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Superconducting resonator couplers will likely become an essential component in modular semiconductor
quantum dot (QD) spin qubit processors, as they help alleviate crosstalk and wiring issues as the number of qubits
increases. Here, we focus on a three-qubit system composed of two modules: a two-electron triple QD resonator
coupled to a single-electron double QD. Using a combination of analytical techniques and numerical results,
we derive an effective Hamiltonian that describes the three-qubit logical subspace and show that it accurately
captures the dynamics of the system. We examine the performance of short-range and long-range entangling
gates, revealing the effect of a spectator qubit in reducing the gate fidelities in both cases. We further study the
competition between nonadiabatic errors and spectator-associated errors in short-range operations and quantify
their relative importance across practical parameter ranges for short and long gate times. We also analyze the
impact of charge noise together with residual coupling to the spectator qubit on intermodule entangling gates and
find that for current experimental settings, leakage errors are the main source of infidelities in these operations.
Our results help pave the way toward identifying optimal modular QD architectures for quantum information
processing on semiconductor chips.

DOI: 10.1103/PhysRevResearch.6.043029

I. INTRODUCTION

Encoding qubits in the spin of electrons in electrostatically
defined quantum dots (QDs), following the Loss-DiVincenzo
proposal [1], continues to be one of the most promising
platforms for future large-scale quantum processors [2,3].
Among the different types of QD-based quantum processors,
silicon (Si)-based systems are especially promising due to
their prospects for scalability and compatibility with existing
semiconductor manufacturing processes [4–6]. Additionally,
initialization, logical operations, and measurements can be
conducted with all-electrical control signals [7,8]. Very high
single-qubit gate fidelities (>99.9%) have been experimen-
tally demonstrated for these qubits [9–14]. Also, two-qubit
gates with fidelities higher than the 99% threshold for certain
quantum error correcting codes [15] have been experimen-
tally realized across different silicon-based QD platforms
[9,13,14,16], with state preparation and measurement (SPAM)
fidelities exceeding 97% [7,13]. Additionally, these proces-
sors can be designed to operate above one kelvin [17,18].
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In these systems, single-qubit operations are commonly
implemented by modulating the local electric confinement
potential to oscillate the electron across a magnetic field gra-
dient generated by micromagnets fabricated on top of the
device. The resulting effective AC magnetic field rotates the
spin in a process known as electric-dipole spin resonance
(EDSR) [19–21]. On the other hand, two-qubit gates can be
implemented by taking advantage of the Heisenberg exchange
coupling between neighboring QDs [1,9,13,16,22–32]. This
coupling can be turned on or off on nanosecond timescales by
applying voltage pulses to either lower or raise the interdot
barrier or by tilting the double well potential.

QD-based processors containing up to six fully operational
spin qubits have been realized [33]. A promising approach to
achieving processors with more qubits is to exploit modularity
[34,35]. For example, architectures in which multiple few-
qubit modules are connected by quantum interconnects such
as superconducting resonators are particularly attractive for
mitigating crosstalk and wiring issues. This, combined with
techniques such as coherent spin shuttling [36,37], provides a
route to reach larger QD processors.

Superconducting resonators are widely utilized for medi-
ating long-range interactions between both superconducting
qubits [38–40] and electronic spin qubits [41,42]. While mag-
netic dipole interactions between electron spins and resonator
photons are only in the range of <kHz, strong spin-photon
couplings in the range of tens of MHz may be reached
by utilizing the electric dipole interaction in combination
with spin-orbit couplings and EDSR techniques [43–48].
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FIG. 1. (a) An abstract sketch of the three-qubit QD system composed of three main components: a two-electron TQD module, a single-
electron DQD module, and a superconducting resonator as a quantum bus with virtual photons to mediate interactions. (b) Illustration of a
two-electron TQD module capacitively coupled to a superconducting resonator based on gate-defined QDs in a Si/SiGe heterostructure. The
plunger (P1, P2, and P3) and barrier (B1 and B2) gates on top of the structure control the chemical potentials of the wells and the interdot
tunnel couplings. Resonator electrode (R) capacitively couples dot 1 to a probe inside a superconducting resonator. A nearby micromagnet
(not shown) creates a static magnetic field ( �B) gradient between the first two dots with the arrangement of the magnetic field as illustrated. The
depths of the potential wells are not shown to scale for illustrative purposes. The single-electron DQD module has a layout similar to the first
two dots of the TQD module.

Importantly, by employing microwave photons as mediators,
signatures of coherent remote spin-spin interactions have been
observed in the resonant [41] and dispersive regime [42]
in QD systems, together with the realization of iSWAP os-
cillations in the dispersive regime between the two distant
semiconductor spin qubits [49], bringing us a step closer to
multicore operations in these processors.

While all-electrical control enables fast gate operations,
it has the unwanted side effect of exposing the qubits to
incoherent charge noise, which is likely due to charge traps
at interfaces in the semiconductor heterostructure [12,20,50–
52]. These are dominant sources of decoherence in these
systems and are important factors in designing processor ar-
chitectures. Magnetic noise caused by hyperfine interactions
with 29Si nuclear spins can also be an issue. However, this
can be largely mitigated by isotopic purification to reach low
levels (50–800 ppm) [8,9,12,14,53] of residual 29Si isotope
concentrations, resulting in coherence times of up to a few
milliseconds for spins in gate-defined QDs [12], and coher-
ence times of up to 10 seconds for the spins of donor-bound
electrons [53].

Despite these advances, theoretical studies of remote spin-
spin coupling in semiconductor platforms have so far been
limited to two qubits, in different coupling regimes, with one
qubit in each module [54–59]. One needs to consider at least
three qubits in order to investigate important issues such as the
impact of spectator qubits on the performance of resonator-
mediated gates. Another important question pertains to the
quality of remote entangling operations between qubits that
are not directly coupled to the resonator. It is also important to
understand how charge noise spreads in modular, multiqubit
systems and how its impact compares to other loss mecha-
nisms, such as crosstalk and leakage.

In this paper, we analyze short-range and long-range en-
tangling operations in a QD system with three spin qubits, in
which one qubit is confined to a double quantum dot (DQD)
that is resonator coupled to a triple quantum dot (TQD)

module containing two qubits. We examine the performance
of short-range (intramodule) and long-range (intermodule)
two-qubit entangling gates and explore the effect of spec-
tator qubits. We also study the effect of charge noise on
long-distance entangling gate fidelities in the presence of a
spectator qubit, finding that the latter has a stronger impact
on fidelities for typical experimental parameter regimes. Our
work serves as a natural first step towards identifying optimal
operating regimes for modular architectures containing multi-
ple qubits connected by resonators.

The paper is organized as follows. In Sec. II, we introduce
the structure of the resonator-mediated three-qubit system and
outline the Hamiltonian, relevant parameters, and the notation.
We then present an effective model that accurately captures
the dynamics of the dressed spin system which is used to
encode the qubits. In Sec. III, a protocol for implementing
short-range entangling gates between two neighboring spin
qubits is studied. Long-range entangling gates across the
resonator and the effect of the quasistatic charge noise are
presented in Sec. IV. Section V summarizes the results of the
study.

II. THREE-QUBIT SYSTEM

A. Setup

We consider three electron spin qubits confined to gate-
defined QDs. These QDs are created by applying DC voltages
on gate electrodes located on the surface of a semiconductor
heterostructure to isolate and confine three electrons from the
two-dimensional (2D) electron gas that resides at an interface
within the heterostructure. We consider a device containing a
total of five QDs separated into two modules, one of which is
a DQD containing one electron and the other a TQD with two
electrons. The two modules are connected by a superconduct-
ing transmission line resonator, which capacitively couples to
one QD from each module. Figure 1(a) shows a schematic
representation of the hybrid Si-cQED device under study with
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the three spin qubits in the system labeled. A more detailed
illustration of the TQD module in this system is shown in
Fig. 1(b). The DQD module, also connected to the resonator,
has a configuration similar to the first two dots of the TQD
module.

The electrical voltage signals applied to the plunger and
barrier gate electrodes on top of the device control the elec-
trostatic environments within the heterostructure and provide
effective knobs to control the chemical potential level of all
dots, εDi and εTi, and the interdot tunnel couplings, tD and
tTi j . Here, we label the two dots in the DQD by D1 and D2,
while the three dots in the TQD are labeled T 1, T 2, and T 3.
The resonator couples to dots D1 and T 1.

We assume that the device is functioning in a three-electron
regime such that with proper voltage controls, the charge
occupations are such that there is a single electron delocalized
across the DQD (qubit D), a single electron delocalized across
the first two dots of the TQD (qubit T ), and one electron
trapped in the third dot (T 3) of the TQD module (qubit 3).

