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Abstract 

Numerous studies have developed models to predict poverty, but surprisingly few 

have rigorously examined different approaches to developing prediction models. 

This paper applies out of sample validation techniques to household data from 

Pakistan and Sri Lanka, to compare the accuracy of regional poverty predictions 

from models derived using manual selection, stepwise regression, and Lasso-based 

procedures. It also examines how much incorporating publically available satellite 

data into the model improves its accuracy. The five main findings are that: 1) Lasso 

tends to outperform both discretionary and stepwise models in Pakistan, where the 

set of potential predictors is large. 2) Lasso and stepwise models give comparable 

results in Sri Lanka, where the set of predictors is smaller. 3) The accuracy of the 

prediction model depends considerably on the poverty threshold  4) Including 

publically available satellite data makes poverty predictions more accurate in Sri 

Lanka, where predictors are scarce, but slightly less accurate in Pakistan and 5) 

Including the satellite data increases the benefit of using Lasso in Sri Lanka. We 

conclude that among the three model selection methods considered, lasso-based 

models are preferred for generating poverty predictions, especially when the pool of 

candidate variables is large. Furthermore, when the pool of candidate variables 

available from household surveys is smaller, incorporating publicly available 

satellite data can considerably improve the accuracy of regional poverty predictions.   
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1. Introduction 

Given the proliferation of different types of household data, survey to survey imputation, defined 

as predicting a variable present in one survey into another using variables common to both, is 

becoming increasingly popular. Survey to survey imputation allows analysts to examine the 

relationship between variables found in two different surveys, if they were collected at roughly 

the same time and represent the same population.4 One important application is to impute 

consumption, which is the primary indicator of household economic welfare in most low and 

lower middle-income countries, into labor force or demographic and health surveys that do not 

collect consumption data, in order to examine the labor or health outcomes of the poor. Another 

common application is to generate small area estimates of poverty by predicting consumption or 

income into a larger target dataset, such as a census, that is representative at a more 

disaggregated geographic level.5  

Despite the increasing popularity of survey to survey imputation, economists have devoted little 

attention to determining how best to select models from a potentially large set of common 

variables. In a series of papers, Leamer (1983, 1985) outlined a method for global sensitivity 

analysis he called extreme bound analysis to evaluate the robustness of covariates in econometric 

models. Except for a few prominent examples (Fernandez et. al, 2001; Levine and Renelt, 1992) 

this line of research has had little impact in how economists construct models. Heckman, et al 

(2014) tests the robustness of model selection by considering the distribution of coefficients 

across a variety of potential specifications, but this approach also has yet to be widely adopted. 

Survey to survey imputation is a natural context to consider model selection methodology in a 

rigorous way, since the accuracy of the prediction in the target survey depends heavily on the 

model used to generate it.   

This paper tests three methods of model selection in the context of estimating relative poverty 

rates in different regions of Pakistan and Sri Lanka. The three methods are: Manual selection, 

where a researcher uses a mix of judgment and goodness-of-fit measures to select a model, 

forward stepwise regression using a p-value threshold of 0.05 as the inclusion criteria, and post-

lasso regularized regression. The resulting variables are used to predict poverty, including 

stochastic error terms generated using a non-parametric version of the ELL estimator developed 

in Elbers, Lanjouw, and Lanjouw (2003). Out-of-sample cross-validation techniques are used to 

assess the accuracy of the prediction of the share of the population in the bottom 10, 20, 30, and 

                                                 

4 Survey to survey imputation can also be used to track changes over time in some cases, but the maintained 

assumptions are far stronger and may not always hold (Newhouse et al, 2014).  
5 References to a number of poverty maps can be found at 

http://web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTPOVERTY/EXTPA/0,,contentMDK:20239128~me

nuPK:462078~pagePK:148956~piPK:216618~theSitePK:430367~isCURL:Y,00.html 

http://web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTPOVERTY/EXTPA/0,,contentMDK:20239128~menuPK:462078~pagePK:148956~piPK:216618~theSitePK:430367~isCURL:Y,00.html
http://web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTPOVERTY/EXTPA/0,,contentMDK:20239128~menuPK:462078~pagePK:148956~piPK:216618~theSitePK:430367~isCURL:Y,00.html
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40 percent of the household size-adjusted consumption distribution, across 8 urban and rural 

areas of each province in Pakistan and 25 districts in Sri Lanka.6  

While the problem of selecting which control variables to include in a model might seem 

innocuous, the results show anything but: we find the accuracy of poverty estimation greatly 

depends on the choice of covariates used to approximate the data generating process. The gains 

to different model selection methods, however, depend both on the context in which they are 

employed and on the relative poverty threshold used to classify households as poor. Our 

preferred measure of prediction accuracy is the average absolute value of the discrepancy 

between the predicted and actual poverty rates, averaged across regions or districts. By this 

measure, the gains to using the Lasso estimator are much more apparent in Pakistan, where 138 

variables are available to build a model, than in Sri Lanka where only 71 variables are available. 

When predicting the share of the population in the bottom 30 and 40 percent of the consumption 

distribution in Pakistan, the Lasso model is twice as accurate as the stepwise model, and two to 

four times more accurate than the manually selected model. In Sri Lanka, on the other hand, 

stepwise was if anything slightly more accurate than lasso, and each was 30 to 60 percent more 

accurate than the manual model.  

Besides the choice of model selection method, a related question is how much adding publicly 

available ancillary data, taken from satellite photography, improves the accuracy of the 

prediction. We therefore examine the effects of adding approximately 35 variables, such as night 

time lights, elevation, and the EVRI vegetation index. In Pakistan, the additional of these 

variables generally makes the models slightly less accurate across all prediction methods. The 

one exception is when using post-lasso to predict the bottom 40 percent, in which case the spatial 

variables increase accuracy by 58 percent. After including the satellite data in Sri Lanka, the 

lasso-based estimates improve substantially, on the order of 20 to 25 percent, when predicting 

membership in the bottom 20, 30, and 40 percent of the welfare distribution. Furthermore, after 

these new variables are included in the set of candidate predictors, lasso outperform stepwise by 

a considerable margin in Sri Lanka. Therefore, when the 35 spatial variables are included, the 

lasso model strictly dominates the stepwise and manually selected models in accurately 

predicting poverty.   

The rest of the paper is laid out as follows: the remainder of section I gives a short overview of 

poverty estimation literature and specifically the ELL/small are estimation method for poverty 

estimation. Section II describes the methodology employed in detail, including defining the Post-

Lasso ELL estimator, and describing how external cross-validation techniques are used to 

evaluate the accuracy of different methods. Section III presents the main model selection results 

using the set of covariates derives from the household survey. Section IV considers the addition 

                                                 

6 This is the lowest level at which the poverty surveys are representative. 
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of approximately 35 variables generated from publicly available satellite data, to see how much 

they improve prediction accuracy for different methods.   Section V concludes.  

1.2 Literature Review 

Small area estimation methods have gained traction because direct estimators cannot accurately 

provide conclusions about ‘small areas’ or subpopulation from survey data (e.g., Ghosh and Rao 

1994, Haslett et al 2010). Most household surveys, as opposed to censuses, contain a large 

number of variables, but have a relatively small sample size. It is likely that a majority of ‘small 

areas’ will not be sampled from at all, or will contain a handful of observations.  Furthermore, if 

the poverty rate is less than 50 percent, the precision of the poverty estimate also suffers as 

poverty rates decline. A number of indirect estimators have therefore been developed and applied 

to larger surveys, which don’t contain consumption, to estimate poverty at more granular 

geographical levels. Elbers, Lanjouw and Lanjouw developed a methodology which is widely 

used especially at the World Bank (Elbers et al 2000, 2003). Briefly, the approach is to use 

survey data to estimate a model for consumption expenditure (or, alternatively, income) using 

variables present in both the survey and a larger dataset, such as a census. This predicted 

expenditure is then used to predict poverty or other measures of welfare (Elbers et al 2003)7. 

Molina and Rao (2010) subsequently proposed an improvement to ELL by merging it with the 

empirical Bayes (EB) method. In their simulations, the authors find that ELL has a slightly 

greater bias than EB, and a significantly larger prediction error variance, even larger than direct 

estimators. EB especially shows improvement over ELL in areas that are represented in the 

detailed survey, by reducing the random area effects. This improved variant of the ELL 

methodology was subsequently incorporated in the latest version of PovMap8 (van der Weide 

2014) a software program often used at the World Bank to generate small area poverty estimates. 

Van der Weide proposes further improvements to EB by relaxing the assumption of 

homoscedastic errors maintained by Molina and Rao (2010), as well as proposing modifications 

to GLS to improve the estimation of model parameters. A major remaining critique of ELL is 

that it assumes that the error terms, representing unobserved consumption, are not correlated 

across clusters.  In situations where even minor area fixed effects or intracluster correlations are 

present, ELL will tend to underestimate the variance in errors. Tarozzi and Deaton (2009) show 

that this underestimation of error can be significant.  

Apart from ELL, several alternate methodologies have also been developed to address the 

problem of small area estimation. Ghosh and Rao (1994) and Rao (2003) review these in detail, 

                                                 

7 Demombynes et al (2003) evaluate ELL and its variants in terms of accuracy of confidence intervals, bias and 

correlation with true values, and the factors that affect each (2002). 
8 PovMap 2.5 is available for free download from: iresearch.worldbank.org/PovMap/ 
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particularly empirical Bayes, hierarchical Bayes and empirical best linear unbiased predictor that 

have been used widely, as well as various design-based estimators.9 Haslett (2010) reviews and 

conducts a comparison of ELL with two other methodologies: spatial microsimulation, which is 

primarily developed by geographers; and mass imputation, a statistical technique that is similar 

in principle to ELL.  

In short, most of the substantial literature on this topic is concerned with improving the 

methodology used to generate estimates of the error term, conditional on a set of predictors.  

Most papers in this literature take as given that the researcher has identified the true model, 

which is the core assumption we are relaxing here. As we show below, however, the 

specification of the independent variables also has major implications on the accuracy of the 

estimates.  

2. Methodology 

Numerous methodological approaches exist to select models for prediction. We distinguish 

between two broad classes here: manual model selection, where covariates for the prediction 

model are chosen directly by the researcher; and algorithmic model selection, in which the 

researcher employs an algorithm to build a prediction model. It is far from clear ex-ante that one 

approach strictly dominates the other. In cases where one has strong prior information regarding 

the data generating process, a manual approach to model selection may be appropriate. Absent 

strong priors, algorithmic model selection mechanisms may better minimize model error. In 

practice, researchers may also use a blend of approaches, beginning with an algorithmic model 

selection approach, and then removing or adding covariates depending upon their strong priors 

for inclusions or exclusion. Although we do not test blended models below, such an approach 

may balance the pros and cons of each approach.  

Applying the problem to real-world poverty data, we consider manual models that were 

developed by researchers to predict poverty rates at the sub-national level. For Pakistan, we use 

the model developed and published by a researcher affiliated with a Pakistan university.10 This 

model was built for the purposes of predicting poverty at the district level using a direct OLS 

estimator, meaning there is no simulation of the error term as is the case with ELL or its variants. 

