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Predicting Spatial Patterns in Precipitation Isotope (δ2H
and δ18O) Seasonality Using Sinusoidal Isoscapes
Scott T. Allen1,2 , James W. Kirchner1,3 , and Gregory R. Goldsmith2,4

1Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland, 2Ecosystem Fluxes Group, Laboratory for
Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland, 3Swiss Federal Research Institute WSL, Birmensdorf,
Switzerland, 4Schmid College of Science and Technology, Chapman University, Orange, CA, USA

Abstract Understanding how precipitation isotopes vary spatially and temporally is important for tracer
applications. We tested how well month-to-month variations in precipitation δ18O and δ2H were captured
by sinusoidal cycles, and how well spatial variations in these seasonal cycles could be predicted, across
Switzerland. Sine functions representing seasonal cycles in precipitation isotopes explained between 47%
and 94% of the variance in monthly δ18O and δ2H values at eachmonitoring site. A significant sinusoidal cycle
was also observed in line-conditioned excess. We interpolated the amplitudes, phases, and offsets of these
sine functions across the landscape, using multiple linear regression models based on site characteristics.
These interpolated maps, here referred to as a sinusoidal isoscape, reproduced monthly observations with
prediction errors that were smaller than or similar to those of other isoscapes. Sinusoidal isoscapes are likely
broadly useful because they concisely describe seasonal isotopic behavior and can be estimated
efficiently from sparse or irregular data.

Plain Language Summary Naturally occurring isotopic variations in precipitation are used to trace
water movement through landscapes and ecosystems. However, direct measurements are often unavailable,
so many isotope-based approaches to studying terrestrial processes require predicted isotopic inputs. We
found that the isotopic composition of precipitation follows a predictable seasonal pattern. We developed a
new approach for mapping precipitation isotope seasonality that will be useful in a wide range of fields.

1. Introduction

Accurately estimating the isotopic composition of precipitation (δp) is essential for many ecological and hydro-
logical applications, including (for example) determining streamflow sources (Cable et al., 2011), estimating
evapotranspiration rates (Jasechko et al., 2013), reconstructing climate from the isotopic variations in tree rings
(McCarroll & Loader, 2004), or tracking animal migration (Hobson & Wassenaar, 2008). However, precipitation
isotope measurements are difficult and costly; thus, direct measurements of δp are rarely available when and
where they are needed. This is particularly the case for applications that require reconstructing the isotopic
composition of past precipitation inputs. Where direct measurements are unavailable, there is a need for
methods that can accurately predict or interpolate δp in their place (e.g., Sánchez-Murillo & Birkel, 2016).

Precipitation isotopes are often estimated through correlations with climate and geography, because the
complexity of the underlying processes makes mechanistic predictions problematic. However, simple corre-
lates such as temperature and precipitation amount (Rozanski et al., 1993) are often poor predictors of δp
because they fail to account for the effects of changing moisture sources and air mass trajectories (Bowen,
2008; Kern et al., 2014; Liu et al., 2010). So-called continental, latitude, and amount effects (Ingraham,
1998) may be largely driven by how precipitation forms (e.g., Aggarwal et al., 2016). Geographic variations
in the factors driving precipitation isotopic variations are partly reflected in maps of δp, commonly termed
precipitation isoscapes (Bowen et al., 2009). Precipitation isoscapes are often constructed from long-term
mean annual or monthly observations, interpolated using correlates or geostatistical relationships to yield
a spatially continuous map of δp. However, these spatial patterns are not temporally constant, so spatial var-
iations in δp at any specific time are unlikely to match (in either absolute or relative values) the mean annual
pattern, or even the respective meanmonthly spatial pattern. Thus, estimating δp from temporally integrated
spatial patterns can yield errors in subsequent applications, such as tracing (or “assigning”) samples back to
their point of origin (Vander Zanden et al., 2014). In applications where finer-scale variations are important,
isoscapes can be constructed at higher temporal resolution.
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Seasonal cycles in δp can follow a sinusoidal pattern, especially in midlatitude regions (Dutton et al., 2005;
Vachon et al., 2007; Wilkinson & Ivany, 2002), so the spatial interpolation of parameters describing sine func-
tions could hypothetically provide an efficient and accurate method for simultaneously mapping δp varia-
tions in both space and time (Jasechko et al., 2016). Such a “sinusoidal isoscape” is likely to be feasible,
because the sine parameters that describe seasonal cycles in δp (i.e., the amplitude, phase, and mean value)
have been shown to vary systematically across landscapes (Dutton et al., 2005; Halder et al., 2015; Vachon
et al., 2007). Where seasonal patterns in δp are predominantly sinusoidal, and consistent from year to year,
sinusoidal isoscapes provide a simple alternative to the monthly regression-modeling approach tested by
Delavau et al. (2015).