B. Hamiltonian

The Hamiltonian of the entire system can be represented
by modeling the DQD module, TQD module, resonator,
drive, and the interaction between the coupled parts, assuming
h̄ = 1, as

Ĥtot = Ĥr + ĤDQD + ĤTQD + ĤDQD-R + ĤTQD-R + Ĥdrive,

Ĥr = ωra
†a,

ĤDQD =
2∑

i=1

(εDinDi + �BDi · �SDi )

−
∑

σ=↑,↓
(tD c†

D2σ cD1σ + H.c.),

ĤTQD =
3∑

i=1

[
εTinTi + UTi

2
nTi(nTi − 1) + �BTi · �STi

]
+VT 12 nT 1nT 2 +VT 23 nT 2nT 3 +VT 31 nT 3nT 1

−
∑

σ=↑,↓
(tT 12 c

†
T 2σ cT 1σ + tT 23 c

†
T 3σ cT 2σ

+ tT 31 c
†
T 1σ cT 3σ + H.c.),

ĤDQD-R = 2gACD (a† + a)nD1,

ĤTQD-R = 2gACT (a† + a)nT 1,

Ĥdrive = �D cos (ωdt )(nD1 − nD2), (1)

where Ĥr describes the microwave resonator, while the ĤDQD

and ĤTQD terms describe the DQD and TQD modules. The
Hamiltonians for the DQD and TQD modules correspond to
a single-band Fermi-Hubbard model. This Hamiltonian has
been previously examined in the case of semiconductor quan-
tum dot spin qubits [60,61]. The capacitive couplings between
the resonator field mode and the charge occupation of the
nearest dot to the resonator are modeled by the terms ĤDQD-R

and ĤTQD-R.
Here, a†(a) is the bosonic creation (annihilation) oper-

ator of the resonator mode with the angular frequency ωr

and c†
iσ (ciσ ) are the fermionic creation (annihilation) oper-

ators for an electron in dot i with spin σ . Operator nk is
the total number operator for dot k, i.e., nk = nk↑ + nk↓,
with nk↑ (nk↓) being the number operator for the spin-up
(-down) state in the dot k. The spin vector for dot k is �Sk =
1
2 (c†

k↑ck↓ + c†
k↓ck↑,

c†
k↑ck↓−c†

k↓ck↑
i , c†

k↑ck↑ − c†
k↓ck↓). We assume

that only one bosonic mode of the resonator is relevant to
the dynamics of the system. Here we focus on entangling
gate designs considering linear-array TQD structures, with
only nearest-neighbor tunnel couplings, i.e., tT 13 = 0, which
is relevant to experimental developments. In such cases, any
phases in the tunnel coupling parameters (tD, tT 12, and tT 23)
can be eliminated from the full-system Hamiltonian using
unitary transformations. Specifically, without the loss of gen-
erality, the tunnel coupling tD can be assumed real and positive
using transformations cD1σ → e−i arg(tD )cD1σ in the theoretical
and numerical modelings; similarly, tunnel couplings tT 12, and
tT 23 can be considered positive and real with transformations
cT 1σ → e−i arg(tT 12 )cT 1σ and cT 3σ → ei arg(tT 23 )cT 3σ . In the pla-
quette geometries with nonzero tT 13, however, the remaining
phase of tT 13 cannot, in general, be eliminated and must be
carefully considered as it may lead to nontrivial effects on the
spin dynamics. Specifically, in the presence of magnetic fields,
the Peierls phase needs to be included in numerical modelings
of plaquette structures depending on the spatial profile of the
fields and physical arrangements of the system. Inspired by
recent experimental realizations and assuming the aforemen-
tioned transformations of the basis states, in our studies, the
interdot tunnel couplings tD, tT 12, and tT 23 are considered to
be real and positive, without the loss of generality. We also
only include the ground states of the confinement potentials
of the QDs in the orbital part of the Hilbert space since the
excited orbital states are at sufficiently higher energies. The
chemical potentials of the dots are denoted by εDi and εTi,
and the interdot tunnel couplings are captured by the tD and
tTi j parameters, determined by the spatial overlap of the wave
functions in the dots. In practice, both sets of parameters
can be electrically tuned using gate electrodes. U and V are
the intra- and interdot Coulomb repulsion energies, respec-
tively, and they are found to be typically in the range of a
few to ten meV [60,61]. To impose the condition that one
electron in the TQD module gets localized to dot T 3 with
high probability, we impose εT 3 � εT 2 +VT 12 −VT 31, εT 1 +
VT 12 −VT 23 � UT 1,UT 2,UT 3 in all the analyses that follow.

While the effect of intrinsic spin-orbit interactions can
be ignored, artificial spin-orbit interactions are engineered
by placing micromagnets on top of the device and creating
magnetic field gradients across neighboring dots. Leveraging
this technique, the interaction between the spin of delocalized
electrons and the electric field from the resonator is mediated
through electric dipole interactions [43], leading to higher ef-
fective spin-photon coupling strengths [45–48] and therefore
practical two-qubit interaction times. The electric dipole cou-
pling strengths for coupling to the resonator fields are denoted
by gACD and gACT for the DQD and TQD modules, respectively.
The total magnetic field vector, including the external field as
well as that generated by the micromagnets, in dot i of DQD
and TQD, is denoted by �BDi and �BTi. In the numerical studies
that follow, the average magnetic field in the DQD and the
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first two dots of the TQD are chosen along the z direction,
while the magnetic field gradient is along the x axis to induce
transverse spin-orbit couplings. The magnetic field in the third
dot of the TQD is along the z direction [Fig. 1(b)].

The Hamiltonian of Eq. (1) also includes an electric drive
term on the potentials of the dots in the DQD module with
amplitude �̃ and frequency ωd . This drive is used in the
implementation of a long-range maximally entangling gate (in
this case, CNOT), as discussed in Sec. IV.

For the one- and two-electron charge configurations
assumed above for the DQD and TQD modules,
respectively, the single-particle subspace of the DQD
has a dimensionality of four, with computational
basis states given by c†

D1↑ |0〉, c†
D1↓ |0〉, c†

D2↑ |0〉, c†
D2↓|0〉, while the two-particle subspace of the TQD has a

dimensionality of 15, with computational basis states given
by c†

T 1↑c
†
T 3↑ |0〉, c†

T 1↑c
†
T 3↓ |0〉, c†

T 1↓c
†
T 3↑ |0〉, c†

T 1↓c
†
T 3↓ |0〉,

c†
T 2↑c

†
T 3↑ |0〉 , c†

T 2↑c
†
T 3↓ |0〉, c†

T 2↓c
†
T 3↑ |0〉, c†

T 2↓c
†
T 3↓ |0〉, c†

T 1↑
c†
T 2↑ |0〉 , c†

T 1↑c
†
T 2↓ |0〉, c†

T 1↓c
†
T 2↑ |0〉, c†

T 1↓c
†
T 2↓ |0〉, c†

T 1↑
c†
T 1↓ |0〉, c†

T 2↑c
†
T 2↓ |0〉, c†

T 3↑c
†
T 3↓ |0〉. It should be noted

that although the multiqubit dynamics are purposely designed
to primarily happen in the low-energy subspace of the full
system Hamiltonian, all the simulations are carried out over
the entire Hilbert space of Eq. (1), after we truncate the
maximum resonator photon number to nr − 1 i.e., a total of
nr photonic states. This results in a total system Hilbert space
dimension of 60nr that we use in our numerical simulations
below.

In this work, we focus on TQDs arranged in a linear array,
i.e., the three QDs sit on a line [see Fig. 1(a)], with only
nearest-neighbor tunnel couplings, i.e., tT 13 = 0. This scheme
is relevant to physical implementations of gate-defined QD-
based quantum processors that have been the subject of
investigations recently [33].

C. Testing the effective model

We consider the case of a dispersive regime, where
coupling terms are sufficiently small relative to energy dif-
ferences, and the drives are weak and detuned and can be
considered perturbatively in the analysis. By applying frame
transformations and a time-dependent Schrieffer-Wolff trans-
formation [62], the coupling between the low-energy subspace
and the rest of the Hilbert space is removed to the leading
order (see Appendix A for the details of the derivation).
Next, we project onto the low-energy subspace defined as
the empty-cavity limit, i.e., 〈a†a〉 = 0, and the ground state
for the orbital degree of freedom of the DQDs, i.e., ∀i ∈
{D,T } : 〈τ z

i 〉 = −1, through which we derive an effective
Hamiltonian, without the drive, governing the dynamics of the
low-energy qubits,

Ĥeff =
∑

i=D,T,3

1

2
ωiσ

z
i − Jrσ

x
Dσ x

T + Je
4

�σT · �σ3 + JZZσ
z
Tσ z

3 .

(2)

Here the effective Hamiltonian is composed of six terms. The
first three terms represent the three dressed qubits with transi-
tion frequencies ωi, i ∈ {D,T, 3}. The fourth term describes
the long-distance resonator-mediated coupling between qubits

D and T with strength Jr . The fifth term corresponds to a
short-distance exchange coupling between qubits T and 3
with strength Je. The last term is a residual short-distance Ising
coupling with strength JZZ between qubits T and 3 resulting
from spin-charge hybridization. For the parameter regimes
considered in this paper, this residual coupling is small and
can be safely ignored if desired. A key observation here is that
the structure of the effective Hamiltonian is comprised of two
bipartite interactions, each between two neighboring qubits, as
one might anticipate. However, the coupling strengths of these
interactions depend on the details of the entire system (see
Appendix A for the definitions of the effective parameters).

By engineering the dynamics in an unpopulated resonator
mode, long-distance interactions are mediated via the ex-
change of virtual photons. The benefits of choosing such
a subspace are twofold. First, the cavity-induced losses are
effectively removed; and second, operations through the quan-
tum bus between different sets or groups of modules can
be parallelized, as interactions are merely virtual and no
real populations are induced in the resonator, thus increas-
ing the information processing speed and the throughput of
the system.

Next, we put the derived effective Hamiltonian to the test
through a numerical fitting approach, as described below.
Confirming the validity of the effective Hamiltonian is im-
portant since we will use it extensively later on to devise
protocols for implementing entangling operations between
pairs of qubits.

We start by finding the time evolution of the whole system,
Utot(t ) = e−it Ĥtot for t ∈ [0, t0], followed by projection onto
the low-energy subspace with the projection operator P, which
yields the actual time evolution of the low-energy subspace
Uactual(t ) = PUtot(t )P. The details of the projection operation
and low-energy subspace are introduced in Appendix A. We
then compare the actual time evolution with its counterpart
based on the effective model, Ueff(T ) = e−itHeff . The metric
for this comparison is the transformation fidelity defined as

F = dFe+1
d+1 , where Fe = 1

d2 |Tr[U †
actual(t )Ueff(t )]|2 is the process

fidelity [63] and d is the subspace dimension. We optimize
this fidelity with respect to all the parameters of the effective
model to find the best effective parameters (Fig. 2). Opti-
mizing for only one point in the evolution time results in an
infinite number of optimal parameter values, all giving the
same fidelity, due to a periodic dependence on the parame-
ters. To resolve this issue, we instead optimize the average
fidelity over a sample of points during a time interval. The
starting values in these optimizations are the analytically de-
rived effective parameters (see Appendix A) and numerical
simulations are truncated at three resonator levels. A time
duration of t0 = 20 µs is used for the optimization procedure.

