−i = Mi − δ, equilibrium requires that u−i(δ, Gi) =
u−i(Mi − δ, Gi). This can be written as:

αi(0)(1− β)v + (M−i − µ−i) = 2δ −Mi (21)

Rearranging Equation 20 and combining Equations 19 and 21, we obtain the following:

Mi = βv

[
1− M−i − µ−i

(1− β)v

]
where M−i − µ−i = [2δ − (1− β)v]β

2β − 1
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Using these expressions, Mi > δ is equivalent to (1 − β)βv > δ, which in turn implies that
M−i−µ−i > (1−β)βv. So Equation 21 can only be satisfied if αi(0) < 0, which obviously cannot
hold in equilibrium.

Case 4: αi(0) > 0, α−i(0) > 0, µi ≥ δ, µ−i < δ. Since αi(0) > 0 and µ−i < δ, then M−i < δ.
In equilibrium, ui(0, G−i) = ui(µ−i + δ, G−i), which can be rewritten as:

[G−i(µ−i + 2δ)−G−i(µ−i + δ)]βv = µ−i + δ (22)

With µi ≥ δ and M−i < δ, then by Lemma 6 and Corollary 1, player −i can only have mass in
[µ−i + δ, µ−i + 2δ] if [µi, Mi] ⊆ [δ, µ−i + δ]. Then Equation 22 becomes:(

Mi − µi
βv

)
βv = µ−i + δ ⇒ Mi − µi = µ−i + δ

However, given the bounds of [µi, Mi] ⊆ [δ, µ−i + δ], this is a contradiction.
When φ1 does not exist: We will show that Parts B and C of Lemma 8 cannot hold if φ1

does not exist. Beginning with Part B, in order for player i’s total mass of αi(0) + [ψi/(1 − β)v]
and player −i’s total mass of α−i(0) + [ψi/(βv)] to each equal one, we must have α−i(0) > 0.
With this positive mass point, preventing a jump in player i’s expected payoff near δ requires
that ψi < 0. The two mass constraints and player −i’s indifference condition between 0 and δ

imply that αi(0) = δ/[(1 − β)v]; α−i(0) = [δ − (1 − 2β)v]/βv and ψi = (1 − β)v − δ. However,
so long as δ < (1 − β)v, player i could profitably deviate with a bid of δ. For Part C, the
two mass constraints and player −i’s indifference condition between ψi − δ and δ imply that
αi(0) = 2[δ − (1 − β)βv]/[(1 − β)2v]; ψi = δ + [(3β − 1)((1 − β)βv − δ)/(1 − β)(2β − 1)]; and
ψ−i = [2δ − (1− β)v]β/(2β − 1). Note, however, that the conditions in Part C for αi(0) > 0 and
ψi ∈ [δ, 2δ) cannot be jointly satisfied. (The closest case is δ = (1 − β)βv so that αi(0) = 0 and
ψi = ψ−i = δ, but then φ1 would exist.) ut

Lemma 9 Let δ ∈ (0, (1 − β)v ) and β > 1/2. If max{Gi(2δ), G−i(2δ)} < 1, the equilibrium
must be symmetric. In particular, αi(0) = α−i(0), ψi = ψ−i, and ϕj = 0 for j ∈ {1, . . . , k}.

Proof From Lemmata 7 and 8, mass in Gi and G−i have the following forms:

1 = αi(0) + ψi
(1− β)v + ψ−i

βv
+ δ + ϕ1

(1− β)v + δ − ϕ1

βv
+ · · ·+ δ + ϕk

(1− β)v + δ − ϕk
βv

1 = α−i(0) + ψ−i
(1− β)v + ψi

βv
+ δ − ϕ1

(1− β)v + δ + ϕ1

βv
+ · · ·+ δ − ϕk

(1− β)v + δ + ϕk
βv

Combining these two equations yields:

α−i(0)− αi(0) =
[

4β − 2
(1−β)βv

](
ϕ1 + ϕ2 + · · ·+ ϕk

)
−
[

2β − 1
(1−β)βv

]
(ψ−i − ψi) (23)

For j ∈ {1, . . . , k − 1} for k ≥ 2, ui(φj+1) = ui(φj) and u−i(φj+1 + ϕj+1) = u−i(φj + ϕj)
respectively imply the following:

φj+1 − φj = δ

(1− β)β +
(

1− β
β

)
ϕj −

(
β

1− β

)
ϕj+1

φj+1 − φj = δ

(1− β)β +
(

2β − 1
β

)
ϕj −

(
2β − 1
1− β

)
ϕj+1

We then obtain the following from the above two equations:

ϕj+1 =
[

2− 3β
3β − 1

](
1− β
β

)
ϕj (24)
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Since Equation 24 takes the form ϕj+1 = Hϕj , we can write all φj in terms of φ1. Of particular
note:

(ϕ1 + ϕ2 + · · ·+ ϕk) = ϕ1
[
1 +H +H2 + · · ·+Hk−1] = ϕ1

[
1−Hk

1−H

]
So Equation 23 becomes:

[α−i(0)− αi(0)] (1− β)v =
[

1−Hk

1−H

] [
4β−2
β

]
ϕ1 −

[
2β−1
β

]
(ψ−i − ψi) (25)

If αi(0) = α−i(0) and ψi = ψ−i, then Equation 25 simplifies to:

0 =
[

1−Hk

1−H

] [
4β − 2

(1−β)βv

]
ϕ1

This can only be satisfied by ϕ1 = 0 since 1 = Hk and 4β = 2 both require β = 1/2. So by
Equation 24, ϕj = 0 for j ∈ {1, . . . , k}.

Now suppose that either αi(0) 6= α−i(0) or ψi 6= ψ−i. Based on Lemma 8, if there is any
mass below φ1, then at least one player has a strictly positive mass point at zero. Without loss
of generality, assume this is player i. Then ui(0, G−i) = ui(φ1, Gi). For player −i, we have
u−i(0, G−i) ≤ u−i(φ1+ϕ1, Gi), which holds with strict equality in equilibrium whenever α−i(0) >
0. These imply the following:

φ1 = α−i(0)(1− β)v + ψ−i +
(
ψi
β

)
+ (δ − ϕ1)

(
β

1− β

)
φ1 ≤ αi(0)(1− β)v + ψi +

(
ψ−i
β

)
+ (δ + ϕ1)

(
β

1− β

)
− ϕ1

Combined, we have:

[α−i(0)− αi(0)] (1− β)v ≤ (ψ−i − ψi)
(

1− β
β

)
+
(

3β − 1
1− β

)
ϕ1 (26)

Together, Equations 25 and 26 imply the following, which holds with strict equality whenever
α−i(0) > 0:

(ψ−i − ψi) ≥ (3β − 1)
[
(1−Hk)−

(
1

1− β

)]
ϕ1 (27)

Based on the three forms of mass below φ1 in Lemma 8, and with αi(0) > 0 and α−i(0) ≥ 0, we
have ψi > 0 and ψ−i ≥ 0. So u−i(δ, Gi) = u−i(φ1 + ϕ1, Gi) and ui(δ, G−i) ≤ ui(φ1, G−i); the
latter holds with strict equality if ψ−i > 0. These can be rewritten as follows:

φ1 = ψi + ψ−i

(
1− β
β

)
+ δ

(
1

1− β

)
+ ϕ1

(
2β − 1
1− β

)
φ1 ≤ ψ−i + ψi

(
1− β
β

)
+ δ

(
1

1− β

)
− ϕ1

(
β

1− β

)
Combining them yields:

(ψ−i − ψi) ≥
(

3β − 1
2β − 1

)(
β

1− β

)
ϕ1 (28)

We will show that Equations 27 and 28 can only jointly hold if ψ−i = ψi and ϕ1 = 0. Suppose
instead that ψ−i 6= ψi, and without loss of generality, suppose that ψ−i < ψi. With β ∈ (1/2, 1),
the coefficient on ϕ1 in Equation 28 is strictly positive. So since the left-hand side of Equation 28
is negative, it must be that ϕ1 < 0. Next note that the coefficient on ϕ1 in Equation 27 is strictly
negative for β ∈ (1/2, 1). Showing that this coefficient is negative is equivalent to showing that
Hk(1− β) + β > 0, which holds for β ∈ (1/2, 1) since the minimal value of Hk over this range is
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4
√