Beyond simply predicting δp at specific times, the sine parameters (amplitude, phase, and offset) that are
mapped by sinusoidal isoscapes may be useful for characterizing seasonal isotopic cycles and their propaga-
tion through hydrological and ecological systems. The offset defines the center of a modeled sinusoidal
signal, which more accurately reflects the central tendency of the data than the mean or median when the
sampling is uneven. The amplitude of themodeled sinusoid is a measure of the strength of the seasonal cycle
in δp. As seasonal isotope cycles propagate through ecosystems or catchments, the dampening of amplitudes
can indicate dispersion and mixing and therefore provide insight into the shape of transit time distributions
(Kirchner, 2016a). The phase of the modeled sinusoid expresses when its peak values occur, and phase shifts
between inputs and outputs can indicate advective transport rates. While these sinusoidal parameters have
been used in diverse hydrological applications, they may also be useful in studying the transport of water
isotopes through biological systems.

Sinusoidal functions may also be useful for capturing oscillations in the covariation of δ2H and δ18O. The two
isotope ratios are generally collinear, with a global mean relationship of roughly δ2H = 8 × δ18O + 10, called
the global meteoric water line. Deviations from this global relationship are often described as deuterium
excess values (Dansgaard, 1964). The covariation of δ2H and δ18O at individual sites is expressed by local
meteoric water lines (LMWLs) that better characterize site-specific precipitation than the global meteoric
water line. Deviations of individual points from these LMWLs are termed line-conditioned excess or LC-excess
(Landwehr & Coplen, 2006). Most precipitation will lie close to the LMWL and thus will have an LC-excess of
nearly zero. As waters evaporate, they will become enriched in heavy isotopes such that they move off of the
LMWL, and their LC-excess values will become negative. Thus LC-excess is a widely useful indicator of eva-
poration in ecosystems. However, precipitation itself can also deviate from the LMWL, and thus have nonzero
LC-excess; these deviations (and deuterium excess variations) have been commonly attributed to variations
in moisture sources, air mass trajectories, and cloud processes (e.g., Dansgaard, 1964), but the relative impor-
tance of these factors is debated (Martin et al., 2018; Pfahl & Sodemann, 2014). Variations in LC-excess within
or between individual precipitation events are often unimportant because they will be damped as waters
from these events are mixed together in the landscape. However, longer-lived (e.g., seasonal) variations in
precipitation LC-excess may persist in soils and biota, and be misinterpreted as evaporation signals. Thus,
quantifying seasonal variations in precipitation LC-excess establishes a baseline for inferring evaporative frac-
tionation from LC-excess measurements in landscapes and ecosystems.

Here we compare sinusoidal isoscapes and several other approaches for predicting spatiotemporal variations
in precipitation δ18O and δ2H, using publicly available data from Switzerland and neighboring countries, a
region noted for steep terrain and complex patterns of atmospheric transport (Frei et al., 2003; Kern et al.,
2014). We first evaluate how well sine functions explain δ18O, δ2H, and LC-excess observations and how well
their parameters are explained by spatial predictor variables. We then compare the predictive accuracy of
sinusoidal isoscapes against several other approaches for estimating precipitation δ18O and δ2H.