Figure 2 shows the transition frequencies of the dressed
qubits and the resonator-mediated and exchange interaction
strengths as a function of the detuning (i.e., the tilt of a double
well potential), ε, of the DQD and the first two dots of the
TQD module. The dots in the figure correspond to numerically
found quantities from the fitting scheme explained above, and
the lines correspond to the same parameters obtained from
the effective model. The parameters used in the simulation
are reported in the figure caption. The fidelity of the fit is
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(a) (b) (c)

FIG. 2. Numerically derived values of the effective Hamiltonian parameters (dots) and the same parameters calculated from the analytically
derived effective model (lines) for the (a) dressed qubits’ transition frequencies, (b) resonator-mediated coupling strength, and (b),(c) exchange-
enabled coupling strengths vs the detuning, ε, of the DQD and the first two dots of the TQD module. Parameters are set at ωr/2π =
6 GHz, ωz

T /2π = ωz
D/2π = 5.95 GHz (z-directed magnetic field strength in the DQD and the first two dots of the TQD), ωz

3/2π = 5.8 GHz
(z-directed magnetic field strength in the third dot of TQD, with no x component), tD/h = tT 12/h = 3.5 GHz, tT 23/h = 1 GHz (a),(b), tT 23/h =
0, 0.5, 1 GHz (c), gxT /2π = gxD/2π = 200 MHz, gACD /2π = gACT /2π = 40 MHz, εT 3/h = −300 GHz,UT 1/h = UT 2/h = UT 3/h = 2.5 THz.

greater than 97.5%, with a small residual coupling strength
of |JZZ |/h < 4 kHz.

The fact that for all quantities the numerically found ef-
fective values are nearly identical to the matching values
from the analytical model confirms that the effective model
accurately captures the behavior of the low-energy three-qubit
computational space and can be safely used to understand the
dynamics of the system and devise gate protocols. Next, we
study gate designs for short-range and long-range entangling
gates, in the regime where the effect of the spectator qubit
is suppressed, and we examine the interference caused by
the spectator qubit on the fidelity of two-qubit operations.
The simulation parameters employed throughout this work are
chosen to be consistent with values from recent experimental
works [9,13,37,47].

III. SHORT-RANGE ENTANGLING GATES

In this section, we describe and compare several protocols
for implementing short-range entangling gates between qubits
T and 3 within the TQD module. We focus on the implementa-
tion of CPHASE gates, which, in combination with single-qubit
gates, yields a universal quantum gate set.

The effective two-qubit interaction between the qubits in
the TQD module [Eq. (2)], in the regime where the effect
of the third qubit is suppressed, is essentially in the form of
an extended Heisenberg interaction between the two dressed
spins residing in the TQD module,

Ĥeff, Jr→0 = 1

2
ωDσ z

D + 1

2
ωTσ z

T + 1

2
ω3σ

z
3 + Je

4
�σT · �σ3. (3)

In view of this, in principle, different techniques may be
employed to realize two-qubit operations, such as AC-pulsed
frequency-selective CROT and CNOT gates [16,22–24], DC-
pulsed [25–27] and resonantly driven SWAP [28,29] gates, and
CPHASE gates [9,13,24,30–32].

A. CPHASE gate operation region

Two-qubit gate implementations primarily depend on the
strength of the exchange coupling, Je, relative to the difference
in the energy splittings of the two qubits, �ω = |ωT − ω3|.

For Je � �ω, the exchange interactions result in SWAP evo-
lutions, as the eigenstates of the two-qubit space are the spin
singlet and triplets, which was, in fact, the original proposal
to achieve entangling gates in QDs [1]. This regime is acces-
sible by making the DQD energy levels highly detuned (to
approximately 10–15 GHz range [25]), reaching a few GHz
strength [25–27] for the interdot exchange couplings, making
SWAP operations accessible.

Considering that charge noise is one of the important
sources of incoherent noise in these electrically controlled
systems [12,20,52,56,64], it is crucial to make gate protocols
that can be applied in the regimes where the impact of this
noise source is small. In multielectron regimes, exploiting dot
anharmonicity has been shown to produce optimal working
points to suppress the charge-noise-induced dephasing in five-
electron DQD hybrid qubits [52]. Comparably, when a DQD
with single electron is tuned to the symmetric operation point
(zero detuning), the effect of the charge noise is suppressed
to first order [65–67], resulting in longer coherence times.
However, only smaller values of Je are typically accessible
at these points, and to get larger Je the operation point needs
to be moved away from the symmetric point, causing more
decoherence in the system [25]. Besides, many QD spin qubit
systems utilize large magnetic field gradients, enabling the
addressability of the qubits. In practice, exchange coupling
strengths are in the range of hundreds of kHz to 10–20 MHz
[9,37], which is much smaller than the difference in the transi-
tion frequencies of the neighboring qubits, which is typically
hundreds of MHz to GHz [9,37].

For these reasons, here we focus on the Je � �ω

regime, which is naturally relevant for gate-defined QDs
with micromagnet-induced magnetic field gradients and tun-
nel barrier-controlled exchange couplings. Evolution under an
exchange interaction in this regime leads to a CPHASE gate be-
tween the two qubits [68,69]. CROT gates can also be achieved
in this regime by selectively driving one of the EDSR tran-
sitions, in order to make a universal gate set. We investigate
fast adiabatic CZ gates between qubits T and 3, which may be
implemented by applying a pulse to the barrier gate between
dots 2 and 3 of the TQD module to temporarily modify the
exchange coupling, while qubit D evolves in isolation.
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B. Fast CZ gate and minimizing nonadiabatic errors

The exchange-based CZ gate can be realized due to the
fact that a nonzero exchange interaction Je, in the regime of
Je � �ω, lowers the energy of states with antiparallel spins,
|↑↓〉 , |↓↑〉, i.e., the odd-parity subspace, compared to the case
with Je = 0. This energy shift of antiparallel spins makes it
possible to add spin-dependent phase shifts to the odd-parity
subspace and thus realize CZ gates in the equivalent evolu-
tion form of diag[1, exp(iφ↑↓), exp(iφ↓↑), 1] [68,69]. Here,
φ↑↓(φ↓↑) = δE↑↓(↓↑)twait, where twait is the evolution time,
while δE↑↓(↓↑) is the energy shift of the dressed antiparallel
eigenstates |̃↑↓〉 and |̃↓↑〉 relative to the states |↑↑〉 and
|↓↓〉 as a consequence of the exchange interaction. A CZ

gate is realized for φ↑↓ + φ↓↑ = (2n + 1)π up to local Z
gates on qubits one and two. These local Z rotations can be
implemented virtually by changing the phases of subsequent
pulses and rotating the frame [70]. For Je � �ω, the energy
shift of the dressed eigenstates, to first order in Je, is equal
to Je/2, creating CZ gates at gate time tg = (2n + 1)π/J̄e,
where the time-averaged exchange coupling is defined as J̄e =
1
tg

∫ tg
0 Je(t ) dt . Additionally, a spin-echo mechanism, adding

midsequence π rotations on both spins about the x axis,
can be incorporated to eliminate excess phases during the
CZ exchange gate due to noisy unbalanced magnetic fields
or local quasistatic phase noise, making the evolution in the
even-parity subspace effectively trivial [69].

Although rectangular pulses can be used to generate CZ

gates, the intrinsic nonadiabatic nature of such pulses results
in coherent errors in the gate dynamics, causing reduced gate
fidelities. Since turning on and off the exchange interaction
only affects the odd-parity subspace of the effective two-QD
system, the full dynamics of the system can be designed
by simply engineering the dynamics of the odd-parity sub-
space spanned by the |↑↓〉 , |↓↑〉 states, with effective Pauli
operators defined as σ ′

x = |↑↓〉 〈↓↑| + |↓↑〉 〈↑↓| and σ ′
z =

|↑↓〉 〈↑↓| − |↓↑〉 〈↓↑|, in terms of which the Hamiltonian in
this subspace is

Ĥodd = 1
2 [−Je(t ) + �ωσ ′

z + Je(t )σ
′
x]. (4)

The requirement for the CZ operation is now a global
phase shift in this subspace, while SWAP-like operations due
to the nonadiabatic nature of the pulse translate to nontrivial
dynamics in the subspace and therefore must be suppressed.
The evolution in the odd-parity subspace can be visualized in
terms of a Bloch sphere trajectory controlled by the Hamilto-
nian vector (Je/2, 0,�ω/2). In this case, Ref. [71] showed
that the nonadiabatic error Pe is proportional to the power
spectral density of the rate of change of the control Hamil-
tonian, dθ/dt , with θ being the angle of the Hamiltonian
vector with respect to the quantization axis z, calculated
at the precession frequency ωq as Pe = (1/4)Sdθ/dt (ωq), in
which S denotes the power spectral density. The precession
frequency is the difference in the eigenenergies of the two-
dimensional subspace, which, based on Eq. (4), is given by
ωq = √

J2
e + �ω2.

Now, with the assumption of Je � �ω, which is relevant
to the case studied here, the nonadiabatic error will be rel-
atively small, and the connection between the nonadiabatic
error and the power spectral density of the signal holds in this

small-error limit. This is due to the large precession frequen-
cies of the Bloch vector (around the Hamiltonian vector)
compared to the relatively slower time dependence of the
change in θ over the Bloch sphere. For the Hamiltonian
(4), the direction of the ground eigenstate Bloch vector is
antiparallel with the Hamiltonian vector, and therefore the
rate of change of the control field is proportional to the rate
of change of the instantaneous eigenstates of the system. To
have simply a global phase in the odd-parity subspace, the
Hamiltonian vector should not deviate much from the z axis,
consistent with the condition of Je(t ) � �ω. We specifically
study two cases: (i) a rectangular pulse with constant Je during
the gate time, corresponding to a fixed θ during the pulse, and
(ii) smooth Je signals using window functions, for which θ

slowly varies from zero to a maximum angle and then returns.
Both control schemes have been experimentally utilized to
generate CZ gates. See Refs. [13,24,31,32] for CZ gates with
rectangular control signals and Refs. [9,30] for CZ gates with
Hann signals.

The rate of nonadiabatic errors can be investigated by
moving to the adiabatic frame of the system, using the
transformation T = exp{−i arctan[Je(t )/�ω]σ ′

y/2} or, equiv-
alently, by analyzing the change in the Hamiltonian an-
gle dθ/dt ≈ J̇e/�ω, resulting in nonadiabatic errors, Pe ∝
S(J̇e/�ω)(ωq).