For Sri Lanka, we use a model developed by the Department of Census and Statistics and the 

World Bank for the purposes of predicting poverty at the district level using an ELL 

methodology framework. (Department of Census and Statistics and World Bank, forthcoming)  

                                                 

9 Pfefferman (2010) updated the review with updates and variations to the methodologies mentioned in Rao’s 

appraisal.  
10 A proper citation is available from the authors at the reader’s request.  
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For the latter, we adapt the modeling approach by estimating one model of the entire country 

rather than 22 separate models for different geographic areas.11  

For algorithmic model selection approaches, we consider two common methods for model 

selection: forward stepwise using a p-value as selection criteria and a Lasso estimator with 

Bayesian shrinkage for model selection. Since the lasso estimator has only recently become 

popular among economists, we describe this estimator below.  

2.1 Description of Lasso Estimator  

The Lasso estimator is a member of the family of regularized regression estimators first 

developed by Tibshirani (1996)12. Regularization refers to adding a component to the typical loss 

function, which is the residual sum of squares, that penalizes the inclusion of additional 

covariates. To be explicit, the lasso estimator 𝛽𝑙𝑎𝑠𝑠𝑜 solves the optimization problem: 

(1)    𝛽𝑙𝑎𝑠𝑠𝑜 = argmin
𝛽

{
1

2
∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗

𝐾
𝑗=1 𝛽𝑗)

2𝑁
𝑖=1 ⏟                  
𝑆𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

+ 𝜆∑ |𝛽𝑗|
𝐾
𝑗=1⏟      

𝑆ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒 𝑓𝑎𝑐𝑡𝑜𝑟

} 

 

Where 𝑖 = 1… . 𝑁  indexes the number of observations and 𝑗 = 1…𝐾 indexes the number of 

parameters to search over. The left hand side of the objective function is identical to the residual 

sum of squares loss function from an unconstrained OLS regression. The novel component here 

is the right component in the optimization problem, which applies an 𝑙1 loss function over the 

coefficients, which are then summed across all coefficients and multiplied by 𝜆, the factor which 

determines the degree of Bayesian shrinkage for the problem. The choice of 𝜆  is left unspecified 

by theory. As 𝜆 → 0 the objective function becomes the OLS objective function and 𝛽𝑙𝑎𝑠𝑠𝑜 →
𝛽𝑂𝐿𝑆. However, for any positive value of 𝜆 the coefficients of 𝛽𝑙𝑎𝑠𝑠𝑜 will deviate from the OLS 

solution, and as 𝜆 → ∞ 𝛽𝑙𝑎𝑠𝑠𝑜 converges to the zero vector of dimension 𝐾, implying that all 

coefficient estimates will have been “shrunk” to zero. The coefficient estimates therefore depend 

heavily on the choice parameter of 𝜆. In practice, this parameter is chosen through cross 

validation.13 Before computation, it is standard to center variables around a mean of zero and 

standard deviation of one, and then present the untransformed version of the coefficients.  

                                                 

11 We build country-level models for the purpose of simplicity in comparison. Our algorithmic modeling approach 

results in more covariates being selected in general than ad hoc methods, however this is not an artifact of building 

country-level models versus provincial level ones. When using algorithmic models on provincial level data our 

results generate roughly the same number of selected covariates as when building country-level models.   
12 For more on the history of the Lasso estimator see the review article Tibshirani (2011). 
13 Several reasonable options for the choice of 𝜆 exist. The canonical choice is the value which minimizes cross-

validated mean squared error (MSE), 𝜆𝑚𝑖𝑛. However, if a more parsimonious model is desired the choice of 𝜆 is 

often parameterized at the value of 𝜆𝑚𝑖𝑛 plus one estimated standard error of 𝜆 (Hastie et. al, 2009). This particular 
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The Lasso estimator provides variable selection by penalizing the model based on the sum of the 

absolute value of the standardized coefficients. Optimizing this modified objective function sets 

some variables to zero. We consider a variable selected by the Lasso estimator if they remain 

non-zero after optimizing the objective function. The nature of the shrinkage path for the 

coefficients is not always monotonically decreasing towards zero; in most cases 𝛽𝑂𝐿𝑆,𝑗 > 𝛽𝐿𝑎𝑠𝑠𝑜,𝑗 

although this is not universally true for all values of 𝜆. However, it is true for all non-

pathological cases that if a coefficient is estimated at zero given some value of 𝜆, larger values of 

𝜆, say �̃�  such that  �̃� > 𝜆, will results in that coefficient estimate remaining at zero. The Lasso 

estimator, in a sense, is weakly monotonic in 𝜆 with respect to shrinking coefficients to zero.  

The Lasso estimator has been applied to economic problems in a variety of contexts. Varian 

(2014) gives an overview of this method and provides some examples. Bajari et. al (2015) 

applies it to the setting of estimating a demand function from a large set of possible covariates. 

Baxter and Hersh (2015) use it in the context of estimating robust covariates associated with 

aggregate bilateral trade flows between countries. Various extensions to the estimator have been 

proposed, both in economics and statistics. Belloni and Chernozhukov (2013) propose a two-step 

estimator (“Post-Lasso”) where the first stage uses the shrinkage property of Lasso for variable 

selection and in the second stage, OLS coefficients are estimated over the reduced set of non-

zero coefficients in the first stage. It is in the spirit of the Post-Lasso estimator of Belloni and 

Chernozhukov that we propose a Post-Lasso ELL algorithm. This algorithm first estimates first a 

Lasso model over a large set of possible coefficients, then uses the reduce set of covariates that 

remain non-zero after the Lasso step in the ELL framework to estimate and simulate the error 

term. We now move to a more formal discussion of the Post-Lasso ELL algorithm.  

2.2 Post-Lasso ELL Algorithm 

The Post-Lasso ELL algorithm is defined as follows: 

1. Estimate a Lasso model on the training dataset, typically a household survey, containing 

information on household consumption and household level covariates. For choice of 

covariates, we initially use the largest set of reasonable coefficients for the prediction 

problem.14 To choose the Bayesian shrinkage parameter, we employ cross-validation 

techniques and use the more parsimonious version of the optimal shrinkage parameter, 

                                                 

parameterization is chosen so that it results in the simplest model “whose accuracy is comparable with the best 

model.” (Krstajic et. al, 2014).  
14 In our examples, we only consider only linear models of consumption, with the exception of a squared age and 

education of the head of household. This framework extends easily to non-linear functions of income. For those 

concerned about the hierarchical restriction of interactions, we recommend using the formulation of the Lasso 

estimator due to Bien et. al (2013) which will obey the hierarchical restriction of interactions when the Bayesian 

shrinkage parameter is applied.  
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that is 𝜆 = 𝑙𝑎𝑚𝑏𝑑𝑎. 1𝑠𝑒, or lambda plus the standard error of the 𝜆 which minimizes 

cross-validated MSE.  

2. Letting  �̂�𝑙𝑎𝑠𝑠𝑜 be the set of variables whose coefficients remain non-zero after step 1, 

estimate an OLS model with random effects model of the form: 

 

𝑦𝑐,ℎ = 𝑋𝑐,ℎ
𝑇  �̂�𝑃𝑜𝑠𝑡−𝑙𝑎𝑠𝑠𝑜 + �̃�𝑐 + 𝜖𝑐,ℎ 

 

We follow conventions in letting  �̃�𝑐 be the random intercept cluster-level error – 

typically the sampling unit level – and 𝜖𝑐,ℎ is the household level error. 𝑦𝑐,ℎ  is the 

welfare measure of interest, typically log consumption, for household h in cluster c.     

3. Draw random effects �̃�𝑐 for each cluster for R simulations. Specifically, use  𝜎 ̂𝑐  – the 

estimate of the cluster level variance from step 2 – to draw {�̃�𝑐
𝑠}𝑠=1
𝑅  , or R values of 𝜂𝑐 for 

each unique cluster in the test set where each  �̃�𝑐~𝑁(0, �̂�𝑐
2). In our examples we set 𝑅 =

100.  

4. For each simulation, compute the predicted consumption expenditure, �̃�𝑐,ℎ
𝑠  for every 

household on the test set using the drawn cluster simulation �̃�𝑐
𝑠: 

�̃�𝑐,ℎ
𝑠 = 𝑋𝑐,ℎ

𝑇   �̂�𝑃𝑜𝑠𝑡−𝑙𝑎𝑠𝑠𝑜 + �̃�𝑐
𝑠 

Where   �̂�𝑃𝑜𝑠𝑡−𝑙𝑎𝑠𝑠𝑜 is the estimate of betas obtained from random effects15 For each 

simulation, a vector of household errors can be defined as the discrepancy between actual 

and predicted consumption,  or   𝜖�̃�,ℎ
𝑠 = 𝑦𝑐,ℎ − �̃�𝑐,ℎ

𝑠  where 𝑦𝑐,ℎ is reported household 

consumption.  

5. Sample household idiosyncratic error with replacement from each simulation and add it 

to �̃�𝑐,ℎ
𝑠 .   Formally we define the sample idiosyncratic error component as  𝜖�̃�,ℎ

𝑖 = �̃�𝑐,ℎ
𝑖 −

𝑋𝑐,ℎ
𝑇   �̂�𝑃𝑜𝑠𝑡−𝑙𝑎𝑠𝑠𝑜 + �̃�𝑐

𝑖 .  Thus our final simulated income is given by  

�̃�𝑐,ℎ
𝑠 = 𝑋𝑐,ℎ

𝑇   �̂�𝑃𝑜𝑠𝑡−𝑙𝑎𝑠𝑠𝑜 + �̃�𝑐
𝑠 + 𝜖�̃�,ℎ

𝑖 , where 𝑖 ≠ 𝑠.  
 

6. Calculate mean and variances of �̃�𝑐,ℎ
𝑠 . Predicted values are defined as  �̂�𝑐,ℎ

𝑃𝐿𝐸𝐿𝐿 ≝

𝐸 [
1

100
∑ �̃�𝑐,ℎ

𝑠100
𝑠=1 ]  and variance is given by the typical variance formula. Residuals for the 

estimator are defined by �̂�𝑐,ℎ
𝑃𝐿𝐸𝐿𝐿 − 𝑦𝑐,ℎ = �̃�

𝑃𝐿𝐸𝐿𝐿  where 𝑦𝑐,ℎ is the true level household 

consumption.  

7. Repeat until all test sets have been estimated.  

                                                 

15 Note, we use the coefficients from the random effects model, and not those which have had Bayesian shrinkage 

applied. Lasso is only used for model selection in the fashion of Post-Lasso (Belloni and Chernozhukov, 2013). 

Using the Lasso, i.e. shrunken, coefficients produces qualitatively similar results.  
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8. Let �̂�𝑟 be the poverty statistic of interest, such as 𝐹𝐺𝑇0, poverty headcount, or 𝐹𝐺𝑇1, the 

poverty gap index, for a given simulation 𝑟. We simulate the expected value for the 

indicator over the mean of the simulations 

𝜇 =
1

𝑅
∑�̂�𝑟
𝑟

 

The final statistic of interest here is 𝜇, that is the poverty statistic of interest averaged over the 

100 simulations.  