2. Methods
2.1. Data

Monthly precipitation isotope data were assembled in March 2017 from the Global Network of Isotopes in
Precipitation (GNIP; International Atomic Energy Agency/World Meteorological Organization, 2018), the
Austrian Network of Isotopes in Precipitation (ANIP; Water Information System Austria, 2018), and the
Swiss National Groundwater Monitoring Isotope Module (NAQUA-ISOT; data are available at International
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Atomic Energy Agency/World Meteorological Organization, 2018). The final data set included precipitation
δ18O and δ2H measured at 13 sites in Switzerland and an additional 18 Austrian and German sites within
135 km of the Swiss border (Figure 1a). These sites span elevations ranging from 112 to 2,245 m above sea
level, mean annual precipitation rates ranging from 60 to 207 cm/year, and mean annual temperatures ran-
ging from 0.4 to 12.4 °C (Table S1). A period with high temporal coverage (January 2007 to December 2015)
was selected; however, there were still gaps that varied by site (Figure 1b). Monthly precipitation amounts
and mean temperatures were also acquired from collocated or nearby weather stations (Table S1). For spatial
mapping, we also used 200-m resolution gridded layers of monthly means (1981–2010) of precipitation and
temperature (MeteoSwiss, Zurich, Switzerland) and a 200-m resolution digital elevation map (Swisstopo,
Bern, Switzerland); all gridded outputs were calculated at 200-m resolution. Geographic analyses were
conducted in UTM coordinates (zone 32).

2.2. Analysis of Sinusoidal Variations in Precipitation Isotopic Composition

Sine curves (described by the parameters amplitude, phase [φ], and offset) were fitted to monthly, empirical
δ18O and δ2H time series from each site. An additive model of sine and cosine functions with a fixed period of
one year was fitted with two amplitude parameters, a1 and a2, and a constant offset parameter, offset:

Precipitation δ18O or δ2H tð Þ ¼ a1� cos 2πtð Þ þ a2� sin 2πtð Þ þ offset: (1)

These fitted parameters were used to define a sine curve,

Precipitation δ18O or δ2H tð Þ ¼ amplitude� sin 2πt � φð Þ þ offset; (2)

with phase φ calculated as

φ radiansð Þ ¼ �atan2 a1; a2ð Þ; or; as peak day of year ¼ 365
days
year

1
4
þ φ
2π

� �
; (3)

and with amplitude calculated as

amplitude ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 þ a22

p
: (4)

Time, t, is defined in decimal years. Sine parameters and fit statistics for δ18O, δ2H, and LC-excess (defined
below) for all observation sites are in Table S2. Standard errors of amplitudes and φ were calculated from
the uncertainties in a1 and a2 using Gaussian error propagation. Equivalent parameter values and uncertain-
ties were also obtained by nonlinear fitting using the “nlinfit” algorithm in MATLAB R2016B (Mathworks,
Natick, Massachusetts, USA).

Potential relationships between these sine parameters and spatial predictors (elevation, latitude, longitude,
mean annual precipitation, and mean annual range of monthly temperatures) at δp measurement sites

Figure 1. Temporal patterns in precipitation δ18O and LC-excess across our study sites. (a) Map of precipitation isotopemonitoring sites, with site numbers ranked by
elevation. (b) Monthly variations in δ18O exhibit seasonal cycles—low in winter and high in summer—that vary with elevation. (c) Monthly variations in LC-excess
also exhibit seasonal cycles, but with different phases (high in fall and low in spring) than those of δ18O.
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were examined through multiple regression. While more mechanistic factors could have been incorporated
(e.g., seasonal atmospheric circulation patterns), our goal was to use simple, widely available data. Among
predictor variables, the strongest collinearity was between elevation and temperature range with a
Pearson correlation coefficient of only �0.4 (Table S3). We used a stepwise model selection approach
based on minimizing the Akaike information criterion to include or omit each predictor variable. This
regression routine was applied using the “stepwiselm” function, implemented with and without robust
fitting in MATLAB R2016B. Robust and nonrobust fitting yielded functionally equivalent results. To test
how well the sine functions represented temporal variations, residuals from each curve were quantified
and then compared across sites for both δ18O and δ2H. Residuals from the fitted sine curves were also
tested for spatial autocorrelation.