With the rectangular CZ pulse, Je(t ) = J0/2, 0 < t < tg,
the CZ gate is reached at tg = 2π/J0, and the nonadiabatic
error is given by Prect

e ∝ 1
α

sin2(ωqtg/2) with α = (�ωtg/π )2.
The smallest gate time at which the nonadiabatic error is
minimized is tg = 2π/ωq (synchronization). However, these
pulses have an infinitely fast rise and fall, which is not quite
practical due to the cutoff frequencies of the control elec-
tronics. Also, the fall-off rate of the nonadiabatic error with
increasing gate time is quite slow (∼ 1/t2

g ) for these pulses.
Besides, it is crucial to have stable control signals, such that
the error does not increase rapidly under small changes in the
applied signal. Because of these factors, smooth control pulses
that perform in a way that is insensitive to slight variations in
the waveform shape are generally of interest.

These issues can be addressed by replacing the rectangular
pulse with a smooth pulse that optimizes the energy spectral
density. This is a known task in the field of signal processing
[72], and here we leverage some prior results from that liter-
ature to study gates for our three-qubit system. We employ
the Hann window function, WHann(t ) = 1

2 [1 − cos(2πt/tg)],
which is an extensively used function in signal processing
and is essentially the first-order Fourier window function. For
the Hann pulse, Je(t ) = J0WHann, the CZ gate is again reached
at tg = 2π/J0. The nonadiabatic error can be calculated as
PHann
e ∝ 1

α
sin2(ωqtg/2)/|1 − (ω0tg/2π )2|2 with the same α

parameter as Prect
e .

After choosing this temporal profile for the exchange
coupling, in the next step, we use numerical interpolation
techniques to arrive at the required interdot tunnel coupling
tT 23(t ), based on the effective Hamiltonian values. A sample
tT 23(t ) with a Hann window function is shown in Fig. 3(b).
For all gate analyses in this work, we numerically solve the
Schrödinger equation with the Hamiltonian in Eq. (1). We
then project the time evolution at each time step onto the
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(a) (b)

(c) (d) (e)

FIG. 3. Short-range CZ gate in the TQD module through fast adiabatic evolution. (a) CZ gate infidelity vs time for a gate time
of tg = 100 ns (light-orange shading). Results for two values of the effective resonator-mediated coupling Jr/h to the spectator qubit
(qubit D) are shown. (b) Temporal profile of the tunnel coupling when a Hann window function is used for the CZ gate in (a) with
|Jr |/h = 1.68 kHz. (c) CZ gate infidelity for synchronized evolutions with tgωq/2π = 8 for Hann, rectangular, and filtered rectangular
pulses. (d) CZ gate infidelity for evolutions with tg = 100 ns for Hann, rectangular, and filtered rectangular pulses. (e) Normalized
nonadiabatic error spectral profile for rectangular and Hann window functions. The red and orange dashed vertical lines indicate the
parameter regime for the results in (a) for |Jr |/h = 1.68 and 10.01 kHz, respectively. The green dashed line shows the parameter regime
of (c). All gate fidelities are optimized over local operations on all qubits at each time step. Additional system parameters for (a)–(d) are
ωr/2π = 6 GHz, ωz

T /2 π = 5.94 GHz, ωz
D/2 π = 5.96 GHz, ωz

3/2π = 5.8 GHz, |tD|/h = |tT 12|/h = 3.5 GHz, tT 23 = tT 23(t ), gxT /2π =
gxD/2π = 200 MHz, gACD /2π = gACT /2π = 50 MHz, εT 3/h = −300 GHz, and UT 1/h = UT 2/h = UT 3/h = 2.5 THz. |Jr |/h = 1.68 kHz in
(b)–(d).

low-energy subspace, effectively tracing out the resonator and
higher-energy orbital degrees of freedom to arrive at the evo-
lution of the three-qubit computational subspace.

We quantify the performance of multiqubit gates using the
average gate fidelity F = 1

d (d+1) (Tr[UU †] + |Tr[U †Ugoal]|2)
[63], in which d is the dimension of the Hilbert space on
which the gate acts, U is the actual evolution operator of the
system, and Ugoal is the target evolution. In principle, entan-
gling operations between two qubits in multiqubit processors
should not affect the rest of the qubits in the system, i.e., the
evolution operator for the rest of the qubits should be either
trivial or merely in the form of local operations which can
be compensated after the two-qubit operation. To capture this
crucial concept in our three-qubit system, in all gate analyses
throughout this work, the reported two-qubit (CZ or CNOT)
gate fidelities refer to three-qubit gate fidelities relative to a
block-diagonal target gate that includes the ideal two-qubit
gate in one block and a single-qubit operation on the other, i.e.,
UCZ

goal = CZT 3 ⊗ ID for this section and UCNOT
goal = CNOTTD ⊗

I3 for Sec. IV. In trying to realize this target operation, we
minimize the degree to which the two-qubit gate affects the
quantum information encoded in the third qubit.

Figure 3(a) shows the infidelity (1 − F ) of fast adiabatic CZ

gates between qubits T and 3 and local operations on qubit D
as a function of time for a pulsed exchange coupling Je with
a Hann window function profile and 100 ns gate time. Results
for two different values of the coupling to the spectator qubit,

which is qubit D in this case, are shown. In particular, we
consider |Jr |/h = 1.68 and 10.01 kHz, which are calculated
from the effective Hamiltonian model for two detuning val-
ues, εT /h = εD/h = 15 and 10.5 GHz, respectively. The gate
fidelities shown in the figure are optimized over local opera-
tions. The temporal profile of the |tT 23(t )| tunnel coupling for
|Jr |/h = 1.68 kHz is shown in Fig. 3(b) for J0/h = 10 MHz.
The temporal extents of the applied control signals, tT 23(t ),
are marked with a light-orange background on all infidelity
plots.

Here the infidelities are found to be better than 1.86 × 10−4

and 9.68 × 10−4 in the two cases, respectively, from which it
can be concluded that by adjusting the detunings of the DQDs
to within the range quoted above, the effect of the spectator
qubit on the short-distance CZ gate is negligible. The CZ gate
infidelities exhibit oscillatory behavior after the pulse time
tg, and the infidelities given above correspond to the highest
infidelities observed for all cases reported in this section. The
unitarity of the evolution in the logical subspace is also better
than 0.9998 and 0.9989, respectively. Similar CZ gate imple-
mentations with the Hann window function have been recently
employed experimentally in two-qubit processors [9,30], with
very high fidelities (99.65% for [9]) observed.

Higher-order Fourier-basis window functions, Je(t ) =
J0

∑
n λn[1 − cos(2πnt/tg)] may also be used for spectral

engineering, where the Hann window function corresponds
to the special case of a first-order window. The higher-order
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functions can also be optimized to minimize the nonadi-
abatic error for any time larger than a chosen time and
have power densities that decrease with increasing order.
Since these Fourier-basis windows are natural extensions of
the Hann window and can potentially further reduce the er-
ror, we also analyzed second- and fourth-order Fourier-basis
windows with optimized Fourier coefficients λn [71] for the
implementation of CZ gates for the same system parameters as
in Fig. 3(a). We find an almost negligible (less than 5 × 10−7)
change in the infidelities for both higher-order windows com-
pared to the Hann window, indicating that there is little benefit
to using the higher-order functions. This is due to the fact
that here tgωq/2π ≈ 15.08, and so nonadiabatic error rates
are essentially overshadowed by the infidelities due to the
presence of the spectator qubit as well as the coupling to the
nonempty resonator states and higher orbitals.

C. Synchronization and finite bandwidths of control electronics

Though it may seem to be favorable to work in the regime
with higher tgωq/2π [see Fig. 3(e)] to reduce coherent er-
rors due to SWAP-like evolutions, for the fixed difference in
transition frequencies determined from the experiment, this
condition translates to longer gate times and consequently
greater decoherence. On the other hand, reducing the gate time
requires larger exchange couplings, which may not be feasible
in some experiments. The connection between the nonadia-
batic errors and the spectral profile of the pulse enables one
to design pulses that match the zeros of the power spectral
density function to significantly reduce the nonadiabatic error
via synchronization. We next examine this approach in the
presence of the spectator qubit, while also considering the
finite bandwidth of the control electronics.

The error spectra of the Hann and rectangular window
functions have zeros at tg = 2πm/ωq (m ∈ Z+ for rectangular
and m ∈ Z+\{1} for Hann windows), which may be synchro-
nized with the CZ gate time to reach a phase of (2n + 1)π in
the odd-parity subspace. This results in a gate time of

t sync
g = π

�ω

√
4m2 − (2n + 1)2. (5)

Figure 3(c) shows the CZ gate infidelities for tgωq/2π = 8,
which is matched with a gate time of tg = 52.98 ns for the
Hann and rectangular window functions, as well as for a
low-pass-filtered rectangular function, for a spectator qubit
coupling of |Jr |/h = 1.68 kHz. A Butterworth filter of order
six is used here, with a cutoff frequency of 100 MHz to
filter the tT 23(t ) function. The green dashed line in Fig. 3(e)
indicates the region associated with these pulses, with the
maximum value of the exchange coupling being less than
20 MHz, consistent with the recently reported [9] range of
100 kHz to 20 MHz. For the Hann, rectangular, and filtered
rectangular pulses, the oscillatory infidelity functions after
the pulse reach maximum infidelities of 1.84 × 10−4, 1.92 ×
10−4, and 6.04 × 10−4, respectively. A key observation is that
for the rectangular pulses, fidelities as good as those achieved
for longer CZ gates [Fig. 3(a)] may be reached, yet for much
shorter pulses of time, tg = 52.98 ns. However, by limiting
the bandwidth of the pulse, the gate infidelity increases by

approximately a factor of three, as we can see by comparing
results for the filtered and unfiltered rectangular functions.