2.3 Stepwise Algorithm 

We utilize a forward stepwise algorithm where the p-value of a coefficient is used as the 

inclusion criteria16, parameterized at 𝑝 = 0.05. It’s possible, and in fact recommended, that this 

hyper-parameter p-value criterion is selected through the use of cross-validation. Although this 

methodology has recently been adopted in some recent World Bank predictions of poverty, it 

still is rarely used in practice and existing software does not easily support this approach. We 

therefore define our stepwise algorithm with a fixed prior p-value hyper-parameter. There are 

several disadvantages to the stepwise algorithm. First, the algorithm results in a non-convex 

objective function, which means a global minimum is not guaranteed. It further can be very 

computationally intensive, requiring the bulk of our computational time in our simulation 

exercise.17 The non-convexity often results in discrete jumps in mean squared error (MSE) when 

comparing across modeling approaches – such as the selection of a hyper-parameter, for example 

– which can complicate the selection of hyper-parameters. Finally, the presence of highly 

correlated independent variables can lead to model instability.  

2.4 Construction of Relative-Poverty Rates  

To determine the accuracy of each modeling approach we must create a baseline from which 

compare each estimator’s performance. For each country, we build relative poverty rates for each 

region, which we define as the share of sample individuals in each region whose household 

welfare, which is per capita consumption in Sri Lanka and per adult equivalent consumption in 

Pakistan, falls below a given percentile of the national distribution.18 We select relative poverty 

rates at the 10%, 20%, 30% and 40% of the welfare distribution. This will further help us 

                                                 

16 For an explicit definition of the forward stepwise algorithm we refer the reader to Hastie et al. (2009). 
17 The stepwise algorithms in this paper required computational time on a desktop machine of around 2-4 hours for 

each country. In comparison, the other methods were computed in a matter of minutes or in some cases seconds.  
18 The per adult equivalence measure in Pakistan gives a weight of 0.8 to children under the age of 18 and 1 to adults 

over 18.  It is used for calculating national poverty statistics in Pakistan, while per capita consumption is used in Sri 

Lanka.  
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understand how the accuracy of the estimators depend on the incidence of poverty. Since we are 

concerned about the representativeness of the poverty estimates, we define regions according to 

the most disaggregated geographic level at which the consumption survey is considered to be 

representative.  For the Pakistan Household Income and Expenditure Survey, this is the 

province/urban-rural level, and since there are four provinces in our sample this gives us a total 

of eight regions. For Sri Lanka, the HIES is considered to be representative at the District level, 

therefore we will construct the relative poverty rates for a total of 25 regions in our sample.  

2.5 The Importance of External Cross Validation for Evaluating Out-of-Sample 

Performance 

To assess the performance of each modeling method we use external k-fold cross-validation to fit 

predicted consumption from each modeling approach. Why not just fit a consumption model 

over the data and use the fitted model to generated predicted values? The concern is that this 

would produce a good in-sample fit, but doesn’t guarantee a high performance out of sample. We 

instead apply a K-fold cross-validation approach. This involves partitioning the data into several 

training and test folds, fitting a model on the training set and predicting into the withheld fold, 

and repeating the process until all withheld folds have been used for prediction.  

 

FIGURE 1: ALGORITHM FOR EXTERNAL CROSS VALIDATION 

The algorithm for external exhaustive k-fold cross validation, which is shown in figure 1, is as 

follows: first, setting 𝑘 = 10, we partition the data into 10 folds of equal size. Starting with fold 

1, we fit a model using folds 2 through 𝑘 of the data, estimating the model 𝑓1(𝑋2…𝑘). Using this 

estimated model we predict into the withheld fold, 𝑋1, generating predicted values �̂�𝑡𝑒𝑠𝑡1,𝑓1(.) 
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which is a column vector of dimension 𝑟𝑜𝑤𝑟𝑎𝑛𝑘(𝑋)/𝑘. We repeat until all folds have been 

withheld, and we have predicted values for all observations in 𝑋. In our Lasso model selection 

methodology, we choose the Bayesian shrinkage parameter 𝜆 through cross validation within 

each testing fold.  

3. Model selection Results 

3.1 Pakistan Data 

We first consider the performance of the model selection methods in Pakistan. We utilize a 

sample of 16,340 households from the 2010-11 round of the Household Income Expenditure 

Survey (HIES), which is part of the Pakistan Social and Living Standards Measurement Survey 

(PSLM). In total the PSLM surveyed 76,546 households that year in Pakistan, though only a 21 

percent subset of these were asked the consumption module (HIES) which constitutes our core 

sample. Since the PSLM is considered to be representative at the district level, small area 

estimation techniques can be utilized to generate estimates at the district level.  

The HIES/PSLM is a rich survey, covering topics related to household education, employment, 

health, assets, amenities, housing quality and sanitation, and other facilities related to the 

Millennium Development Goals (MDGs). Table 1 presents the summary statistics for these 

variables and gives some sense of the richness of the dataset, which includes many variables on 

household level assets as well as some unconventional variables such as “time to water source” 

and “area economic assessment”. In total, we consider 138 different variables in the set of 

possible variables each modeling approach can utilize. Clearly a model which utilizes all 

possible variables will suffer from issues of overfitting, therefore this presents a particularly 

good test for the modeling approaches, to see which ones are capable of identifying the optimal 

statistical model in terms of out of sample performance.  

The survey was designed to be representative at the urban/rural provincial level, therefore we 

identify the region – which will become our testing area to compare model performance – at this 

level. The HIES only covers the four main provinces of Punjab, Sindh, Khyber Pakhtunkhwa 

(North-West Frontier Provinces), and Baluchistan, and as noted above, is only considered to be 

representative at the urban and rural level of each province. Therefore we are limited to defining 

8 regions for the purposes of calculating error between predicted and actual relative poverty 

statistics. 19  Defining a small number of regions is a clear disadvantage using this approach; but 

                                                 

19 To be explicit our 8 regions are: Punjab-rural, Punjab-urban, Sindh-rural, Sindh-urban, KP-rural, KP-urban, 

Baluchistan-rural, and Baluchistan-urban.  
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given the importance of cross-validating poverty rates using the HIES, it is not clear there is a 

better alternative.    

We consider the performance of four separate modeling approaches: (1) OLS with manual model 

selection, (2) ELL (2003) with ad hoc model selection, (3) Post-Lasso ELL and (4) Stepwise 

ELL. 20 For the manually selected model, we utilize a model of household consumption that 

includes the following covariates: number of household members, household dependency ration, 

head of household years of education, spouse years of education, highest education level in 

household, a dummy if the head of household of less than 40 years of age, a dummy if the head 

is unemployed, a dummy if the head is employed with a consistent wage, a household asset score 

(sum of number of household asset), and finally provincial dummies. This model is used to 

generate both the manual OLS and the manual ELL estimates, with the only difference being the 

manual ELL model will follow ELL (2003) in estimating a cluster level effect at the primary 

sampling unit level, and simulating draws from this cluster level effect and from the household 

level residuals. The manual OLS model, on the other hand, assumes that the error term is zero for 

each household, and therefore compares exponentiated predicted log per capita consumption to 

the poverty line to determine if a household is poor or not.   

3.2 Pakistan Performance Comparison  

After estimation using modeling approaches (1)-(4), we derived optimal models using lasso and 

stepwise, the results of which are summarized in table 2. Panel A shows the results for Pakistan. 

The first column shows the average number of variables selected across the 𝑘 = 10 folds. For ad 

hoc OLS and ad hoc ELL the number of variables selected is set manually at 20.21 For the Post-

Lasso ELL algorithm, an average of 62.2 variable were selected across folds, whereas for 

stepwise this results in an average of 105 variables selected. The stepwise algorithms selected 

more variables than the Lasso algorithm.  The average 𝑅2 between Post-Lasso ELL and stepwise 

models are nearly identical, at 0.68 and 0.67 respectively, whereas the manual OLS and ELL 

models have a lower average 𝑅2 of 0.53 and 0.51 respectively. The next column shows the 

average household level consumption residual, that is �̂�𝑖 − 𝑦𝑖, where 𝑦𝑖  is the consumption 

variable in logs. All of these estimators appear unbiased, showing very low average residuals of 

between -0.0158 and 0.0299. In this table we further present the standard deviation, min and max 

of the household level residuals.  

The performance in terms of generating region poverty rates is presented in table 4, and 

summarized in the top left panel of figure 2. We present three measures of region poverty rate 

                                                 

20 Post-Lasso ELL refers to the estimation of a non-parametric ELL model using coefficients selected by Lasso.  
21 In the number of variables we partition factor variables into binary dummy variables, thus each distinct level in a 

factor is considered a separate dummy variable.  
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accuracy: mean region error, which is defined as 
1

𝑁
∑ (𝑦�̂� − 𝑦𝑗)
𝑁
𝑗=1 , where 𝑗 indexes each region; 

mean region absolute error, which is defined as 
1

𝑁
∑ 𝑎𝑏𝑠(𝑦�̂� − 𝑦𝑗)
𝑁
𝑗=1 , and mean region weighted 

absolute error, 
1

𝑁
∑ 𝑤𝑗 ∗ 𝑎𝑏𝑠(𝑦�̂� − 𝑦𝑗)
𝑁
𝑗=1 , where 𝑤𝑗 is the weight of each region 𝑗22 determined 

by its population size. All of these measures present error in terms of average percentage points 

across regions. Our preferred measure is mean region weighted absolute error (MWAE), which 

accounts for both absolute error differences and adjust for population differentials across regions.  

The results are stark: in 1 out of 4 examples stepwise ELL performs the worst, and further in all 

but one case Post-Lasso ELL outperforms all other methods as a poverty estimator. The 

differences become more pronounced as the relative poverty rate decreases. In predicting the 

below 40% poverty rate, Post-Lasso ELL is slightly worse than stepwise, at 2.118 versus 1.47 

MWAE. However, at the 10% relative poverty rate, Post-Lasso ELL greatly outperforms 

stepwise, with error rates of 3.391 versus 8.347. The manual model specifications perform 

somewhere in between, with manual OLS performing the worst in 3 out of 4 examples. Average 

error rates for manual ELL, the method typically used to build models, are 4.4 at the 10% 

relative poverty rate (RPR), 3.4 for the 20% RPR, 3.5 for the 30% RPR, and 4.3 for the 40% 

RPR. Both the Post-Lasso ELL model and the Stepwise ELL algorithms improve as the relative 

poverty rate increases, suggesting that these algorithms are better able to make use of the 

richness of the datasets to predict consumption at higher levels of consumption.  

This example demonstrates three main points.  The first simply confirms the importance of  

simulating error terms; using the ELL approach, not surprisingly, leads to far more accurate 

poverty estimates than setting the error term equal to zero.  Secondly, in the context of a “data 

rich” poverty estimation environment, in which a multitude of variables are available, Lasso 

outperforms other methods of model selection and with one exception, shows uniformly lower 

error rates across relative poverty rates. Third, in-sample 𝑅2 may not be an accurate measure of 

model performance, since models based on Lasso and stepwise produce similar 𝑅2 values even 

though Lasso performs far better out of sample.   