3 − 7 ≈ −0.0718 (the minimum is obtained at β = (3 +
√

3)/6 ≈ 0.7887 and k = 1). With a
left-hand side that is negative, and a coefficient on ϕ1 that is also negative, Equation 28 can only
hold if ϕ1 > 0. Hence, we have a contradiction. Since the coefficients on ϕ1 in Equations 27 and
28 are nonzero for β ∈ (1/2, 1), these equations can only hold simultaneously if ψ−i = ψi and
ϕ1 = 0. If this is the case, then by Equation 24, ϕj = 0 for j ∈ {1, . . . , k}, and by Equation 25,
αi(0) = α−i(0). The equilibrium must therefore be symmetric. ut

D Proofs Specific to β = 1/2

Lemma 10 Let β = 1/2 and δ ∈ (0, v/4]. If Gi and G−i are equilibrium strategies for players i
and −i, then ui(a, G−i) = ui(a− 2δ, G−i) for all a ∈ supp(G−i) such that a ≥ 2δ. Equivalently,
[G−i(a+ δ)−G−i(max{a− 3δ, 0})] = 4δ/v.

Proof We begin by showing that for any κ > 0, [G−i(κ + 4δ) − G−i(κ)] ≤ 4δ/v. This is done by
construction. Suppose that any mass in G−i over [κ, κ+ 4δ] has the maximal density rate of 2/v
(any higher density rate would violate Equation 14). This is possible if G−i(κ+4δ) = G−i(κ+6δ)
and G−i(max{κ−2δ, 0}) = G−i(κ) so that any mass in Gi over [κ−δ, κ+δ] and [κ+3δ, κ+5δ] is
entirely balanced by the mass in G−i over [κ, κ+4δ]. To allow for the largest amount of [κ, κ+4δ]
to be covered at the density rate of 2/v, we further suppose that Gi(κ+δ) = Gi(κ+3δ), since any
mass in Gi over [κ+ δ, κ+ 3δ] would necessitate a lower (perhaps zero) density rate in G−i over
some portion of [κ, κ+4δ]. In equilibrium, it must be that κ+δ and κ+3δ ∈ supp(Gi). Otherwise,
if e− d > 2δ where d = max{supp(Gi)∩ [κ− δ, κ+ δ]} and e = min{supp(Gi)∩ [κ+ 3δ, κ+ 5δ]},
then we would have d + δ and e − δ ∈ supp(G−i), but u−i(d + δ, Gi) > u−i(e − δ, Gi) (that
is, the winning and tying probability would remain the same for bids of d + δ and e − δ, but
the cost of effort would differ). From Equation 14, ui(κ + δ, G−i) = ui(κ + 3δ, G−i) implies
that [G−i(κ + 4δ) − G−i(κ)] = 4δ/v, which is the desired upper bound. With this property in
hand, the main result follows quickly. Since Gi and G−i are equilibrium strategies, and since
a ∈ supp(G−i), it cannot be the case that ui(a, G−i) < ui(a − 2δ, G−i). For the purpose
of contradiction, suppose that ui(a, G−i) > ui(a − 2δ, G−i) for some a. Since ui(a, G−i) =
[G−i(a+ δ) +G−i(a− δ)](v/2)− a and ui(a− 2δ, G−i) = [G−i(a) +G−i(a− 3δ)](v/2)− (a− 2δ),
then ui(a, G−i) > ui(a− 2δ, G−i) implies that [G−i(a+ δ)−G−i(a− 3δ)] > 4δ/v. This, however,
is a contradiction, and so ui(a, G−i) = ui(a− 2δ, G−i). ut

Lemma 11 Let β = 1/2 and δ ∈ (0, v/4]. Property P must hold in any equilibrium.