Next, to distinguish between the effect of nonadiabatic
error and bandwidth limitations on the control signals, we
examine the CZ evolution for a longer gate time of tg = 100 ns
for different pulse shapes. The results are shown in Fig. 3(d),
where infidelities as low as 1.86 × 10−4, 2.18 × 10−4, and
2.82 × 10−4 are achieved for Hann, rectangular, and filtered
rectangular pulses, respectively. Comparing Hann and rect-
angular pulses and with the results of Figs. 3(a) and 3(c), it
can be concluded that the nonadiabatic errors are no longer
the limiting factor in the range of tg � 100 ns pulses. Also,
we find that low-pass filtering of the pulse adds an additional
infidelity penalty of 6.4 × 10−5. Additionally, we conclude
that with this amount of coupling to the spectator qubit, op-
erations with Hann or perfect rectangular pulses, for both
synchronized short and long gate times, lead to roughly sim-
ilar levels of infidelity. On the other hand, for short pulses
without the synchronization condition satisfied, rectangular
pulses lead to much higher infidelities compared to Hann
pulses, as can also be concluded from Fig. 3(e). For example,
for an asynchronized evolution of tgωq/2π = 8.5 correspond-
ing to a gate time of tg = 56.3 ns, the rectangular pulse only
reaches 1.74 × 10−3 infidelity, while the Hann pulse still gives
the same 1.83 × 10−4 level of infidelity. Therefore, the im-
portance of using window functions for shorter gate times,
even if high bandwidth pulses are available, is undeniable. To
explore this point in more detail, we have also studied fast
adiabatic CZ gates between qubits T and 3 with piecewise
constant exchange pulses—see Appendix B. Despite all the
advantages in mitigating nonadiabatic errors, Hann window
functions have a big disadvantage. They require twice the
interdot coupling strength at the maximum point compared
to the rectangular pulses. Therefore, limitations on available
coupling strengths may make it hard to experimentally test
these shorter pulses.

IV. LONG-RANGE ENTANGLING GATES

A resonator-mediated CNOT gate can be implemented by
applying a microwave drive to modulate the energy levels of
the DQD module to create a significant interaction with qubit
T in the TQD. In this scheme, qubit D is the control and qubit
T is the target of the CNOT gate, with qubit 3 being the specta-
tor. This protocol has been previously employed theoretically
[57] in QD systems with two spins. In this section, we review
this technique and apply it in the case of a three-qubit system,
enabling us to also study the effect of the spectator qubit.

A. Cross-resonance CNOT gate

In the absence of the spectator qubit, the mi-
crowave drive added to the DQD module results in
the effective two-qubit low-energy Hamiltonian Ĥeff =
1
2 ωD σ z

D + cos(ωdt )(�z
effσ

z
D + �x

effσ
x
D) + cos(2ωdt )(ξ z

Dσ z
D +

ξ x
Dσ x

D) + sin(2ωdt )ξ
y
Dσ

y
D+ 1

2ωTσ z
T − Jrσ x

Dσ x
T in the laboratory

frame, with �x
eff = sin(βD)�D, �z

eff = ξ x
D = ξ

y
D = ξ z

D = 0,
Jr = ωrgACD gACT sin(βD) sin(βT ) × {1/[ω2

r − (ωσ
D)2] + 1/[ω2

r
− (ωσ

T )2]} for zero detunings, εT = εD = 0 [57]. Next, by
applying a frame transformation, U1 = exp[−itωd (σ z

D +
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σ z
T )/2], the Hamiltonian can be moved to the doubly

rotating frame, and the rotating wave approximation can
be made to remove the rapidly oscillating terms from
the Hamiltonian, followed by another transformation
using U2 = exp[−iχσ

y
D/2], in which χ = arctan(�x

eff/δD)
and δD = ωD − ωd , to arrive at the Hamiltonian in the
diagonalized doubly rotating frame. Next, we transfer to
the quadruply rotating frame using another time-dependent
frame transformation, U3 = exp[−it (ησ z

D + δTσ z
T )/2] with

η =
√

δ2
D + (�x

eff )2 and δT = ωT − ωd [57]. The final form
of the Hamiltonian in this quadruply rotating frame is

HQF = −Jr
(
cos(ωdt )

{
sin(χ )σ z

D + cos(χ )
[
cos(ηt )σ x

D

− sin(ηt )σ y
D

]} − sin (ωdt )
[
cos(ηt )σ y

D + sin(ηt )σ x
D

])
× [

cos (ωT t )σ
x
T − sin (ωT t )σ

y
T

]
, (6)

where Jr is the resonator-mediated coupling strength between
qubits D and T. We will utilize a cross-resonance interaction
that results from driving the DQD energy levels in reso-
nance with the transition frequency of qubit T , ωd = ωT .
For sufficiently small resonator-mediated interaction strength,
Jr � η, the rotating wave approximation can be applied again
to discard rapidly oscillating terms in Eq. (6) and arrive
at a Hamiltonian of the form HQF ≈ −(1/2)J̃rσ z

Dσ x
T , with

the ZX coupling coefficient J̃r = Jr sin(χ ) = Jr�x
eff/η. Evo-

lution under this Hamiltonian for time tg with J̃rtg = π/2
with local operations on the T and D qubits as Ulocal =
exp(i π4 ) exp(−i π4 ID ⊗ σ x

T ) exp(−i π4 σ z
D ⊗ IT ) corresponds to a

CNOT gate between the qubits.
We select the transition frequencies of the qubits to be

well detuned such that the two-qubit coherent interactions
are suppressed without the microwave drive applied. Also,
in tunnel-coupled QDs, the effect of charge noise can be
intrinsically mitigated by running the device at the sweet spot
or symmetric operation point, where the exchange coupling
is first-order insensitive to the charge noise [65–67]. Here,
since the entanglement is induced only during the pulse time
(with rectangular profile here), the base value of energy level
detunings for the DQD and TQD is conveniently chosen to
coincide with the sweet spot εT = εD = 0 to suppress the
charge noise at first order.

Figure 4(a) shows the cross-resonance CNOT gate fidelity
between qubits D and T and local operations on qubit 3 as a
function of time for different values of the tunnel coupling to
the spectator qubit. The figure also shows the sensitivity of the
gate fidelity to the frequency of the applied microwave drive,
in the absence of the spectator qubit. We now explain these
results in detail.

The fidelity is calculated by solving the Schrödinger equa-
tion for the full system [Eq. (1)] with the resonator mode
truncated to three photonic states, and then projecting the
unitary evolution onto the three-qubit logical subspace. The
maximum CNOT gate fidelity in the absence of the spectator
qubit, i.e., |tT 23|/h = 0.0 GHz, is 0.9829, achieved for the
gate duration of tg = 323.6 ns. The unitarity of the evolution
in the computational subspace during the gate varies be-
tween 93.34% and 100%, which is mainly due to the leakage
out of the subspace to the photon-populated resonator states

(a)

(b)

FIG. 4. (a) Cross-resonance CNOT gate fidelity between qubits
D and T vs time, optimized over local operations on all qubits at
each time step. Parameters are set at ωr/2π = 6 GHz, ωz

T /2π =
5.94 GHz, ωz

D/2π = 5.96 GHz, ωz
3/2π = 5.8 GHz, |tD|/h = |tT 12|/

h = 3.5 GHz, tT 23/h = 0, 0.45, 0.8 GHz, gxT /2π = gxD/2π = 200
MHz, gACD /2π = gACT /2π = 50 MHz, εD = εT = 0, εT 3/h = −300
GHz,UT 1/h = UT 2/h = UT 3/h = 2.5 THz. The microwave drive
frequency is set to ωd = ωT for cross-resonance operation. The
microwave drive amplitude �D is set based on �x

eff/2π = 20 MHz.
(b) Robustness of the gate fidelity to the cross-resonance microwave
drive frequency.

during the gate and is ultimately responsible for the remaining
infidelity.

In principle, by increasing the barrier height between the
neighboring dots, it is possible to lower the exchange strength
Je/h and nearly isolate the neighboring qubits. However,
in practice, there is a limit to such isolation, resulting in
residual exchange interactions in the range of a few tens
of kHz to a few hundred kHz [9,13,30]. We examine the
effect of such residual coupling, i.e., the presence of a spec-
tator qubit, on the fidelity of long-range entangling gate
operations.

We consider nonzero tunnel coupling strengths of
|tT 23|/h = 450 MHz and 800 MHz, in Eq. (1). Starting from
the Hubbard model for two neighboring dots with detuning
ε and tunnel coupling tc and considering conditions of |ε| <

U and |tc| � U ± ε, the low-energy hybridized singlet and

triplet states are separated by J = 4Ut2
c

U 2−ε2 + O( t3
c

(U±ε)3 ), which

is the Heisenberg exchange coupling strength [3,73]. There-
fore, the nonzero tunnel couplings translate to the residual
coupling strength to the spectator qubit of Je/h = 328.7 kHz
and 1.039 MHz, resulting in the maximum gate fidelity drop-
ping to 0.9776 and 0.9408, respectively.
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Note that the simulated residual tunnel couplings are cho-
sen such that clear gate fidelity degradations may be observed,
while recent experimental efforts report the ability to reduce
the residual exchange couplings down to a T2 limit of Je/h ∼
10 kHz [13], which would practically cause negligible fidelity
degradations, much closer to the blue curve in Fig. 4(a).
Hence, we can conclude that the presence of the third qubit
would have a negligible effect on the cross-resonance CNOT

gate, and increasing the barrier gate voltage between the sec-
ond and third dots of the TQD module efficiently isolates the
subspace of the T and D qubits.

As mentioned, the cross-resonance approach relies on
matching the frequency of the applied drive to the transition
frequency of the other qubit. Next, we numerically examine
the robustness of the gate performance to this matching con-
dition [Fig. 4(b)]. For each drive frequency, the gate duration
is adapted to give the highest fidelity. It can be seen that with
the commonly realized frequency resolution of signal gen-
erators, securing a cross-resonance operation should not be
an issue.