 

                                                 

22 Weights are used to compare error rates for regions that have different population counts. Weights are defined as 
𝑝𝑗

�̅�
, where 𝑝𝑗 is region population, and �̅� is average region population.  
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FIGURE 2: PREDICTION COMPARISON, BY MODEL SELECTION METHOD AND RELATIVE POVERTY RATE (SHORTER 

BARS INDICATE BETTER PERFORMANCE) 

3.3 Sri Lankan Data 

We turn now to the problem of estimating poverty in Sri Lanka. In contrast to the dataset for 

Pakistan, when building poverty rates for Sri Lanka we limit ourselves to using only the common 

variables available in both the Sri Lankan Census and the Household Income and Expenditure 
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Survey. This results many fewer variables that we were able to use above for Pakistan. We use a 

sample of 20,540 households in the 2012/13 Household Income and Expenditure Survey (HIES). 

The sampling frame of the HIES is representative at the district level, therefore we define the 

region to be used for the purposes of calculating poverty statistics at the district level. Since there 

are 25 districts, we will have 25 regions from which to compare average error rates in terms of 

calculating poverty.  

The summary statistics for the possible variables that each algorithm can select are shown in 

table 4. In total, there are 71 common variables from which to select to build a model. This is 

only slightly over half of the total number of variables at our disposal for the models in Pakistan. 

We are purposefully limiting ourselves to the set of variables available in the Sri Lankan census, 

which is small relative to the HIES consumption survey we used in Pakistan. Noticeably absent 

is the richness of household asset and employment variables in the Pakistan HIES. In the Sri 

Lanka data detailed spousal and head information on education or employment status is not 

available, nor do we have any or as much detailed information roof type, water source, toilet 

type, cooking fuel, lighting fuel, residence type, family and area subjective economic 

assessment, phone type, household primary language, and time to travel from the household to 

key public services.  

For the manual model selection we utilize a model recently used to construct poverty estimates at 

the DS division level developed by the World Bank and the Sri Lankan Department of Census 

and Statistics (2015). That model includes the following independent variables: a dummy for 

male household head, age of head, employment status of head, household size, household 

dependency ratio, highest education in household, a dummy if the household uses firewood for 

heating, a dummy if the household has access to electricity, a dummy if the house is owned, 

indicators if walls and roof are of high type, an indicator if the household indicates it has safe 

drinking water, and finally dummy variables if the household contains the assets: toilet, 

waterseal, radio, television, landline based phone or mobile phone. The total number of variables 

used in the manual model is 21.  

3.4 Sri Lankan Performance Comparison  

The performance in terms of average region level error rates in relative poverty rate is shown in 

the lower left panel of figure 2, and table 2 shows a summary of the performance of each 

algorithm at the household level. The manual model selection uses 21 variables, and both the 

ELL and OLS variants share an 𝑅2 value of 0.42. The Lasso algorithm selected an average of 

51.9 variables across folds, for an average 𝑅2 of 0.55. The forward stepwise using a p-value of 

0.05 selects close to this number, 51. All of the estimators appear to be unbiased, with a mean 

residual varying between -0.0406 for ad hoc ELL, and 0.0024 for ad hoc OLS. These models do 

show a larger standard deviation of residuals than the Pakistan models, and further have 

noticeably smaller 𝑅2 values, indicating less of the variation in consumption is captured by the 

generated models. This is somewhat expected given that limiting ourselves to the variables 
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available in the Sri Lankan dataset – roughly half of the number of variable we could use in 

Pakistan -- will result in a poorer fit ceteris paribus.  

Turning to the error rates at the region level shown in table 6, and summarized in the bottom left 

panel of figure 2, we first look the performance at the 10% relative poverty rate (RPR). Manual 

OLS performs by far the worst, showing a mean weighted absolute error of 7.063, and a mean 

region error of -9.016, meaning manual OLS under-predicts the regional poverty rate at an 

average of 9 percentage points. Ad hoc ELL does much better, showing an MWAE of 2.574, 

followed by stepwise at 2.214. Post-Lasso ELL performs slightly better, showing an error rate of 

1.989. When predicting the 20% RPR, ad hoc OLS performs very poorly, under-predicting the 

poverty rate by an average of 12.39. Ad hoc ELL does much better, with an average MWAE of 

4.78, Post-Lasso ELL’s MWAE improves to 3.381 and stepwise performs slightly better with an 

error rate of 3.078. For the 30% and 40% RPRs, the results show stepwise performing slightly 

better than Post-Lasso ELL, ad hoc OLS performing poorly, and ad hoc ELL performing 

increasingly worse as the relative poverty rate increases.  

Unlike for Pakistan, error rates decrease monotonically as the relative poverty rate increases.   

Stepwise performs roughly as well as Lasso in this reduced-variable context, and manual 

performance decreases as the poverty threshold increases. It is difficult to explain why prediction 

accuracy generally increases with relative poverty rates in Pakistan but decreases with relative 

poverty rates in Sri Lanka. It appears that the relationship between prediction accuracy and 

relative poverty rates depends on the context and the data.    

Other results are consistent across both countries: 1) The simulation approach of ELL (2003) 

results in much lower error in comparison to non-simulated methods. 2) Lasso greatly 

outperforms both manual and stepwise model selection when the set of variables is large. 3) 

Stepwise model selection performs approximately as well as Lasso when the set of variables is 

small. 4) Even using the best model, Post-Lasso ELL, region poverty rates have an error of 

around 2 percentage points.  

4. Modeling Performance when Adding District-Level Spatial Variables 

This section turns to evaluating how the four different modelling approaches fare when 

additional variables are added to set of candidate predictors. We augment the household models 

by including publicly available satellite data to assess the impact, if any, that such data can have 

on the accuracy of the modeling approaches. Satellite data has several potential advantages as a 

complement to nationally household survey data: it is cheap – publically available data of this 

kind is freely available as data products online; it is also ubiquitous and coverage includes most 

settled areas of the world; finally, it is frequently updated, with many data products being 

published at the yearly level. We chose several broad categories of satellite data, chosen on the 

basis of availability and likelihood of correlation in the relevant country. Some of these data have 

been used before in similar contexts, such as the use of night lights (Henderson, Storeyguard, and 
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Weil, 2012), which has been shown to be highly correlated with economic activity. Others, such 

as percent land cover of a given type or standard deviation of elevation, have seen less use in this 

context but may prove useful for the purposes of model building.  

Taking the same household data for Pakistan and Sri Lanka as used in the previous section, we 

add indicators at the district level for the following:  

 Land cover: classification of land into over 20 land cover types, including water bodies, 

built up urban area, irrigated and rain-fed cropland, vegetation of varying types and 

density, etc.   

 Elevation: land elevation above sea level 

 Population density: estimates population distribution per sq. km., based on multiple data 

sources including: census counts, land cover, roads, slope, urban areas, village locations, 

and high-resolution satellite imagery analysis 

 Vegetation index: normalized difference vegetation index (NDVI), which gives a 

measure for how much live green vegetation is present in an area.  

 GDP: an estimate of GDP per capita at the gridded spatial level, produced by the World 

Bank Development Economics Research Group by combining time-series data on GDP 

with Landscan’s gridded population map.  

 Night time lights: satellite imagery captured at night is widely used in analyzing 

economic activity and population distribution globally.  

 Radiance calibrated night time lights: This product is an improvement over standard 

nightlights imagery as it captures more variation within very bright zones, such as cities, 

or very dim zones.  

FIGURE 3: NDVI MAP FOR PAKISTAN AS A GRID (LEFT), AND AGGREGATED AT THE DISTRICT LEVEL (RIGHT) 
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This raw imagery is available publically online in the form of grids, or rasters, of varying spatial 

resolution.23 We aggregated this data in the simplest form: using the mean and standard deviation 

for each district in Pakistan and the DS division level for Sri Lanka24. A sample spatial feature is 

shown in figure 4 above, which depicts the NDVI vegetation index, and shows the aggregation 

process. The left panel shows the raw raster image with the district boundaries of Pakistan 

displayed on top. We see a long band of lush vegetation starting at Hyderabad in the south, 

swirling around Lahore and Islamabad, and leading into Khyber Pakhtunkhwa. On the right 

panel we see the result of the aggregation, in this case average of NDVI by district. The 

averaging process gives the raw average of NDVI raster pixels contained in the district 

boundaries, resulting in the right panel. Many of the districts of Punjab have high degree of lush 

vegetation, and resultantly have a high district average in the right panel. Some intermediate 

districts, such as the Umer Kot in Sindh province, are only half covered in lush vegetation, which 

result in an intermediate average. This process is similar for all of the spatial variables.  

We merge the spatial variables into the household data, at the level of the district in Pakistan and 

the DS division in Sri Lanka.  Table 7 presents summary statistics for the spatial data used in 

Pakistan, and table 8 shows the summary statistics for the spatial data used in Sri Lanka. These 

summary statistics show mean over household level observations. The land cover variables enter 

the model as separate variables for each land cover type (there are 22 in total) giving the percent 

of total DS or district covered by this type of land. Most land-cover (31.5%) is bare land in 

Pakistan whereas the most common land-cover type is evergreen or semi-deciduous forest in Sri 

Lanka. For radiance calibrated night lights we include two time periods: 2010 and 1996, and for 

raw night lights we include the time periods 1992 and 2012. Notably absent is the vegetation 

index data for Sri Lanka, however with that exception the variables are similar across the two 

countries. 

Many of the satellite-based variables are high collinear. The Lasso estimator is typically robust 

to the inclusion of highly correlated variables, whereas their inclusion can present some 

problems for stepwise (Dornmann, et al, 2013). Similarly, adding all of the available spatial 

variables to the ad hoc model resulted in unacceptably large variance inflation factor (VIF) for 

some covariates. We sequentially removed spatial variables with the largest VIF until all 

included spatial variables showed VIF scores below 10.  This resulted in the exclusion of 4 land 

type variables for Pakistan and 7 land type variables for Sri Lanka.   

Table 3 shows the model performance at the household level using the various model selection 

algorithms. For Pakistan, the ad hoc models estimate a model with 57 predictors, akin to adding 

every available coefficient that meets the VIF requirement. The stepwise algorithm selects 28 of 

                                                 

23 Appendix A includes a more detailed description for how these variables were produced and where the source 

location for each of them is located. For the curious reader, we also present some raw raster maps for some of the 

data aggregated to the DS/District level in Appendix A. 
24 Description, data sources and methodology for each variable is described in greater detail in appendix A.  
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the available predictors, estimating a model with 133 covariates. Lasso adds an average of 13 of 

these available spatial covariates, excluding the majority of them. Both stepwise and Lasso show 

𝑅2 values of around 0.67 to 0.68, while the ad hoc 𝑅2 values are both around 0.54. Turning to 

Sri Lanka, the ad hoc models add an additional 32 predictors to estimates a model with 53 total 

predictors. Stepwise selects a total of 38 predictors and Lasso selects an average of 73 across 

folds, an increase of 20 from the non-spatial set of controls.  

Table 9 shows the region error rates for Pakistan between predicted and true relative poverty 

rates when we include spatial controls, which we also summarize in the upper right panel of 

figure 2. Comparing between the models with and without spatial data, the errors for stepwise 

and Lasso are similar to those in the section above that did not have access to spatial data. 