Proof For added clarity, we will refer to Gi and G−i and Gw and Gy. We will also denote w1 =
max{x ∈ supp(Gw)} and y1 = max{x ∈ supp(Gy)}. Without loss of generality, assume that
w1 ≥ y1; so y1 ∈ [w1− δ, w1]. Our first step is to show that Gw(w1− 3δ) = Gw(w1− 4δ) and that
Gy(w1− 3δ) = Gy(w1− 4δ). By Lemma 10, since w1 ∈ supp(Gw) and Gy(w1 + δ) = Gy(y1), then:

[Gy(y1)−Gy(w1 − 3δ)] = 4δ/v

Also, since y1 − δ ∈ supp(Gw), Lemma 10 implies that:

[Gy(y1)−Gy(y1 − 4δ)] = 4δ/v

Hence, Gy(w1−3δ) = Gy(y1−4δ), and by a similar argument, Gw(y1−3δ) = Gw(w1−4δ). If w1 =
y1, then we are done. Otherwise, for w1 > y1, we must still show that Gw(w1−3δ) = Gw(y1−3δ).
Suppose instead that Gw(w1− 3δ) > Gw(y1− 3δ). Denote w = min{x ∈ supp(Gw) | x ≥ y1− 3δ}.
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Since w1 − δ ∈ supp(Gy), then by Lemma 10, uy(w1 − 3δ, Gw) = uy(w1 − δ, Gw). Hence, in
equilibrium, uy(w1 − 3δ) ≥ uw(w), or rather:

[Gw(w1−2δ)−Gw(w+δ)]v/2 + [Gw(w1−4δ)−Gw(w−δ)]v/2 ≥ w1−3δ−w

Since Gw has at least some mass immediately below w1 in [w+3δ, w1], any mass 2δ below that in
Gw necessarily has a density rate less than 2/v (that is, [Gw(w1−2δ)−Gw(w+δ)]v/2 < w1−3δ−w;
otherwise Equation 14 is not satisfied for all mass in Gy over [w + 2δ, w1 − δ]). Hence, it must
be that Gw(w1 − 4δ) − Gw(w − δ) > 0. For any ` ∈ supp(Gw) ∩ [w − δ, w1 − 4δ], we have
` − δ ∈ supp(Gy), and so uy(` − 3δ, Gy) = uy(` − δ, Gy) (see Lemmata 2 and 10). Moreover,
to satisfy Equation 14 for all ` − δ, the density rates in Gw over [w − δ, w1 − 4δ] and those 2δ
below it must sum to 2/v. At least a portion of the mass in Gw over [w − 3δ, w1 − 6δ] must
therefore have a density rate less than 2/v. However, for uy(`− 3δ, Gy) = uy(`− δ, Gy) to hold,
Gw must either have a density rate of 2/v over the entirety of [w − 3δ, w1 − 6δ] or there must
be a positive density rate over the ` − 4δ in Gw. That is, Gw(w1 − 8δ) − Gw(w − 4δ) > 0. Since
the density rate over all the ` − δ in Gy is 2/v, the density rate over the ` − 3δ in Gy is 0, and
so ` − 5δ ∈ supp(Gy). The argument then repeats. Ultimately, however, there is a contradiction:
at some point the bottom of the distribution is reached, so payoffs can no longer be sustained by
additional mass δ below. We therefore have the desired result that Gw(w1 − 3δ) = Gw(w1 − 4δ)
and Gy(w1 − 3δ) = Gy(w1 − 4δ).

Since Gw and Gy each have a gap of at least δ, then this argument also applies to mass
below these gaps. Let w2 = max{x ∈ supp(Gw) | x ≤ w1 − 4δ}, y2 = max{x ∈ supp(Gy) | x ≤
y1 − 4δ}, and m2 = max{w2, y2}. Using the same argument, Gw(m2 − 3δ) = Gw(m2 − 4δ) and
Gy(m2 − 3δ) = Gy(m2 − 4δ). Or more generally, for wz = max{x ∈ supp(Gw) | x ≤ wz−1 − 4δ},
yz = max{x ∈ supp(Gy) | x ≤ yz−1 − 4δ}, and mz = max{wz, yz}, where z ∈ {2, 3, . . .}, then
Gw(mz − 3δ) = Gw(mz − 4δ) and Gy(mz − 3δ) = Gy(mz − 4δ). Moreover,