B. Effect of charge noise on cross-resonance CNOT gates

The main source of qubit decoherence greatly depends on
the details of the device fabrication even in isotopically en-
riched 28Si. A key observation has been that for thin (∼5 nm)
quantum wells such as single-layer etch-defined gate electrode
devices, without magnetic field gradients, the hyperfine effect
from magnetic nuclei limits the coherence time [8], while
for thicker (∼30–50 nm) quantum wells with micromagnets
fabricated on top of the device, similar to our platform, iso-
topic purification of the semiconductor leaves charge noise
as the main source of decoherence [12,20,64]. Specifically, in
28Si/SiGe with extrinsic spin–electric-coupling fields applied,
studying rapid spin rotations showed that the dephasing is
primarily caused by charge noise and not magnetic hyperfine
noise, especially since the movement of spins through local
magnetic field gradients, e.g., in EDSR, makes the qubits
further susceptible to electrical fluctuations [12,20].

In view of this, next, we computationally study the effect
of the charge noise on the cross-resonance CNOT gate fidelity
through a sampling technique. See Appendix C for the de-
tails of the numerical simulations modeling the effect of the
quasistatic charge noise in our studies. Figure 5 shows the
infidelity of the cross-resonance CNOT gate versus the standard
deviation of the detuning charge noise. For each value of the
noise amplitude, a hundred sets of samples were taken from
the Gaussian distributions.

Here, we have assumed that the qubits and resonator modes
are well isolated from any bosonic bath, resulting in negligible
qubit relaxation time dynamics and cavity decay rates. In the
case of qubits coupled to a cavity, the Purcell effect from the
resonator can impact the performance of the qubit and is thus
important to consider. In this case, the decay of the qubit into
the cavity mode may contribute to the total qubit decay rate.
Specifically, in the case of a qubit that is coupled, with a cou-
pling strength gs, to a resonator with a photon decay rate of κ ,
the Purcell effect contributes an additional decay rate for the
qubit of γκ = g2

s
κ

�2+(κ/2)2 , with the spin qubit-cavity detuning
�. The effective spin-photon coupling rate achieved through

FIG. 5. Cross-resonance CNOT gate infidelity between qubits
D and T vs quasistatic charge noise amplitude, optimized over
local operations on all qubits at each time step. Parameters are set
at σtD = σtTi j = σεi/200 = σεT 3/200, ωr/2π = 6 GHz, ωz

T /2π =
5.94 GHz, ωz

D/2π = 5.96 GHz, ωz
3/2π = 5.8 GHz, |tD/2π | = |tT 12

|/h = 3.5 GHz, |tT 23|/h = 0, 0.45 GHz, gxT /2π = gxD/2π = 200
MHz, gACD = gACT /2π = 50 MHz, εD = εT = 0, εT 3/h = −300
GHz,UT 1/h = UT 2/h = UT 3/h = 2.5 THz. The microwave drive
frequency is set to ωd = ωT for cross-resonance operation, and the
amplitude �D is based on �x

eff/2π = 20 MHz. A hundred sets of
samples per point from the Gaussian distribution for each noise
parameter were taken, with dots showing the average gate infidelity
and error bars showing the standard deviation of the infidelities.

electric-dipole interaction with spin-charge hybridized states
is proportional to the charge coupling rate gc and the dipole
transition matrix element di j through gs = gc|di j |. With the
third qubit isolated through tT 23 = 0, the spin-charge hy-
bridization results in low-energy eigenstates of the following
form: |0〉 � |−,↓〉, |1〉 = cos �

2 |−,↑〉 + sin �
2 |+,↓〉, |2〉 =

sin �
2 |−,↑〉 − cos �

2 |+,↓〉, and |3〉 � |+,↑〉. Here, � is the
spin-orbit mixing angle � = arctan Bx

2tc−Bz
[� ∈ (0, π )] [44].

Accordingly, for the primarily spinlike transition between
|0〉 and |1〉, the dipole transition matrix element is d01 �
− cos θ ′ sin �

2 with θ ′ = arctan ε
2tc

. For the parameters of
the cross-resonance CNOT gate with an isolated spectator,
this leads to the effective spin-photon coupling rates of
gs/2π ≈ 8.97 MHz and ≈ 9.13 MHz on the TQD and DQD
sides, respectively. These values are within the range of the
experimentally observed spin-photon couplings in the strong-
coupling regime. In our theoretical and numerical studies,
the resonator is considered ideal, with no photon loss or
equivalently decay rate. However, a resonator with a finite
quality factor may be realized in experimental cases. Consid-
ering a practical quality factor of Q = 5000, corresponding
to a photon decay rate of κ/(2π ) = ωr/2πQ = 1.2 MHz for
ωr/2π = 6 GHz, the added Purcell decay rate of the encoded
qubit in the TQD module with |�|/(2π ) ≈ 94.4 MHz can be
approximated as γκ/(2π ) ≈ 0.011 MHz. In the DQD mod-
ule, the corresponding values are |�|/(2π ) ≈ 75.36 MHz and
γκ/(2π ) ≈ 0.018 MHz. Thus, considering the level of charge
noise in practical devices and the corresponding spin decoher-
ence rates, we can safely ignore the Purcell effect on the decay
of the encoded qubits.

Our analysis (see Fig. 5) shows that charge noise levels
smaller than 100 MHz have a negligible effect on the gate
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fidelity, in the presence or absence of the spectator qubit.
On the other hand, for larger values of the noise amplitude,
the charge noise limits the fidelity of the gate and eventually
dominates the infidelity due to the spectator qubit at a noise
strength of 1 GHz. The level of charge noise in a given experi-
ment highly depends on the properties of the processor and the
details of the experiment. Yet, recent experiments on devices
with similar geometries report charge noise values that are
regularly within the left-half side of the plot [12,47,74–76],
in the region where the infidelity is unperturbed by the noise.
Therefore, we do not expect charge noise to have major dele-
terious effects on the performance of the resonator-mediated
cross-resonance CNOT gates in comparison to the infidelities
induced by leakage.

V. CONCLUSIONS

We examined multiqubit operations in modular semicon-
ductor QD spin qubit systems with long-range interactions
mediated by superconducting resonators. We presented and
analyzed a three-qubit silicon QD-based system with both
delocalized and confined electrons in a TQD subsystem and
a delocalized electron in a DQD subsystem, where both the
TQD and DQD are capacitively coupled to a single resonator
mode. We demonstrated that the dynamics of the three-qubit
system can be accurately modeled via single- and two-body
terms with the anticipated structure of resonator-mediated
coupling between distant qubits and exchange coupling be-
tween qubits in TQD, even though one of the qubits is
delocalized, together with some small residual couplings. We
studied short-range fast adiabatic CZ gates, realized by pulsing
on exchange couplings, and obtained high fidelities by moving
to the regime where the resonator-mediated interactions are
suppressed, isolating the spectator qubit. Although incoherent
noise sources favor shorter gate times, we showed that for
experimentally realistic parameters, nonadiabatic errors may

be a limiting factor in reaching such faster operations and in
maintaining high fidelities unless signal processing techniques
are employed to reach stable operation points. We further in-
vestigated the competing effect of spectator-associated errors
and the nonadiabatic errors for this case. We also investigated
the performance of resonator-mediated CNOT gates that utilize
a cross-resonance scheme and showed that leakage effects
are the limiting factor rather than charge noise. Our results
constitute an important step toward designing large QD spin
qubit processors based on resonator-coupled modules contain-
ing multiple qubits.
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APPENDIX A: ENCODED SUBSPACE
AND THE EFFECTIVE HAMILTONIAN DERIVATION

In this Appendix, we analytically derive an effective
Hamiltonian for the dynamics of the low-energy subspace
of the three-qubit QD system, starting from the theoretical
description of the full system, and present the relevant param-
eters. Without loss of generality, the average magnetic field
in dots 1 and 2 of both the TQD and DQD modules is along
the z axis and the magnetic field gradient is purely transversal
and along the x axis. Here the electron gas is extended in
the yz plane. Following these conditions, starting from the
total Hamiltonian of Eq. (1), we can apply a Schrieffer-Wolff
transformation [62] and trace out the doubly occupied states to
arrive at the following Hamiltonian structure in terms of Pauli
operators defined for the spin and orbital degrees of freedom
in the DQD and TQD modules:

ˆ̃Htot = Ĥr + ˆ̃HDQD + ˆ̃HTQD + ˆ̃Hint,

Ĥr = ωra
†a,

ˆ̃HDQD = 1
2εDτ̃ z

D − tDτ̃ x
D + 1

2ωz
Dσ̃ z

D + gxDτ̃ z
Dσ̃ x

D,

ˆ̃HTQD = 1
2εT τ̃ z

T − (tT τ̃+
T + H.c.) + 1

2ωz
T σ̃ z

T + gxT τ̃ z
T σ̃ x

T + 1
2
�BT 3 · �̃σ3 + 1

4

(
J0 + (J⊥τ̃+

T + H.c.) + Jz τ̃
z
T

) �̃σT · �̃σ3,

ˆ̃Hint = (a† + a)
(
gACD τ̃ z

D + gACT τ̃ z
T

)
, (A1)

in which we have defined

εD = εD1 − εD2,

ωz
D = 1

2
( �BD1 + �BD2),

gxD = 1

4
( �BD1 − �BD2),

εT = εT 1 +VT 31 − εT 2 −VT 23 + 1

2
t2
T 23

(
1

UT 2 −VT 23 + εT 2 − εT 3
+ 1

UT 3 −VT 23 − εT 2 + εT 3
+ 2

VT 31 −VT 12 − εT 2 + εT 3

)
− 1

2
|tT 31|2

(
1

UT 1 −VT 31 + εT 1 − εT 3
+ 1

UT 3 −VT 31 − εT 1 + εT 3
+ 2

VT 23 −VT 12 − εT 1 + εT 3

)
,
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tT = tT 12 + 1

4
tT 23tT 31

(
1

UT 3 −VT 23 − εT 2 + εT 3
+ 1

UT 3 −VT 31 − εT 1 + εT 3

+ 1

VT 23 −VT 12 − εT 1 + εT 3
+ 1

VT 31 −VT 12 − εT 2 + εT 3

)
,

ωz
T = 1

2
( �BT 1 + �BT 2),

gxT = 1

4
( �BT 1 − �BT 2),

J0 = |tT 31|2
(

1

UT 1 −VT 31 + εT 1 − εT 3
+ 1

UT 3 −VT 31 − εT 1 + εT 3

)