However, the manually selected ELL does considerably better, roughly as well as Post-Lasso 

ELL in two out of four cases, better than Lasso in predicting the below 20% poverty rate, and 

much worse than Post-Lasso ELL in predicting the below 40% relative poverty rate. Due to the 

richness of the data used to build the first set of models for Pakistan, including the satellite-based 

indicators made only marginal improvements for stepwise and Lasso. However, because the 

manual models included fewer predictors than either stepwise or Lasso, the satellite indicators 

increase their accuracy considerably. Comparing between the algorithmic approaches, stepwise 

performs quite poorly, especially in predicting the lowest 10% relative poverty rate, showing a 

MWAE of 8 percentage points. However, this performance improves as the RPR threshold 

increases, a similar pattern as to what was seen with the non-spatial examples.  

Table 10 shows the region error rates for Sri Lanka comparing relative poverty rates based on 

actual and estimated per capita consumption, summarized in the lower right panel of figure 2. 

Here, almost without exception, the models with spatial data considerably outperform those 

when the algorithms did not have access to spatial data. The larger contribution of satellite-based 

indicators in Sri Lanka may result from the fewer variables employed in the Sri Lanka model. 

The higher resolution of the Sri Lankan satellite data may have also played a role, as Sri Lanka 

contains roughly 300 DS divisions and Pakistan data only contains 118 Districts. Including the 

satellite variables causes the relative error rates in the manual models to worsen by about 1-2 

percentage points, while the Lasso models improves their error rates by between 1 and one half 

percentage points error, and the stepwise models see no discernable improvement. After adding 

the satellite-based variables, the Lasso-based model outperforms stepwise by a considerable 

margin. We conclude from this that Lasso was able to make use of the additional variables to 

generate more accurate predictions of poverty, while the other two methods were not.  

Comparing the models with and without spatial data is summarized in Table 11. Performance 

varies across the poverty threshold.  In Sri Lanka, the addition of spatial variables using the Post-

Lasso ELL methodology improves performance by an average of 15% across poverty thresholds. 

In Pakistan the addition of publically available spatial variables tends to slightly lower average 

performance, which we attribute to the large number of predictors in the household data.  
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5. Conclusion 

The results indicate that in the context of predicting poverty, model specification matters. For 

practitioners who predict poverty into ancillary surveys or censuses, we believe that model 

selection deserves the same type of rigorous attention that has been devoted to modelling the 

error term. We have shown, using Pakistan and Sri Lanka as two examples, that the Lasso 

estimator followed by the ELL simulation method to model errors can offer considerable 

improvements over the three other methods of model selection considered here: manual OLS, 

manual ELL, and forward stepwise. Lasso never performs substantially worse than these other 

methods. In cases where the set of predictor variables large, namely Pakistan and when the Sri 

Lankan data was augmented with publicly available satellite indicators, the gains to using a 

Lasso-based model selection process increased. In Sri Lanka, where there are fewer candidate 

predictors, performance does not appear different from existing methods, notably stepwise. 

Nonetheless, the results suggest that Lasso should be used more frequently as a model selection 

tool.    

An ancillary question is to what extent adding publicly available satellite data improves the 

accuracy of the predicted estimates of poverty. For the purposes of this exercise, Pakistan is the 

atypical case, because of the availability of a larger and more representative survey with an 

exceptionally large number of common variables. Sri Lanka, where small area estimates of 

poverty would predict consumption into a census with fewer common variables, is a more 

canonical case. Though we must be cautious extrapolating from these two examples, our 

recommendation is that publically available spatial variables can improve prediction when the set 

of variables is scarce, such as is the case when estimating poverty into a census with limited 

covariates. The flip-side is a cautionary tale, in that publically available satellite data may worsen 

predictions if the set of covariates is already rich. 

This research suggests several lines of future work. An important next step is to verify whether 

the main results documented here generalize to other contexts, particularly the weak dominance 

of the Lasso method of model selection, the monotonically improving performance of Lasso as 

the set of variables increases, and the improvement due to the inclusion of publicly available 

satellite data in Sri Lanka. The choice of household error was taken as given in our examples, but 

of course the optimal methodology depends on a combination of approaches to the selection of 

independent variables as well as error structure.  Another unanswered question is why the shape 

of performance profile across relative poverty rates differs by country. In Pakistan, error rates 

decline as the poverty line rises and the models perform best when predicting membership in the 

bottom 40 percent of the national distribution. In contrast, in Sri Lanka error rates monotonically 

increase as the poverty line rises and the models perform best when distinguishing the bottom 10 

percent of the national distribution. Further analysis could seek to better explain which pattern is 

more typical and the underlying factors behind this result.    

 



Building a better model: Variable Selection for Predicting Poverty in Pakistan and Sri Lanka  

 

 
21 

References 

Bajari, P., Nekipelov, D., Ryan, S. P., & Yang, M. (2015). Demand estimation with machine 

learning and model combination (No. w20955). National Bureau of Economic Research. 

Baxter, M. and Hersh, J. (2015). Robust Determinants of Bilateral Trade Flows. Working paper.  

Belloni, A., & Chernozhukov, V. (2013). Least squares after model selection in high-

dimensional sparse models. Bernoulli, 19(2), 521-547. 

Belloni, A., Chernozhukov, V., & Hansen, C. (2014). Inference on treatment effects after 

selection among high-dimensional controls. The Review of Economic Studies, 81(2), 608-650. 

Bien, J., Taylor, J., & Tibshirani, R. (2013). A lasso for hierarchical interactions. The Annals of 

Statistics, 41(3), 1111-1141. 

Bonhomme, S., & Manresa, E. (2012). Grouped patterns of heterogeneity in panel data (No. 

wp2012_1208). 

Demombynes, G., Elbers, C., Lanjouw, J. O., & Lanjouw, P. (2007). How good a map? Putting 

small area estimation to the test. Putting Small Area Estimation to the Test (March 1, 2007). 

World Bank Policy Research Working Paper, (4155). 

Department of Census and Statistics and World Bank, forthcoming, “The Spatial Distribution of 

Poverty in Sri Lanka”, mimeo   

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., ... & Lautenbach, S. 

(2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their 

performance. Ecography, 36(1), 27-46. 

Elbers, C., Lanjouw, J. O., & Lanjouw, P. (2003). Micro–Level Estimation of Poverty and 

Inequality. Econometrica, 71(1), 355-364. 

European Space Agency (ESA), Université catholique de Louvain (UCL). Globcover 2009 Land 

Cover Map Version 2.3. ESA, France, 2009. 

Fernandez, C., Ley, E., & Steel, M. F. (2001). Model uncertainty in cross‐country growth 

regressions. Journal of applied Econometrics, 16(5), 563-576. 



Building a better model: Variable Selection for Predicting Poverty in Pakistan and Sri Lanka  

 

 
22 

Gelman, A., Stevens, M., & Chan, V. (2003). Regression modeling and meta-analysis for 

decision making: a cost-benefit analysis of incentives in telephone surveys. Journal of Business 

& Economic Statistics, 21(2), 213-225. 

Ghosh, M., & Rao, J. N. K. (1994). Small area estimation: an appraisal. Statistical science, 55-

76. 

Haslett, S., Jones, G., Noble, A., & Ballas, D. (2010). More for Less? Comparing small area 

estimation, spatial microsimulation, and mass imputation. JSM, 1584-1598. 

Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Friedman, J., & Tibshirani, R. (2009). The 

elements of statistical learning (Vol. 2, No. 1). New York: springer. 

Heckman, James J., John Eric Humphries, and Tim Kautz. "The economic and social benefits of 

GED certification." The Myth of Achievement Tests: The GED and the Role of Character in 

American Life (2014): 268-289. 

Henderson, J. V., Storeygard, A., & Weil, D. N. (2009). Measuring economic growth from outer 

space. American Economic Review 102(2): 994-1028. 

Krstajic, D., Buturovic, L. J., Leahy, D. E., & Thomas, S. (2014). Cross-validation pitfalls when 

selecting and assessing regression and classification models. Journal of cheminformatics, 6(1), 1-

15.  

Leamer, E. E. (1983). Let's take the con out of econometrics. The American Economic Review, 

31-43. 

Leamer, E. E. (1985). Sensitivity analyses would help. The American Economic Review, 308-

313.  

Levine, R., & Renelt, D. (1992). A sensitivity analysis of cross-country growth regressions. The 

American economic review, 942-963. 

Molina, I., & Rao, J. N. K. (2010). Small area estimation of poverty indicators. Canadian 

Journal of Statistics, 38(3), 369-385. 

NASA, Japanese Ministry of Economy, Trade and Industry. ASTER Global DEM ASTGTM. 

USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, 

2011. 



Building a better model: Variable Selection for Predicting Poverty in Pakistan and Sri Lanka  

 

 
23 

NASA Land Processes Distributed Active Archive Center (LP DAAC). MODIS 13Q1 Terra 

Vegetation Indices 16-Day L3 Global 250m SIN Grid V005. USGS Earth Resources 

Observation and Science (EROS) Center, Sioux Falls, South Dakota, 2014. 

NDGC Earth Observation Group. Global Radiance Calibrated Nighttime Lights. NOAA NGDC, 

Boulder, Colorado, 2011. 

Oak Ridge National Laboratory. LandScan High Resolution global Population Data Set. UT 

Batelle, Oak Ridge, Tennessee, 2012. 

Pfeffermann, D. (2013). New important developments in small area estimation. Statistical 

Science, 28(1), 40-68. 

Rao, J. N. (2005). Small area estimation (Vol. 331). John Wiley & Sons. 

Tarozzi, A., & Deaton, A. (2009). Using census and survey data to estimate poverty and 

inequality for small areas. The review of economics and statistics,91(4), 773-792. 

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal 

Statistical Society. Series B (Methodological), 267-288.  

Tibshirani, R. (2011). Regression shrinkage and selection via the lasso: a retrospective. Journal 

of the Royal Statistical Society: Series B (Statistical Methodology), 73(3), 273-282. 

Van der Weide, R. (2014). GLS estimation and empirical bayes prediction for linear mixed 

models with Heteroskedasticity and sampling weights: a background study for the POVMAP 

project. World Bank Policy Research Working Paper, (7028). 

Varian, H. R. (2014). Big data: New tricks for econometrics. The Journal of Economic 

Perspectives, 3-27. 

World Bank Development Economics Research Group. Gross Domestic Product. Global Risk 

Data Platform, UNEP, Chatelaine, Geneva, 2010. 