[Gw(mz)−Gw(mz − 3δ)] = [Gy(mz)−Gy(mz − 3δ)] = 4δ/v

To satisfy the constraint that all mass must sum to one, Gw and Gy each have p ≡ bv/4δc such
intervals. That is, p intervals of length 4δ, each having a total mass of 4δ/v, none of which is in
the bottom δ (the remaining 1 − [4δp/v] is then at the bottom of the distribution; more on this
later). Placing a mass of 4δ/v within 3δ, with no mass δ above or below, requires that Gw and
Gy each have 2δ/v over [mz − 2δ, mz − δ] and 2δ/v over [mz − 3δ, mz − 2δ]

⋃
[mz − δ, mz] for

z ∈ {1, . . . , p}. Mass over [mz − 2δ, mz − δ] must be at a density rate of 2/v, while the density
rates at x and x− 2δ for x ∈ [mz − δ, mz] must sum to 2/v (see Lemmata 2 and Equation 14).

We can also state how successive length 4δ intervals fit together. Since [mz − 2δ, mz − δ]
is in the support of Gw and Gy, then by Lemma 10, players are indifferent between any bid
in [mz − 2δ, mz − δ] and any bid in [mz − 3δ, mz − 4δ]. In particular, uy(mz − 3δ, Gw) =
uy(mz − 4δ, Gw) and uw(mz − 3δ, Gy) = uw(mz − 4δ, Gy) respectively imply:

[Gw(mz − 2δ)−Gw(mz − 5δ)] = 2δ/v

[Gy(mz − 2δ)−Gy(mz − 5δ)] = 2δ/v (29)

So Gw and Gy each have 2δ/v over [mz − 5δ, mz − 3δ]
⋃

[mz − 5δ, mz − 3δ], and the density
rates at x ∈ [mz − 3δ, mz − 5δ] and x − 2δ must sum to 2/v to support the expected payoffs in
[mz−3δ, mz−4δ]. Consequently, players are also indifferent between bids in [mz−3δ, mz−4δ] and
bids in [mz−4δ, mz−5δ] (if x ∈ [mz−3δ, mz−5δ] is in the player’s support, then the indifference
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comes from Lemma 10; if not, then the indifference comes from x−2δ being in the player’s support).
We therefore have uy(mz−3δ, Gw) = uy(mz−5δ, Gw) and uw(mz−3δ, Gy) = uw(mz−5δ, Gy),
and so [Gw(mz−2δ)−Gw(mz−6δ)] = 4δ/v and [Gy(mz−2δ)−Gy(mz−6δ)] = 4δ/v. Combined with
Equation 29, [Gw(mz−5δ)−Gw(mz−6δ)] = 2δ/v and [Gy(mz−5δ)−Gy(mz−6δ)] = 2δ/v, which
can only hold if the mass is distributed at a rate of 2/v. Finally, uy(mz−4δ, Gw) = uy(mz−6δ, Gw)
and uy(mz−5δ, Gw) = uy(mz−7δ, Gw) give us Gw(mz−7δ) = Gw(mz−8δ); the corresponding
equations for uw yield Gy(mz − 7δ) = Gy(mz − 8δ). ut

Lemma 12 Let β = 1/2 and δ ∈ (0, v/4]. Also, let p = bv/4δc be the number of length-4δ
intervals with the properties specified by P. In any equilibrium, the top of the pth such interval
(or bottommost interval) is in [2δ, 3δ] if δ = v/4p; in (3δ, 4δ] if δ ∈ [v/(4p + 2), v/4p); and at
(v/2)− δ(2p−4) if δ ∈ (v/(4p+4), v/(4p+2)). Below the pth interval, a total mass of 1− [4δp/v]
is distributed as follows:

A. If δ ∈ [v/(4p+2), v/4p), the remaining 1−[4δp/v] is at zero, neither player has mass in (0, δ),
and all equilibria have an expected payoff of (v/2) − 2δp. For δ = v/(4p + 2), the equilibrium
is unique: there is no mass in (0, 2δ) and the top of the pth interval is at 4δ.

B. If δ ∈ (v/(4p + 4), v/(4p + 2)), each player has a mass point at zero of [4δ(p + 1)/v] − 1, a
uniform density rate of 2/v over the intervals [0, v/2− δ(2p+ 1)] and [δ, v/2− 2δp], and an
expected payoff of δ. This also holds for δ ∈ (v/4, v/2) (i.e. p = 0).