+ t2
T 23

(
1

UT 2 −VT 23 + εT 2 − εT 3
+ 1

UT 3 −VT 23 − εT 2 + εT 3

)
,

J⊥ = tT 23tT 31

(
1

UT 3 −VT 23 − εT 2 + εT 3
+ 1

UT 3 −VT 31 − εT 1 + εT 3
+ 1

VT 12 −VT 23 + εT 1 − εT 3
+ 1

VT 12 −VT 31 + εT 2 − εT 3

)
,

Jz = |tT 31|2
(

1

UT 1 −VT 31 + εT 1 − εT 3
+ 1

UT 3 −VT 31 − εT 1 + εT 3

)

− t2
T 23

(
1

UT 2 −VT 23 + εT 2 − εT 3
+ 1

UT 3 −VT 23 − εT 2 + εT 3

)
, (A2)

with the spin and orbital single-qubit jth Pauli operators for
the delocalized electrons in module i labeled as σ̃

j
i and τ̃

j
i ,

respectively. σ̃
j

3 are the spin Pauli operators of the electron
localized in the third dot of the TQD module. Capacitive
resonator coupling and interdot coupling strengths are small
enough compared to the energy differences of the Hamiltonian
that their effect can be considered perturbatively, with the
unperturbed Hamiltonian given by

H̃0 =
∑
i=D,T

[
1

2
εiτ̃

z
i − (tiτ̃

+
i + H.c.) + 1

2
ωz
i σ̃

z
i + gxi τ̃

z
i σ̃

x
i

]

+ 1

2
�BT 3 · �̃σ3+ωra

†a. (A3)

We start by diagonalizing the unperturbed DQD Hamiltoni-
ans, which is conducted in three steps, following a similar
approach as some previous theoretical works [56,57]. In the
first step, we diagonalize the single-body orbital terms with
the unitary transformation U1 defined as

U1 =
∏
i

exp

(
i
φi

2
τ̃ z
T

)
exp

(
−i

θi

2
τ̃
y
i

)
, (A4)

with parameters

φi=D,T = arg ti,

θi = arctan

(−2|ti|
εi

)
,

ωa
i =

√
ε2
i + 4|ti|2.

(A5)

Applying the U1 transformation, we find

U †
1 H̃0U1 =

∑
i=D,T

{
1

2
ωa
i τ̃

z
i + 1

2
ωz
i σ̃

z
i

+ gxi
[
cos (θi )τ̃

z
i − sin (θi )τ̃

x
i

]
σ̃ x
i

}
+ 1

2
�BT 3 · �̃σ3+ωra

†a. (A6)

In the second step, we diagonalize the τ̃ z
i σ̃

x
i and remaining

single-body magnetic terms with a second unitary transfor-
mation U2 of the form

U2 = exp

(
−i

φ3

2
σ̃ z

3

)
exp

(
− i

α3

2
σ̃
y
3

) ∏
i=D,T

exp

(
− i

αi

2
τ̃ z
i σ̃

y
i

)
,

(A7)
with parameters

φ3 = arctan

(
By
T 3

Bx
T 3

)
,

αi=D,T = arctan

(
2gxi cos (θi )

ωz
i

)
, α3 = arccos

(
Bz
T 3∣∣ �BT 3

∣∣
)

,

ωz′
i=D,T =

√(
ωz
i

)2 + [
2gxi cos (θi )

]2
, ωσ

3 = ∣∣ �BT 3

∣∣,
(A8)

which transforms the Hamiltonian as follows:

U †
2U

†
1 H̃0U1U2 =

∑
i=D,T

[
1

2
ωa
i τ̃

z
i + 1

2
ωz′
i σ̃ z

i − gxi sin (θi )τ̃
x
i σ̃ x

i

]

+ 1

2
ωσ

3 σ̃ z
3+ωra

†a. (A9)
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The third step is transformation U3 in order to elimi-
nate the remaining two-body terms, i.e., τ̃ x

i σ̃ x
i , and fully

diagonalize H̃0,

U3 =
∏

i=D,T

exp

[
−i

1

2

(
β+
i + β−

i

2
τ̃
y
i σ̃

x
i + β+

i − β−
i

2
τ̃ x
i σ̃

y
i

)]
,

(A10)

with parameters

ωτ
i ± ωσ

i =
√(

ωa
i ± ωz′

i

)2 + [
2gxi sin (θi )

]2
,

β±
i = arctan

(
−2gxi sin (θi )

ωa
i ± ωz′

i

)
,

βi = 1

2
(β+

i + β−
i ). (A11)

After applying all three unitary operations, the Hamiltonian is
fully diagonalized, which can be equivalently summarized via
transformed Pauli operators for spins and orbitals as

H̃0 = ωra
†a +

∑
i=D,T

1

2
ωτ
i τ

z
i +

∑
i=D,T,3

1

2
ωσ
i σ z

i , (A12)

with transformed Pauli operators

τi = U1U2U3τ̃iU
†
3U

†
2U

†
1 ,

σi = U1U2U3σ̃iU
†
3U

†
2U

†
1 .

(A13)

Now, the total transformed system Hamiltonian is

H̃ = H̃0 + H̃I ,

H̃I =
∑
i=D,T

gACi (a† + a)di + Hexchg,
(A14)

where di are transformed dipole operators, similar to the previ-
ously studied resonator-mediated two-electron systems [57],
and Hexchg is the transformed exchange Hamiltonian:

di = τ̃ z
i = 1

2 {cos(θi )[cos(β+
i ) + cos(β−

i )] − sin(θi ) sin(αi)[sin(β+
i ) − sin(β−

i )]}τ z
i

+ 1
2 {cos(θi)[cos(β+

i ) − cos(β−
i )] − sin(θi ) sin(αi )[sin(β+

i ) + sin(β−
i )]}σ z

i

− 1
2 {cos(θi)[sin(β+

i ) + sin(β−
i )] + sin(θi ) sin(αi)[cos(β+

i ) − cos(β−
i )]}σ x

i τ x
i

+ 1
2 {cos(θi)[sin(β+

i ) − sin(β−
i )] + sin(θi ) sin(αi)[cos(β+

i ) + cos(β−
i )]}σ y

i τ
y
i − sin(θi ) cos(αi) cos(βi )τ

x
i

− sin(θi ) cos(αi ) sin(βi )σ
x
i τ z

i . (A15)

Next, we apply a Schrieffer-Wolff transformation [62] to isolate the dynamics governing the low-energy subsystem to leading
order, treating H̃0 as the unperturbed Hamiltonian and H̃I as the perturbation, under the assumption gACi � |ωτ

i − ωr |, |ωr −
ωσ
i |, |ωr − (ωτ

i − ωσ
i )|. This analytical step in combination with numerical comparison allows us to eliminate the couplings of

QD modules and the resonator to leading order, as well as the coupling between the ground and excited orbital states, defining
the low-energy subspace as 〈a†a〉 = 0 and 〈τ z

i 〉 = −1. Eventually, this enables us to capture the dynamics of the low-energy
encoded subspace with a good approximation via the effective Hamiltonian Heff ,

Ĥeff =
∑

i=D,T,3

1

2
ωiσ

z
i − Jrσ

x
Dσ x

T + eiα3σ
y
3 eiφ3σ

z
3

(
Je
4

�σT · �σ3 + JZZσ
z
Tσ z

3

)
e−iφ3σ

z
3 e−iα3σ

y
3 . (A16)

In this effective Hamiltonian, the parameters φ3 and α3 are defined in Eq. (A8) and the rest of the parameters are as follows:

ωi=D,T = ωσ
i − 2ωσ

i

(
gACi

)2

ω2
r − (

ωσ
i

)2 [sin(θi ) cos(αi ) sin(βi )]
2

+
( (

gACi
)2

ωr + ωτ
i + ωσ

i

− ωτ
i + ωσ

i

2

�̃2
i(

ωd
i

)2 − (
ωτ
i + ωσ

i

)2

)
[cos(θi ) sin(β+

i ) + sin(θi ) sin(αi ) cos(β+
i )]2

+
(

ωτ
i − ωσ

i

2

�̃2
i(

ωd
i

)2 − (
ωτ
i − ωσ

i

)2 −
(
gACi

)2

ωr + ωτ
i − ωσ

i

)
[cos(θi ) sin(β−

i ) − sin(θi ) sin(αi ) cos(β−
i )]2

+ gACi
ωr

{cos(θi )[cos(β+
i ) − cos(β−

i )] − sin(θi ) sin(αi)[sin(β+
i ) + sin(β−

i )]}

×
∑
j=D,T

gACj {cos(θ j )[cos(β+
j ) + cos(β−

j )] − sin(θ j ) sin(α j )[sin(β+
j ) − sin(β−

j )]},

Jr = ωrg
AC
D gACT sin(θD) cos(αD) sin(βD) sin(θT ) cos(αT ) sin(βT )

(
1

ω2
r − (

ωσ
D

)2 + 1

ω2
r − (

ωσ
T

)2

)
,
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ω3 = ωσ
3 − 1

4
J0 cos(αT )[cos(β+

T ) − cos(β−
T )],

Je = cos

(
β−
T − β+

T

2

)
cos(αT )J0 − cos(βT ) cos(αT )[Jz cos(θT ) + Re(J⊥e−iφT ) sin(θT )],

JZZ = −1

2
sin2

(
βT

2

)
cos(αT )

[
cos

(
β−
T − β+

T

2

)
J0 + Jz cos(θT ) + Re(J⊥e−iφT ) sin(θT )]

]
. (A17)

For the considered arrangement of the magnetic field in the
TQD module (Fig. 1), φ3 = 0 and α3 = 0, corresponding to
the effective Hamiltonian expressed in the main text [Eq. (2)].
We tested the validity of this effective Hamiltonian numeri-
cally with the results reported in Sec. II C of the main text.