 

  



Building a better model: Variable Selection for Predicting Poverty in Pakistan and Sri Lanka  

 

 
24 

Table 1: Summary Table for Household Variables, Pakistan   

Variable N mean   Variable N mean 

HH highest Education 16,341 8.73  Rooms per person 16,341 0.37 

Age of head 16,341 47.47  roofType==rcc/rbc 16,340 0.27 

Age of spouse 2,497 40.75  roofType==wood/bamboo 16,340 0.36 

Gender of head 16,341 1.07  roofType==steel/cement sheets 16,340 0.05 

marstatHoH==Unmarried 16,341 0.02  roofType==other 16,340 0.32 

marstatHoH==Married 16,341 0.92  wallType==burnt bricks/blocks 16,340 0.72 

marstatHoH==Divorced/Separated 16,341 0.00  wallType==mud bricks/mud 16,340 0.21 

marstatHoH==Widowed 16,341 0.07  wallType==wood/bamboo 16,340 0.02 

Read/writes, head 16,341 0.56  wallType==stones 16,340 0.04 

Read/writes, spouse 16,341 0.04  wallType==other 16,340 0.00 

Head can do simple math 16,341 0.86  waterSource==piped water (inside 
compound) 

16,340 0.27 

Spouse can do simple math 16,341 0.10  waterSource==out door tap 16,340 0.05 

Head ever attended school 16,341 0.56  waterSource==hand pump 16,340 0.26 

Spouse ever attended school 16,341 0.04  waterSource==motor pump 16,340 0.29 

Max education, head 16,341 5.42  waterSource==closed well 16,340 0.01 

Max education, spouse 16,341 0.45  waterSource==open well 16,340 0.04 

Head ill or injured 16,341 0.10  waterSource== river/stream/pond/canal 16,340 0.04 

Spouse ill or injured 16,341 0.01  waterSource==tanker/water barier 16,340 0.02 

Number of HH members 16,341 7.74  waterSource==mineral water 16,340 0.00 

Number of 65+ HH members 16,341 0.30  waterSource==other 16,340 0.02 

Number of HH members 15-64 16,341 4.29  toiletType==no toilet 16,340 0.17 

Number of HH members 0-5 16,341 1.23  toiletType==flush connected to severage 16,340 0.20 

Dependency ratio of HH 16,341 107.13  toiletType==flush connected to tank 16,340 0.31 

% of HH employed 16,341 0.28  toiletType==flush connected to open drain 16,340 0.17 

No spouse present 16,341 0.13  toiletType==dry raised latrine 16,340 0.05 

No spouse but children present 16,341 0.11  toiletType==pit latrine 16,340 0.08 

HH owns land 16,341 0.30  toiletType==other 16,340 0.03 

Amount of land owned 16,341 2.05  cookingFuel==wood 16,340 0.43 

Amount of Agricultural Land 16,341 2.04  cookingFuel==gas 16,340 0.34 

HH owns livestock 16,341 0.32  cookingFuel==carosine oil 16,340 0.00 

HH owns sheep or goat 16,340 0.20  cookingFuel==dunk cakes 16,340 0.09 

HH owns animals for transport 16,340 0.08  cookingFuel==electricity 16,340 0.00 

HH owns chickens 16,340 0.13  cookingFuel==crop residue 16,340 0.13 

Total value of HH assets 16,341 1897487  cookingFuel==coal/charcoal 16,340 0.00 

HH owns electric iron 16,340 0.74  cookingFuel==other 16,340 0.01 

HH owns electric fan 16,340 0.90  lightingFuel==electricity 16,340 0.92 

HH owns sewing machine 16,340 0.58  lightingFuel==gas 16,340 0.01 

HH owns radio 16,340 0.18  lightingFuel==carosine oil/diesel/petrol 16,340 0.06 

HH owns chair 16,340 0.65  lightingFuel==wood 16,340 0.00 
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HH owns watch 16,340 0.79  lightingFuel==candle 16,340 0.00 

HH owns television 16,340 0.57  lightingFuel==other 16,340 0.01 

HH owns video player 16,340 0.05  phoneType==no 16,340 0.19 

HH owns refrigerator 16,340 0.40  phoneType==land only 16,340 0.01 

HH owns air cooler 16,340 0.07  phoneType==mobile 16,340 0.75 

HH owns air conditioner 16,340 0.05  phoneType==both (land line and mobile) 16,340 0.05 

HH owns computer 16,340 0.07  Time to water source 16,340 8.27 

HH owns bicycle 16,340 0.30  Time to grocery 16,340 9.32 

HH owns motorcycle 16,340 0.27  Time to public transit 16,340 11.40 

HH owns car 16,340 0.04  Time to primary school 16,340 9.77 

HH owns tractor 16,340 0.03  Time to middle school 16,340 16.17 

HH owns mobile phone 16,340 0.80  Time to high school 16,340 19.06 

HH owns cooking range 16,340 0.03  Time to clinic 16,340 18.72 

HH owns burner 16,340 0.37  Time to family planning 16,340 20.93 

HH owns washing machine 16,340 0.46  province==Punjab 16,341 0.57 

famEconAssess==Much Worse 16,341 0.11  province==Sindh 16,341 0.24 

famEconAssess==Slightly Worse 16,341 0.33  province==kpk 16,341 0.14 

famEconAssess==Like before 16,341 0.41  province==Balochistan 16,341 0.05 

famEconAssess==Little Better 16,341 0.13  urban==Rural 16,341 0.67 

famEconAssess==Far better 16,341 0.02  HH in city high income area 16,341 0.01 

famEconAssess==Dont Know 16,341 0.00  HH in city low income area 16,341 0.04 

areaEconAssess==Much Worse 16,341 0.08  lang==Balochi 16,340 0.01 

areaEconAssess==Slightly Worse 16,341 0.19  lang==Kashmiri 16,340 0.00 

areaEconAssess==Like before 16,341 0.62  lang==Other 16,340 0.11 

areaEconAssess==Little Better 16,341 0.06  lang==Pashtu 16,340 0.11 

areaEconAssess==Far better 16,341 0.01  lang==Punjabi 16,340 0.36 

areaEconAssess==Dont Know 16,341 0.04  lang==Sindhi 16,340 0.15 

residenceType==owner occupied (self hired) 16,340 0.04  lang==Urdu 16,340 0.27 

residenceType==owner occupied (not self 
hired) 

16,340 0.82     

residenceType==on rent 16,340 0.06     

residenceType==subsidized rent 16,340 0.01     

residenceType==rent free 16,340 0.06     

 

 

 

 



Building a better model: Variable Selection for Predicting Poverty in Pakistan and Sri Lanka  

 

 
26 

Table 2: Household Level Models Summary, Baseline Controls 

 
Spatial 

Controls? 
Avg. # of 
variables 

Avg. R2 
Mean 
Resid 

Std 
Resid 

Min 
Resid 

Max 
Resid 

   Pakistan Models     

Ad hoc OLS No 20.00 0.53 0.0200 0.3532 -6.9410 2.6080 

Ad hoc ELL No 20.00 0.51 -0.0158 0.3535 -4.0106 2.6305 

Post-Lasso ELL No 62.20 0.68 0.0299 0.2999 -3.5294 2.5554 

Stepwise ELL No 105.00 0.67 0.0142 0.2958 -3.0450 2.5287 

   Sri Lankan Models      

Ad hoc OLS No 21.00 0.42 0.0024 0.4962 -1.8477 3.4233 

Ad hoc ELL No 21.00 0.42 -0.0406 0.4985 -1.9114 3.3672 

Post-Lasso ELL No 51.90 0.55 0.0021 0.4406 -1.8080 3.2173 

Stepwise ELL No 51.00 0.55 0.0010 0.4404 -1.8976 3.2123 

  

Table 3: Household Level Models Compared, Spatial Controls 

  
Spatial 

Controls? 
Avg # of 
variables 

Avg. R2 
Mean 
Resid Std Resid 

Min 
Resid 

Max 
Resid 

Pakistan   

Ad Hoc OLS Yes 57 0.53852 0.01721 0.35053 -7.136 2.62426 

Ad Hoc ELL Yes 47 0.54025 -0.0095 0.34784 -4.2278 2.73378 

Post-Lasso ELL Yes 75.1 0.68666 0.02881 0.29885 -3.773 2.56711 

Stepwise ELL Yes 133 0.67281 0.01441 0.29468 -3.1468 2.54317 

Sri Lanka   

Ad Hoc OLS Yes 53 0.41911 0.00683 0.49714 -1.9976 3.49481 

Ad Hoc ELL Yes 52 0.42394 -0.0067 0.49901 -2.0384 3.48125 

Post-Lasso ELL Yes 73 0.55847 0.00738 0.43533 -1.7865 3.22795 

Stepwise ELL Yes 38 0.41811 0.01397 0.49995 -2.0107 3.5432 
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Table 4: Region Error Rates Between Predicted and Relative Poverty Rate, 
Pakistan 

 

Spatial 
Controls? 

Mean Region 
Absolute Error 

Mean Weighted 
Absolute Error 

Mean Region 
Error 

   Panel A: Bottom 10% of Consumption 

Ad Hoc OLS No 5.977 6.193 -5.977 

Ad Hoc ELL No 4.408 4.408 5.636 

Post-Lasso ELL No 4.272 3.391 4.272 

Stepwise ELL No 9.074 8.347 9.074 

  Panel B: Bottom 20% of Consumption 

Ad Hoc OLS No 7.358 7.943 -7.358 

Ad Hoc ELL No 3.471 3.471 3.061 

Post-Lasso ELL No 2.804 2.108 2.578 

Stepwise ELL No 7.137 6.611 7.137 

   Panel C: Bottom 30% of Consumption 

Ad Hoc OLS No 6.296 7.348 -6.296 

Ad Hoc ELL No 3.551 3.551 -0.408 

Post-Lasso ELL No 1.320 1.120 0.284 

Stepwise ELL No 3.786 3.928 3.786 

   Panel D: Bottom 40% of Consumption 

Ad Hoc OLS No 4.348 5.145 -3.929 

Ad Hoc ELL No 4.312 4.312 -3.762 

Post-Lasso ELL No 2.050 2.118 -2.018 

Stepwise ELL No 1.528 1.470 0.237 

 "Relative poverty" is poverty defined as a household's consumption below #% of national consumption. Each 
model attempts to estimate this constructed poverty rate at the household level, with results aggregated to 
region. Region refers to sampling frame of survey, which is at the urban/rural district level. Mean region error 
refers to the average error across regions, absolute error takes the absolute difference between constructed 
and estimated pseudo poverty rates. Weighted absolute error adjusts for population differences between 
regions when calculating mean error rates and weights accordingly.  
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Table 5: Summary Table for Household Variables, Sri Lanka   

Variable N mean   Variable N mean 

HH located in Urban area 20,540 0.17  HH owns electric fan 20,540 0.57 

HH located in Rural area 20,540 0.79  HH owns telephone 20,540 0.37 

Head is unemployed 20,540 0.01  HH owns mobile 20,540 0.81 

Head is a government employee 20,540 0.10  HH owns computer 20,540 0.19 

Head is privately employed 20,540 0.61  HH owns camera 20,540 0.11 

HH is Hindu 20,540 0.12  HH owns bicycle 20,540 0.36 

HH is Islam 20,540 0.09  HH owns motorbike 20,540 0.30 

HH is Christian 20,540 0.08  HH owsn three wheeler 20,540 0.11 

HH is of Other religion 20,540 0.00  HH owns van 20,540 0.07 

Age, head 20,540 51.26  HH owns bus 20,540 0.02 

Age Squared, head 20,540 2822.06  HH owns tractor 20,540 0.04 

Head is is male 20,540 0.77  HH owns pesticider 20,540 0.03 

Married, head 20,540 0.79  HH owns thresher 20,540 0.00 

Widowed, head 20,540 0.16  HH owns waterpump 20,540 0.02 

Education leve of head 20,540 8.14  HH owns boat 20,540 0.01 

Education Squared of head 20,540 79.59  HH owns fishing net 20,540 0.01 

Household size 20,540 3.88  Num bedrooms 20,540 2.38 

Household size squared 20,540 17.61  HH experienced Natural calamity 20,540 0.91 

Highest education in HH 20,540 12.58  HH owns toilet 20,540 0.90 

Num males in HH 0-4 20,540 0.17  House owned 20,540 0.87 

Num males in HH 5-9 20,540 0.18  Wall type brick 20,540 0.53 

Num males in HH 10-14 20,540 0.17  Wall type cement 20,540 0.33 

Num males in HH 65+ 20,540 0.15  Wall type mud 20,540 0.04 

Num males in HH 15-64 20,540 1.17  Roof type tile 20,540 0.48 

Num females in HH 0-4 20,540 0.16  Roof type asbestos 20,540 0.36 

Num females in HH 5-9 20,540 0.17  Roof type concrete 20,540 0.04 

Num females in HH 10-14 20,540 0.16  Roof type wood 20,540 0.01 

Num females in HH 15-64 20,540 1.37  Roof type sand 20,540 0.09 

HH owns radio 20,540 0.71  Floor type cement 20,540 0.73 

HH owns TV 20,540 0.83  Floor type tile 20,540 0.13 

HH owns Video player 20,540 0.43  Safe drinking water 20,540 0.89 

HH owns sewing machine 20,540 0.42  Firewood for cooking 20,540 0.78 

HH owns washing machine 20,540 0.17  Gas for cooking 20,540 0.18 

HH owns fridge 20,540 0.46  Electricity for cooking 20,540 0.00 

HH owns cookers 20,540 0.43   Electrical grid lighting 20,540 0.09 



Table 6: Region Error Rates Between Predicted and Relative Poverty Rate, Sri Lanka 