Proof Following the notation from the proof of Lemma 11, let mp = m1 − 4δ(p − 1), where
m1 = max{w1, y1}. That is, mp is the top of the pth length-4δ interval (specifically for the player
whose support contains the highest element; alternatively, mp = max{wp, yp}). By Lemma 11,
these p intervals satisfy P, and so the remaining mass of 1 − [4δp/v] must be distributed below
them at the bottom of the distribution. There are two bounds that we can quickly place on
mp. First, mp ≥ 2δ; otherwise, with a maximal density rate of 2/v it is not possible to have
4δ/v of continuously distributed mass. Second, mp < 6δ, or it would be possible to have 4δ/v of
continuously distributed mass below mp − 4δ. We will show that mp ∈ [2δ, 3δ] when δ = v/4p;
mp ∈ (3δ, 4δ] when δ ∈ [v/(4p+ 2), v/4p); and mp ∈ (5δ, 6δ) when δ ∈ (v/(4p+ 4), v/(4p+ 2)).
This covers the complete range of δ for any given p. Furthermore, we will show how the remaining
1− [4δp/v] is distributed, as well as a uniqueness result for δ = v/(4p+ 2).

If mp ∈ [2δ, 4δ], then since 4δ/v is distributed over (0, mp], Lemma 10 requires that the
remaining mass of 1− [4δp/v] be at zero. If mp ∈ [2δ, 3δ), then each player’s support contains a
neighborhood above and below δ with a density rate of 2/v. However, if the opponent has a strictly
positive mass point at zero, placing mass immediately below δ cannot hold in equilibrium. So for
mp ∈ [2δ, 3δ), we must have 1− [4δp/v] = 0, or equivalently, δ = v/4p. We can also quickly show
that mp /∈ (3δ, 4δ] when δ = v/4p. Without a mass point at zero, each player’s distribution must
have a density rate of 2/v over [δ, 2δ]; otherwise, players could obtain a higher expected payoff by
bidding zero. Maintaining even the minimum expected payoff of zero entails randomizing at the
rate of 2/v over [δ, 3δ], but then the mass of 4δ/v is used up. So mp /∈ (3δ, 4δ] when δ = v/4p.

Therefore, if mp ∈ (3δ, 4δ], there must be a strictly positive mass point at zero of 1− [4δp/v].
And if one player is granted that privilege, they both must be. So min{wp, yp} ∈ (3δ, 4δ], and
2δ is in each player’s support at a density rate of 2/v. Equating uw(2δ, Gy) = uw(0, Gy) and
uy(2δ, Gw) = uy(0, Gw), we obtain:

Gw(3δ) = Gy(3δ) = 4δ/v (30)
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At least 2δ/v of this 4δ/v is distributed at a density rate of 2/v over [wp − 2δ, wp − δ] or
[yp − 2δ, yp − δ]. So the mass point of 1 − [4δp/v] must be weakly less than 2δ/v. This implies
that δ ≥ v/(4p+ 2). We already showed that this range of mp does not hold for δ = v/4p, and so
mp ∈ (3δ, 4δ] implies that δ ∈ [v/(4p+ 2), v/4p). Equation 30 also rules out the possibility of a
strictly positive mass point when mp = 3δ (there is already 4δ/v in (0, 3δ], so there is no room
for a mass point).