APPENDIX B: FAST ADIABATIC CZ GATES BETWEEN
QUBITS T AND 3 WITH PIECEWISE CONSTANT

EXCHANGE PULSES

In this Appendix, we study the piecewise constant approx-
imation of the smooth Hann window function, in the case of
short-range CZ gates within the TQD module, by replacing
the smooth pulses with piecewise constant functions com-
posed of Np segments. Note that the rectangular signal in
this case corresponds to the piecewise constant function with
Np = 1. We numerically solve the Schrödinger equation with
the full-system Hamiltonian [Eq. (1)] and the corresponding
time-varying tunnel couplings tT 23(t ) and calculate the CZ

gate fidelities. Similar to the results presented in the main
text, we evaluate the performance of the entangling gate while
considering the impact of the gate on the idle qubit (qubit
D in this case). This is done such that the reported CZ gate
fidelities refer to three-qubit gate fidelities relative to the
block-diagonal target gate with an ideal CZ gate in one block
and a single-qubit operation on the other, i.e.,UCZ

goal = CZT 3 ⊗
ID. Starting from the Hann window pulse, Je(t ) = J0WHann,
with the window functionWHann(t ) = 1

2 [1 − cos(2πt/tg)], the
CZ gate is reached at tg = 2π/J0. The amplitudes of the piece-
wise constant exchange pulses are designed here such that
the area under the curve for each segment of the piecewise
function would be equal to that of the smooth Hann function.
Figure 6 shows the temporal profile of the exchange coupling
strengths, Je, for different piecewise constant approximations
of the control signals. Figures 6(a)–6(d) show exchange cou-
pling strengths for the fast adiabatic CZ gates satisfying the
synchronized evolution condition with tgωq/2π = 8 [with the
same system parameters as in Fig. 3(c) of the main text].
Likewise, Figs. 6(e)–6(h) show the control signals for longer
adiabatic CZ gates with tg = 100 ns [with the same system
parameters as in Fig. 3(d) of the main text]. Piecewise constant
approximated controls with Np = 5, 10, 20, and 40 segments
are studied here.

Figure 7 shows the infidelity (1 − F ) of fast adiabatic CZ

gates between qubits T and 3 along with local operations
on qubit D as a function of time for different control sig-
nals and different regions of operation. Figure 7(a) shows
the CZ gate infidelities for synchronization at tgωq/2π =
8, which is matched with a gate time of tg = 52.98 ns for
the Hann and rectangular window functions, as well as for

piecewise constant pulses. The spectator qubit coupling is
|Jr |/h = 1.68 kHz. Similar exchange pulses but for longer CZ

gate times of tg = 100 ns, matching tgωq/2π ≈ 15.08, result
in the gate infidelities shown in Fig. 7(b). The maximum
infidelities of the oscillatory infidelity functions after the CZ

gate time for all cases are reported in Table I . With the pulses
that match the zeros of the power spectral density function,
it is possible to notably decrease the nonadiabatic error of
the fast CZ gates through synchronization. This, in fact, leads
to the same order of gate infidelities for the first and second
rows in Table I, while the gate time is much shorter for the
synchronized evolution (first row). This is wholly based on the
connection between the nonadiabatic errors and the spectral
profile of the pulse [see Fig. 3(e)]. For the synchronized evolu-
tion, rectangular pulses increase the infidelity by 8.7 × 10−6,
while by increasing the number of segments the infidelity
gradually decreases. Eventually, for the piecewise constant
pulse with Np = 40 segments, the same level of fidelity as
the smooth Hann pulse is reached (with 7 digits of precision
reported here). A similar trend appears for the long CZ gates
(second row of the table), in which by increasing the number
of segments the gate infidelities decrease, and infidelities of
the smooth Hann signal are reached by Np = 40 segments.
Note that all of the infidelities are within close proximity, as
can also be seen in Fig. 7.

Synchronization is the key to reaching high fidelity for
short gate times if no smooth window function is applied.
Without the synchronization condition satisfied, sharp pulses
lead to much higher infidelities compared to smooth Hann
pulses. The third row of Table I shows the infidelities for
the asynchronized evolutions with tgωq/2π = 8.5. One can
see that by using piecewise constant functions with Np > 1,
better gate fidelities may be reached, especially if more and
more segments are introduced to mimic the operation of the
smooth Hann windows. Specifically, with Np = 20 segments,
infidelities as low as 1.838 × 10−4 are reached, which are
almost identical to the infidelities for smooth Hann functions.
Thus, it is important to incorporate window functions to reach
high gate fidelities at short gate times, especially when access
to high bandwidth pulses gets restricted due to the limited
bandwidth of the system control electronics.

APPENDIX C: MODELING THE EFFECTS
OF QUASISTATIC CHARGE NOISE

In this Appendix, we present the steps implemented, as
part of the numerical studies, to simulate the effect of the
quasistatic charge noise on the performance of the quantum
gates.

043029-14



LONG-DISTANCE PHOTON-MEDIATED AND … PHYSICAL REVIEW RESEARCH 6, 043029 (2024)

FIG. 6. Designed piecewise constant exchange coupling strengths, Je, to realize fast adiabatic CZ gates (a)–(d) through synchronized
evolution with tgωq/2π = 8 and (e)–(h) at long gate times of tg = 100 ns. System parameters are the same as Figs. 3(c) and 3(d). Piecewise
constant approximated exchange couplings with (a),(e) Np = 5, (b),(f) Np = 10, (c),(g) Np = 20, and (d),(h) Np = 40 segments are considered
to satisfy the CZ gate evolution conditions. Piecewise constant functions are plotted on top of the smooth Hann window functions for
comparison.

TABLE I. Infidelities (1 − F ) of fast adiabatic CZ gates between qubits T and 3 along with local operations on qubit D.

Piecewise constant functions

CZ gate time (tg) Hann Rectangular (Np = 1) Np = 5 Np = 10 Np = 20 Np = 40

52.98 nsa 1.836 × 10−4 1.923 × 10−4 1.876 × 10−4 1.875 × 10−4 1.840 × 10−4 1.836 × 10−4

100 ns 1.856 × 10−4 2.177 × 10−4 2.280 × 10−4 1.864 × 10−4 1.857 × 10−4 1.856 × 10−4

56.31 nsb 1.825 × 10−4 1.739 × 10−3 7.933 × 10−4 1.098 × 10−3 1.838 × 10−4 1.838 × 10−4

aSynchronized evolution with tgωq/2π = 8.
bAsynchronized evolution with tgωq/2π = 8.5.
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(a) (b)

FIG. 7. Short-range CZ gate in the TQD module through fast adiabatic evolution with different control signals. (a) CZ gate infi-
delity for synchronized evolutions at tgωq/2π = 8 with Hann, rectangular, and piecewise constant pulses. (b) CZ gate infidelity for
a gate time of tg = 100 ns with Hann, rectangular, and piecewise constant pulses. Piecewise constant approximated controls with
Np = 5, 10, 20, and 40 segments are considered, and gate times in (a) and (b) are shown with light-orange shadings. Additional
system parameters are ωr/2π = 6 GHz, ωz

T /2π = 5.94 GHz, ωz
D/2π = 5.96 GHz, ωz

3/2π = 5.8 GHz, |tD|/h = |tT 12|/h = 3.5 GHz, tT 23 =
tT 23(t ), gxT /2π = gxD/2π = 200 MHz, gACD /2π = gACT /2π = 50 MHz, εT 3/h = −300 GHz,UT 1/h = UT 2/h = UT 3/h = 2.5 THz, and εT /h =
εD/h = 15.

We model the effect of the quasistatic charge noise through
a sampling technique in the simulations. This is achieved by
including classical fluctuations to the elements of the Hamil-
tonian affected by electric fields, in particular the chemical
potential of dots and the tunnel couplings. Specifically, we
substitute εi with εi + δεi, tD with tD + δtD, tTi j with tTi j +
δtTi j , and εT 3 with εT 3 + δεT 3, for the detunings and the
interdot tunnel couplings in the DQD and TQD modules, as
well as the chemical potential of the third dot in the TQD
module. Gaussian distributions are assumed for the random
variables δεi, δtD, δtTi j , and δεT 3 with standard deviations
σεi , σtD , σtTi j , and σεT 3 , respectively. The inclusion of these
fluctuations in the dynamics of the system results in random
shifts of the effective single-body and interaction parameters
for different realizations of the system. For the specific case
of the cross-resonance CNOT gate presented in Sec. IV, the
introduction of quasistatic charge noise creates random shifts
in the qubits’ energy splittings, together with the effective
two-qubit coupling terms in the low-energy subspace of the
system. Such random fluctuations potentially limit the gate
fidelities, as evident in Fig. 5.

The rate of change of the tunnel coupling with barrier gate
voltage (i.e., lever arm) is typically two orders of magnitude
smaller than that of the voltage-controlled detuning levels (see
Refs. [77] and [78–80] for tunnel coupling and detuning con-
trol calibrations, respectively). Thus, assuming comparable
levels of voltage noise in all gates, the amplitude of detuning

noise may be considered to be at least two orders of magnitude
larger than the amplitude of tunnel coupling noise [65,67].
These practical considerations are applied in numerical simu-
lations. See the caption of Fig. 5 for the parameter values.

Here we model the dephasing process by creating slow
fluctuations, with Gaussian distributions, of the system’s
electrostatic environment (chemical potentials and tunnel
barriers), capturing the impact of the interaction with the
environment, while making a quasistatic approximation. Al-
ternatively, decoherence effects can be modeled by including
relevant Lindblad operators in the master equation describ-
ing the time evolution of the system density operator, in
the Markovian limit. For example, in the case of two-qubit
systems, Ref [58] considers phenomenological models for
the Lindblad operators, capturing charge-noise and phonon
relaxation effects that include low- and high-frequency noise
mechanisms.

In two-qubit processors, gate sequences have been devised
to suppress the sensitivity of two-qubit entangling gates to
similar quasistatic charge-noise effects [57]. For the three-
qubit processors considered here and in cases where the exis-
tence of high levels of charge noise combined with the effects
of the spectator qubit may cause adverse effects on the gate fi-
delities (see Sec. IV for a discussion), such noise-suppression
techniques need to be expanded to address decoherence ef-
fects. Devising such protocols for three-qubit processes is
beyond the scope of this work and is left to future studies.
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