Model 
Spatial 

Controls? 
Mean Region 

Absolute Error 
Mean weighted 
Absolute Error 

Mean Region 
Error 

   Panel A: Bottom 10% of Consumption 

Ad Hoc OLS No 9.016 7.063 -9.016 

Ad Hoc ELL No 4.043 2.574 -0.813 

Post-Lasso ELL No 3.606 1.989 -0.115 

Stepwise ELL No 3.738 2.214 0.642 

  Panel B: Bottom 20% of Consumption 

Ad Hoc OLS No 12.390 11.015 -12.390 

Ad Hoc ELL No 6.240 4.781 -4.387 

Post-Lasso ELL No 4.943 3.381 -2.290 

Stepwise ELL No 4.661 3.078 -1.222 

   Panel C: Bottom 30% of Consumption 

Ad Hoc OLS No 12.640 12.390 -12.445 

Ad Hoc ELL No 9.203 7.079 -7.816 

Post-Lasso ELL No 6.580 4.793 -4.642 

Stepwise ELL No 5.854 4.201 -3.402 

   Panel D: Bottom 40% of Consumption 

Ad Hoc OLS No 10.442 10.368 -9.238 

Ad Hoc ELL No 10.592 8.433 -9.723 

Post-Lasso ELL No 7.171 5.508 -5.739 

Stepwise ELL No 6.348 4.865 -4.432 

 "Relative poverty" is poverty defined as a household's consumption below #% of national consumption. Each 
model attempts to estimate this constructed poverty rate at the household level, with results aggregated to 
region. Region refers to sampling frame of survey, which is at the urban/rural district level. Mean region error 
refers to the average error across regions, absolute error takes the absolute difference between constructed 
and estimated pseudo poverty rates. Weighted absolute error adjusts for population differences between 
regions when calculating mean error rates and weights accordingly.  
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Table 7: Summary Statistics for Spatial Variables, Pakistan 

Variable Mean 
Standard 
deviation 

Land Cover (percentage area per district)   

Closed to open (>15%) mixed broadleaved and needleleaved forest (>5m) 0.6 1.6 

Post-flooding or irrigated croplands 30.8 34.4 

Mosaic Forest/Shrubland (50-70%) / Grassland (20-50%) 0.1 0.3 

Mosaic Grassland (50-70%) / Forest/Shrubland (20-50%) 2.0 5.2 

Closed to open (>15%) shrubland (<5m) 0.5 1.3 

Rainfed croplands 8.8 14.1 

Closed to open (>15%) grassland 6.3 12.0 

Sparse (>15%) vegetation (woody vegetation, shrubs, grassland) 0.8 2.3 

Closed (>40%) broadleaved forest regularly flooded - Fresh water 0.0 0.0 

Closed (>40%) broadleaved semi-deciduous and/or evergreen forest regularly 0.0 0.2 

Closed to open (>15%) vegetation (grassland, shrubland, woody vegetation) on 0.0 0.0 

Artificial surfaces and associated areas (urban areas >50%) 0.8 3.1 

Mosaic Cropland (50-70%) / Vegetation (grassland, shrubland, forest) (20-50%) 7.4 7.6 

Bare areas 31.5 31.4 

Water bodies 0.4 1.0 

Permanent snow and ice 1.9 6.3 

Mosaic Vegetation (grassland, shrubland, forest) (50-70%) / Cropland (20-50%) 6.8 5.8 

Closed to open (>15%) broadleaved evergreen and/or semi-deciduous forest (>5m) 0.1 0.3 

Closed (>40%) broadleaved deciduous forest (>5m) 0.1 0.3 

Open (15-40%) broadleaved deciduous forest (>5m) 0.0 0.0 

Closed (>40%) needleleaved evergreen forest (>5m) 1.2 3.7 

Open (15-40%) needleleaved deciduous or evergreen forest (>5m) 0.0 0.0 

Elevation (m) 926.81 1078.27 

GDP 200.94 420.16 

Population density (Landscan 2012) 308.25 465.73 

Normalized Differential Vegetation Index 2987.95 1872.68 

Radiance-calibrated nightlights (2010) 8.84 11.92 
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Table 8: Summary Statistics for Spatial Variables, Sri Lanka 

Variable Mean S.d. 

Elevation, mean 195.14 327.77 

Elevation, std 50.47 90.87 

GDP values from UNEP/DEC, mean 3592.20 12916.63 

GDP values from UNEP/DEC, std 1386.76 1989.02 

Land type:  Artificial surfaces and associated areas (urban areas >50%)  9.1% 0.23 

Land type:  Bare areas 0.1% 0.00 

Land type:  Closed (>40%) broadleaved deciduous forest (>5m)  0.7% 0.02 

Land type:  Closed (>40%) broadleaved forest regularly flooded - Fresh water  0.0% 0.00 

Land type:  Closed (>40%) broadleaved semi-deciduous and/or evergreen forest reg 0.0% 0.00 

Land type:  Closed (>40%) needleleaved evergreen forest (>5m)  0.6% 0.01 

Land type:  Closed to open (>15%) broadleaved evergreen and/or semi-deciduous fo 58.7% 0.29 

Land type:  Closed to open (>15%) grassland  0.3% 0.01 

Land type:  Closed to open (>15%) mixed broadleaved and needleleaved forest (>5m 4.8% 0.06 

Land type:  Closed to open (>15%) shrubland (<5m)  15.4% 0.15 

Land type:  Closed to open (>15%) vegetation (grassland, shrubland, woody vegeta 0.0% 0.00 

Land type:  Mosaic Cropland (50-70%) / Vegetation (grassland, shrubland, forest) 1.2% 0.03 

Land type:  Mosaic Forest/Shrubland (50-70%) / Grassland (20-50%)  0.0% 0.00 

Land type:  Mosaic Grassland (50-70%) / Forest/Shrubland (20-50%) 0.0% 0.00 

Land type:  Mosaic Vegetation (grassland, shrubland, forest) (50-70%) / Cropland 1.5% 0.03 

Land type:  Open (15-40%) broadleaved deciduous forest (>5m)  0.0% 0.00 

Land type:  Open (15-40%) needleleaved deciduous or evergreen forest (>5m)  0.0% 0.00 

Land type:  Permanent snow and ice  0.0% 0.00 

Land type:  Post-flooding or irrigated croplands  3.1% 0.10 

Land type:  Rainfed croplands 2.9% 0.07 

Land type:  Sparse (>15%) vegetation (woody vegetation, shrubs, grassland)  0.0% 0.00 

Land type:  Water bodies 1.7% 0.03 

Radiance calibrated night lights 1996, mean 16.59 30.93 

Radiance calibrated night lights 1996, std 5.54 6.75 

Radiance calibrated night lights 2010, mean 22.73 31.28 

Radiance calibrated night lights 2010, std 5.85 6.72 

Raw night lights 1992, std 3.83 3.35 

Raw night lights 2012, mean 15.40 15.55 

Raw night lights 2012, std 3.72 3.45 

Raw night lights 1992, mean 10.33 14.89 
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Table 9: Region Error Rates Between Predicted and Relative Poverty Rate, Spatial 
Controls, Pakistan 

Model 

Spatial 
Controls? 

Mean Region 
Absolute Error 

Mean Weighted 
Absolute Error 

Mean Region 
Error 

   Panel A: Bottom 10% of Consumption 

Ad Hoc OLS Yes 5.462 5.768 -5.462 

Ad Hoc ELL Yes 4.396 4.396 5.669 

Post-Lasso ELL Yes 5.309 4.485 5.309 

Stepwise ELL Yes 9.182 8.355 9.182 

  Panel B: Bottom 20% of Consumption 

Ad Hoc OLS Yes 7.216 7.838 -7.216 

Ad Hoc ELL Yes 2.821 2.821 3.225 

Post-Lasso ELL Yes 4.160 3.335 4.160 

Stepwise ELL Yes 7.233 6.626 7.233 

   Panel C: Bottom 30% of Consumption 

Ad Hoc OLS Yes 7.083 7.702 -7.083 

Ad Hoc ELL Yes 1.997 1.997 -0.140 

Post-Lasso ELL Yes 2.276 2.089 2.102 

Stepwise ELL Yes 3.918 3.946 3.918 

   Panel D: Bottom 40% of Consumption 

Ad Hoc OLS Yes 4.484 5.469 -3.985 

Ad Hoc ELL Yes 4.150 4.150 -3.422 

Post-Lasso ELL Yes 0.870 0.886 -0.070 

Stepwise ELL Yes 1.774 1.569 0.295 

 "Relative poverty" is poverty defined as a household's consumption below #% of national consumption. Each 
model attempts to estimate this constructed poverty rate at the household level, with results aggregated to 
region. Region refers to sampling frame of survey, which is at the urban/rural district level. Mean region error 
refers to the average error across regions, absolute error takes the absolute difference between constructed 
and estimated pseudo poverty rates. Weighted absolute error adjusts for population differences between 
regions when calculating mean error rates and weights accordingly. Spatial controls include district level 
average and standard deviation measures for night lights, radiance corrected night lights, NDVI (vegetation 
index), and % land cover of a given land type.  
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Table 10: Region Error Rates Between Predicted and Relative Poverty Rate, Spatial 
Controls, Sri Lanka 