Next suppose that mp ∈ (4δ, 5δ]. We will show that this cannot hold in equilibrium. Without
loss of generality, assume that mp = wp. As a property of P, there is no mass in Gw over
[wp− 4δ, wp− 3δ] and no mass in Gy over (max{yp− 4δ, 0}, yp− 3δ]. We begin by showing that
Gy has no mass in (0, δ]. If yp ∈ (wp − δ, 4δ], then the remaining mass of 1 − [4δp/v] is at zero
and Gy has no mass in (0, δ]. If instead yp ∈ (4δ, wp], then by Lemma 2, since Gw has no mass
in (δ, wp− 3δ], then Gy has no mass in (0, wp− 4δ]. There is also no mass in Gy over [wp− 4δ, δ]
since this is a subset of [yp − 4δ, yp − 3δ]. Thus, Gy has no mass in (0, δ]. We next note that
uw(0, Gy) = uw(δ, Gy). Since 0 is in the support of Gw, we must have uw(0, Gy) ≥ uw(δ, Gy).
But if uw(0, Gy) > uw(δ, Gy), then we would also have uw(0, Gy) > uw(x′, Gy) where x′ =
min{x ∈ supp(Gw) | x ≥ wp − 3δ}. With no mass in Gy over (0, δ], the maximal density rate of
2/v over [2δ, x′ + δ] can compensate for the added bidding cost between δ and x′, but no more.
Thus, since we must have uw(0, Gy) = uw(δ, Gy) and since wp − 3δ > δ, then we must also have
a density rate of 2/v in Gw over [2δ, wp − 2δ]. However, this implies that there is no mass in Gw
over [4δ, wp], which contradicts wp ∈ (4δ, 5δ].

Finally, if mp ∈ (5δ, 6δ), then mp − 4δ ∈ (δ, 2δ). We again assume that mp = wp. Following
P, there is no mass in Gw over [wp − 4δ, wp − 3δ], and consequently, by Lemma 2, no mass in
Gy over [wp − 5δ, δ]. Likewise, there is no mass in Gy over [yp − 4δ, yp − 3δ], and no mass in Gw
over [yp − 5δ, δ].22 Applying parts A and B of Lemma 2, any continuously distributed mass over
[0, yp−5δ]

⋃
[δ, wp−4δ] in Gw and over [0, wp−5δ]

⋃
[δ, yp−4δ] in Gy must have a density rate of

2/v. It follows then that Gw and Gy have the same amount of continuously distributed mass, and
so αw(0) = αy(0) ≡ α(0). To compensate for the respective gaps in Gw and Gy over [yp−5δ, δ] and
[wp−5δ, δ], we need α(0) > 0.23 Since a bid of wp−4δ for player w and of yp−4δ for player y have
the same expected payoffs as a bid 2δ above that or any other bid in their support (see Lemmata 10
and 11), it must be that uw(wp − 4δ, Gy) ≥ uw(δ, Gy) and uy(yp − 4δ, Gw) ≥ uy(δ, Gw). These
can only be satisfied if Gy has a density rate of 2/v over [0, wp − 5δ] and if Gw has a density rate
of 2/v over [0, yp − 5δ]. By Lemma 2, these in turn imply a density rate of 2/v over [δ, wp − 4δ]
in Gw and [δ, yp − 4δ] in Gy. With a common mass point, each player will only be indifferent
between these two intervals if wp = yp. From uw(wp − 4δ, Gy) = uw(0, Gy), we can identify
wp = (v/2)− 2δ(p− 2), which pins down α(0) = [4δ(p+ 1)/v]− 1.24 We can establish bounds on
δ from uw(wp − 4δ, Gy) = uw(wp − 3δ, Gy), since this implies Gy(wp − 5δ) = 2δ/v. Thus, the
remaining mass of 1 − (4δ/v) ∈ (2δ/v, 4δ/v). Equivalently, δ ∈ (v/(4p + 4), v/(4p + 2)). This
argument also applies to the case of δ ∈ (v/4, v/2).

22 The claim that Gw has no mass in [yp − 5δ, δ] is contingent on yp ∈ (5δ, wp]. We can quickly rule out the
possibility of yp ∈ (wp − δ, 5δ]: the lack of mass in Gy over [yp − 4δ, yp − 3δ] would preclude mass in Gw over
(0, yp − 4δ) (see Lemma 2). Since there is also no mass in Gw over [2δ, wp − 3δ], there would be no way for player
y to recover the bidding cost between δ and wp − 4δ (i.e. the next element in Gy above wp − 4δ would need to be
compensated by more than the maximal density rate of 2/v).
23 If α(0) = 0, at most one player could have continuously distributed mass below δ, but that player would then
have a sizable gap before there was any more mass in the other player’s distribution to tie or beat. So that cannot
be an equilibrium.
24 The mass point is the remainder of 1− (4δp/v) after subtracting [(v/2)− 2δ(p− 2)− 5δ]× (2/v)× 2.
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Algorithm 1 Asymmetric Equilibria: β ∈ (0, 1/2), δ ∈ (0, (1− β)v)
1: for all z ∈ {0, 1, 2, . . . , bv/δc − 1} do . Vary first zeroed element
2: Set to zero: wz , yz+1, wz+2, yz+3, . . . , wbv/δc−1, ybv/δc (if z = 0, set to zero: aw(0), w1, y2, . . . , wbv/δc−1,
ybv/δc).

3: for all p ∈ {max{1, z}, . . . , bv/δc} do . Vary upper bound
4: Set to zero: wj , yj for all j > p.
5: Solve system of equations Ax = b (one indifference equation for each jump in each player’s distribution,

plus constraints for mass summing to one; x: sizes of nonzero mass points and lengths of nonzero wi, yi).
6: verify whether x∗ = A\b is an equilibrium:
7: • Not an equilibrium if any elements of x∗ are not strictly positive.
8: • If z = 0, not an equilibrium if uw(0, Gy) > uw(δ, Gy).
9: • Not an equilibrium if uy(ζ + δ, Gw) > uy(0, Gw) where ζ is where the 1/[(1 − β)]v segment of wz

would have begun (ζ = 0 if z = 0).
10: • Not an equilibrium if the player with the smaller upper bound can do better by bidding δ above the

other player’s upper bound.
11: • Otherwise, x∗ constitutes an equilibrium.

Having established the various bounds for δ for each potential value of mp, we conclude with
a uniqueness result at δ = v/(4p+ 2). As we have already shown, there is a mass point at zero of
1 − (4δp/v) and there is no mass in (0, δ). Also, as we argued earlier in the paragraph covering
mp ∈ (4δ, 5δ], we must also have ui(0, G−i) = ui(δ, G−i) (or else the expected payoff of elements
in the support above δ would be less than the expected payoff at zero). From this equality we
obtain G−i(2δ)−G−i(δ) = [δ(4p+ 2)/v]− 1, which equals zero when δ = v/(4p+ 2). Hence, there
is no mass in (0, 2δ), so the 4δ/v in the pth interval must be distributed over [2δ, 4δ] at a rate of
2/v. The rest of the distribution follows from P. ut

E Asymmetric Equilibria

For δ ∈ (0, (1−β)v) and β ∈ (0, 1/2), Algorithm 1 identifies the complete set of asymmetric equi-
libria for the game APT{δ, β, v} (the labels are the same as in Figure 7). With players arbitrarily
assigned as player w or player y, the algorithm systematically varies the first 1/[(1−β)v] segment
in player w’s distribution to omit, as well as the uppermost interval pair in the two distributions.
Then for each combination of omitted interval pairs, there are at most four conditions that must
be checked to verify the existence of an asymmetric equilibrium. First, the system of equations
formed from the indifference conditions between the intervals in each player’s distribution needs
to produce strictly positive lengths for each of the non-omitted interval pairs and strictly positive
mass for the non-excluded mass points (the system of equations also includes two equations which
specify that the mass in each player’s distribution must sum to one). Second, if player w’s mass
point was excluded, player w cannot profitably deviate by bidding zero.

All other profitable deviations are captured by the third and fourth conditions. Third, bidding
δ above the first omitted 1/[(1− β)v] segment in player w’s distribution cannot be profitable for
player y. Below this point, bids within gaps in either player’s distribution can be ruled out by
arguments similar to those for the symmetric case (see the paragraphs leading up to Theorem 3).
Above this point, the gaps are so large that bidding within a gap does not adequately increase
the amount of mass a player is tying or beating. Precisely at this point, however, player y beats
all of the 1/(βv) segment that is δ below it, and so the expected payoff rises to a peak—the only
peak in this gap. It therefore suffices to check that this peak is not too high. The fourth condition
similarly pertains to a peak. As in the symmetric case, it merely specifies that outbidding the
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opponent’s distribution by δ cannot be profitable. Here, however, one player’s upper bound is a
1/[(1− β)v] segment while the other’s is a 1/(βv) segment, which is already δ above the first. So
we simply need to verify that the player with the smaller upper bound cannot profit by outbidding
their opponent’s distribution and winning with certainty.
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