Model 
Spatial 

Controls? 
Mean Region 

Absolute Error 
Mean weighted 
Absolute Error 

Mean Region 
Error 

   Panel A: Bottom 10% of Consumption 

Ad Hoc OLS Yes 8.454 6.914 -8.454 

Ad Hoc ELL Yes 3.604 2.230 0.644 

Post-Lasso ELL Yes 3.565 2.058 0.511 

Stepwise ELL Yes 3.956 2.563 1.571 

  Panel B: Bottom 20% of Consumption 

Ad Hoc OLS Yes 11.240 11.167 -11.172 

Ad Hoc ELL Yes 4.630 3.373 -2.307 

Post-Lasso ELL Yes 4.415 2.812 -1.340 

Stepwise ELL Yes 4.602 3.076 -1.054 

   Panel C: Bottom 30% of Consumption 

Ad Hoc OLS Yes 11.648 13.020 -11.382 

Ad Hoc ELL Yes 6.369 4.942 -5.271 

Post-Lasso ELL Yes 5.181 3.604 -3.501 

Stepwise ELL Yes 5.520 4.085 -3.864 

   Panel D: Bottom 40% of Consumption 

Ad Hoc OLS Yes 9.251 10.704 -8.021 

Ad Hoc ELL Yes 7.394 6.052 -6.846 

Post-Lasso ELL Yes 5.653 4.222 -4.434 

Stepwise ELL Yes 6.528 5.027 -5.332 

 "Relative poverty" is poverty defined as a household's consumption below #% of national consumption. 
Each model attempts to estimate this constructed poverty rate at the household level, with results 
aggregated to region. Region refers to sampling frame of survey, which is at the urban/rural district level. 
Mean region error refers to the average error across regions, absolute error takes the absolute difference 
between constructed and estimated pseudo poverty rates. Weighted absolute error adjusts for population 
differences between regions when calculating mean error rates and weights accordingly. Spatial controls 
include district level average and standard deviation measures for night lights, radiance corrected night 
lights, NDVI (vegetation index), and % land cover of a given land type.  
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Table 11: Performance Comparison with and without Spatial Controls 
 Sri Lanka Pakistan 

 
Mean Weighted Abs 

Error  
Mean Weighted Abs 

Error  

  w/o Spatial w/ Spatial % imp w/o Spatial w/ Spatial % imp 

   Panel A: Bottom 10% of Consumption 
Ad Hoc OLS 7.063 6.914 2.11% 6.193 5.768 6.86% 
Ad Hoc ELL 2.574 2.23 13.36% 4.408 4.396 0.27% 
Post-Lasso ELL 1.989 2.058 -3.47% 3.391 4.485 -32.26% 
Stepwise ELL 2.214 2.563 -15.76% 8.347 8.355 -0.10% 

  Panel B: Bottom 20% of Consumption 
Ad Hoc OLS 11.015 11.167 -1.38% 7.943 7.838 1.32% 
Ad Hoc ELL 4.781 3.373 29.45% 3.471 2.821 18.73% 
Post-Lasso ELL 3.381 2.812 16.83% 2.108 3.335 -58.21% 
Stepwise ELL 3.078 3.076 0.06% 6.611 6.626 -0.23% 

   Panel C: Bottom 30% of Consumption 
Ad Hoc OLS 12.39 13.02 -5.08% 7.348 7.702 -4.82% 
Ad Hoc ELL 7.079 4.942 30.19% 3.551 1.997 43.76% 
Post-Lasso ELL 4.793 3.604 24.81% 1.12 2.089 -86.52% 
Stepwise ELL 4.201 4.085 2.76% 3.928 3.946 -0.46% 

   Panel D: Bottom 40% of Consumption 
Ad Hoc OLS 10.368 10.704 -3.24% 5.145 5.469 -6.30% 

Ad Hoc ELL 8.433 6.052 28.23% 4.312 4.15 3.76% 
Post-Lasso ELL 5.508 4.222 23.35% 2.118 0.886 58.17% 

Stepwise ELL 4.865 5.027 -3.33% 1.47 1.569 -6.73% 

   Panel E: Average Across Relative Poverty Rates 

Ad Hoc OLS   -1.90%   -0.73% 
Ad Hoc ELL   25.31%   16.63% 
Post-Lasso ELL   15.38%   -29.70% 
Stepwise ELL     -4.07%     -1.88% 
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Appendix A: Spatial variables 

NDVI 

Normalized Difference Vegetation Index is a widely used indicator to quantify greenery of a region and 

has applications in understanding the health of vegetation and characterizing land cover, amongst other 

uses. This product is generated by Earth Resources Observation and Science Center of the US Geological 

Survey using imagery from NASA’s MODIS satellite. The calculation of NDVI is based on the variable 

ways in which different spectral bands of light are reflected by plants25. Healthy plants absorb large 

quantities of visible light for photosynthesis, whereas near-infrared light is barely absorbed and mostly 

reflected back. NDVI exploits this difference and is calculated by the following formula: NDVI = (NIR 

— VIS)/(NIR + VIS). This generates a value between -1 and 1, with higher values indicating more 

greenery. 

Data access: http://reverb.echo.nasa.gov/  

Year: 2014  

Generating district-level aggregates: District level aggregates were created in ArcGIS using the Zonal 

Statistics tool of the Spatial Analyst toolbar26. For each district, the following statistics are generated: 

 MEAN — Calculates the average of all cells in the value raster that belong to the same zone as 

the output cell. 

 MAJORITY — Determines the value that occurs most often of all cells in the value raster that 

belong to the same zone as the output cell. 

 MAXIMUM — Determines the largest value of all cells in the value raster that belong to the 

same zone as the output cell. 

 MEDIAN — Determines the median value of all cells in the value raster that belong to the same 

zone as the output cell. 

 MINIMUM — Determines the smallest value of all cells in the value raster that belong to the 

same zone as the output cell. 

 MINORITY — Determines the value that occurs least often of all cells in the value raster that 

belong to the same zone as the output cell. 

 RANGE — Calculates the difference between the largest and smallest value of all cells in the 

value raster that belong to the same zone as the output cell. 

 STD — Calculates the standard deviation of all cells in the value raster that belong to the same 

zone as the output cell. 

 SUM — Calculates the total value of all cells in the value raster that belong to the same zone as 

the output cell. 

 VARIETY — Calculates the number of unique values for all cells in the value raster that belong 

to the same zone as the output cell. 

 

                                                 

25 http://earthobservatory.nasa.gov/Features/MeasuringVegetation/measuring_vegetation_1.php 
26 http://resources.arcgis.com/en/help 

http://reverb.echo.nasa.gov/


Building a better model: Variable Selection for Predicting Poverty in Pakistan and Sri Lanka  

 

 
36 

Elevation 

Global Digital Elevation Model is a comprehensive elevation map produced jointly by NASA and the 

Japanese Ministry of Economy, Trade and Industry (METI). It is derived from imagery from the Japanese 

sensor ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) that is aboard 

NASA’s Terra satellite. The methodology relies on correlating stereo image pairs from two angles and 

analyzing the variation to estimate elevation27. These individual DEMs are stacked with multiple DEMs 

covering the same scenes, and are combined to reduce bad values (e.g., occluded by clouds) and merged 

to create the final global DEM layer. Values of the Global DEM layers range from -500 to 9000 m, with 

zero representing sea level. The layer is generated at a resolution of 1 arc second, which roughly equates 

to 30 m at the equator. The latest Global DEM product was released in 2011.  

Data access: http://gdem.ersdac.jspacesystems.or.jp/ 

Year: 2011 

Generating district-level aggregates: District level aggregates were created in ArcGIS using the Zonal 

Statistics tool of the Spatial Analyst toolbar (see above). 

 
 

(A) (B) 

FIGURE 4: ASTER DIGITAL ELEVATION MAP FOR SRI LANKA AS (A) A GRID, AND (B) AGGREGATED AT THE DS 

LEVEL 

                                                 

27 https://lpdaac.usgs.gov/sites/default/files/public/aster/docs/Tachikawa_etal_IGARSS_2011.pdf 

http://gdem.ersdac.jspacesystems.or.jp/
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Landscan 

Landscan is a widely used global population distribution product generated by Oak Ridge National 

Laboratory. The methodology models population distribution by incorporating multiple data sources 

including: census counts, land cover, roads, slope, urban areas, village locations, and high-resolution 

satellite imagery analysis. The final product has a spatial resolution of 30 arc seconds, which is equivalent 

to approximately 1 km at the equator. Each pixel represents the predicted number of people per 30 arc 

seconds.  

Data access: http://web.ornl.gov/sci/landscan/ 

Year: 2012 

Generating district-level aggregates: District level aggregates were created in ArcGIS using the Zonal 

Statistics tool of the Spatial Analyst toolbar (see above). 

 

Nightlights 

Global lights at night products are produced by NASA, and are widely used in analyzing economic 

activity and population distribution globally. The product is generated with imagery captured by the 

VIIRS sensors aboard NASA’s Suomi NPP satellite. Nightlights In this case, we used radiance calibrated 

nightlights product which is an improvement over standard nightlights imagery as it captures more 

variation within very bright zones, such as cities, or very dim zones. It does so by capturing imagery at 

varying sensor sensitivity levels and merging them to create a richer dataset. The final product has a 

spatial resolution of roughly 750 m at the equator, with the latest version being released in 2011. 

Data access: http://ngdc.noaa.gov/eog/dmsp/download_radcal.html 

Year: 2011 

Generating district-level aggregates: District level aggregates were created in ArcGIS using the Zonal 

Statistics tool of the Spatial Analyst toolbar. 

 

(A) (B) 

FIGURE 5: NIGHTLIGHTS MAP FOR PAKISTAN AS (A) A GRID, AND (B) AGGREGATED AT THE DISTRICT LEVEL 

 

http://web.ornl.gov/sci/landscan/
http://ngdc.noaa.gov/eog/dmsp/download_radcal.html
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GDP 

In the distributed global GDP dataset sub-national GRP and national GDP data are allocated to 30 arc 

second (approximately 1km) grid cells in proportion to the population residing in that cell. The method 

also distinguishes between rural and urban population, assuming the latter to have a higher GDP per 

capita. Input data are from: a global time-series dataset of GDP, with subnational gross regional product 

(GRP) for 74 countries, compiled by the World Bank Development Economics Research Group 

(DECRG). Gridded population projections for the year 2009, based on a population grid for the year 2005 

provided by LandScan Global Population Database (Oak Ridge, TN: Oak Ridge National Laboratory). 

This dataset has been extrapolated to year 2010 by UNEP/GRID-Geneva. Unit is estimated value of 

production per cell, in thousand of constant 2000 USD.  This product was compiled by DECRG for the 

Global Assessment Report on Risk Reduction (GAR)28.  

Data access: http://preview.grid.unep.ch/index.php?preview=data&events=socec&evcat=1 

Year: 2010 

Generating district-level aggregates: District level aggregates were created in ArcGIS using the Zonal 

Statistics tool of the Spatial Analyst toolbar (see above). 

 

Global Landcover 

The global landcover product by the European Space Agency and Université catholique de Louvain 

classifies land into over 20 land cover types, including water bodies, built up urban area, irrigated and 

rain-fed cropland, vegetation of varying types and density, etc.  This is generated from the MODIS 

surface spectral reflectance to capture variation in surfaces on the ground at a spatial resolution of 300m.  

Data access: http://due.esrin.esa.int/globcover/ 

Year: 2009 

Generating district-level aggregates: District level aggregates were defined as the percentage of area of 

each district that was covered by each land-cover category. This was created in ArcGIS by iterating over 

each category and applying the Zonal Statistics tool to find district-level area per category. This was 

further processed to find percentage area per category within each district.  

 

 

 

 

                                                 

28 Description from: http://preview.grid.unep.ch/index.php?preview=data&events=socec&evcat=1 

http://preview.grid.unep.ch/index.php?preview=data&events=socec&evcat=1
http://due.esrin.esa.int/globcover/
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