Spatiotemporal variations in site-specific relationships between δ2H and δ18O were also examined by obser-
ving the monthly deviations from the LMWL for each site. These deviations were described in terms of LC-
excess, where LC-excess = δ2H � b1 × δ18O � b0 (Landwehr & Coplen, 2006), where b1 and b0 are the slope
and intercept of the LMWL, as estimated by the unweighted, orthogonal-least-squares fit to the relationship
between δ2H and δ18O at each site. LC-excess differs from deuterium excess because deuterium excess var-
iations can result from departures from the LMWL or from variations along a LMWL that has a slope different
from 8. Therefore, LC-excess is better for interpreting deviations from LMWLs that differ among sites. Here the
study-wide LMWL slope was 8.09 and the intercept was 9.43‰. We also calculated LMWLs for each individual
site; their slopes varied among sites from 7.7 to 8.4, and their intercepts varied from 2 to 15‰. Seasonal cycles
in LC-excess were quantified by fitting sine curves to LC-excess observations, following the same procedure
used for δ2H and δ18O (equations (1)–(4)). We examined whether these hypothesized seasonal cycles varied
spatially and whether those spatial variations could be explained by multiple linear regression with elevation,
latitude, longitude, mean total annual precipitation, and mean annual range of monthly temperatures.

2.3. Comparison of Isoscape Methods for Predicting Precipitation Isotopic Composition

To assess the predictability of precipitation δ18O by sine curves, we compared the prediction errors to those
resulting from five other methods:

1. Long-termmean isoscape: a single, temporally integratedmap of spatial variations in mass-weighted long-
term mean precipitation δ18O. We calculated mass-weighted long-term mean δ18O values for every
measurement station by first determining the monthly mean δ18O for each of the 12 months (over the
2007–2015 record), and then weighting each monthly mean δ18O by the corresponding mean monthly
precipitation amount. We then used stepwise linear regression to determine the site characteristics (lati-
tude, longitude, elevation, mean annual total precipitation, and seasonal temperature range) to be fitted
to the weighted long-term means for the 31 sites. The spatial regression parameters were then used to
model a spatial map of weighted long-termmean δ18O. Finally, we kriged the residuals (observed-modeled
weighted long-term means) to create a layer that was added to the initial regression-based map
of δ18O.

2. Mean monthly isoscapes: a set of 12 maps of mean monthly precipitation δ18O, temporally integrated
across years for each month. We calculated mean δ18O values (over the 2007–2015 record) for each of
the 12 months for every measurement station. Then, for each of the 12 months, we used stepwise linear
regression to determine the site characteristics (latitude, longitude, elevation, mean annual precipitation,
and seasonal temperature range) to be fitted to the monthly mean δ18O values for the 31 sites. The spatial
regression parameters were then used to model a spatial map of each monthly mean δ18O. Finally, we
kriged the residuals (observed-modeled monthly means) to create a layer that was added to the initial
regression-based map of δ18O for each month.

3. Sinusoidal isoscape: a set of three maps of the sine function parameters (amplitude, φ, and offset) repre-
senting the seasonality of precipitation δ18O. We fitted sine curves to the δ18O time series from each mea-
surement station (as described in section 2.2 above). We then used stepwise linear regression to
determine the site characteristics (latitude, longitude, elevation, mean annual precipitation, and seasonal
temperature range) to be fitted to the amplitude, φ, and offset values at the 31 sites. The spatial regression
parameters were then used to model spatial maps of the amplitude, φ, and offset of the seasonal δ18O
cycles (e.g., Figure 2).

10.1029/2018GL077458Geophysical Research Letters
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4. Sinusoidal + monthly kriging isoscape: monthly maps of precipitation
δ18O estimates (comprising 108 individual maps for 2007–2015).
Building on the sinusoidal isoscape, we kriged the residuals
(observed-modeled monthly δ18O) for each month to create monthly
adjustment layers that are added to the sinusoidal isoscape.

5. Individual-month isoscape: monthly maps of precipitation δ18O esti-
mates (comprising 108 maps for 2007–2015). For each month, we used
stepwise linear regression to determine the site characteristics (lati-
tude, longitude, elevation, mean annual precipitation, and seasonal
temperature range) to be fitted to monthly δ18O measurements at
the 31 sites. The spatial regression parameters were then used to
model a spatial map of δ18O for each month.

6. Individual-month +monthly kriging: monthly maps of precipitation δ18O
estimates (comprising 108 maps for 2007–2015).

Building on the individual-month isoscape, we kriged the residuals
(observed-modeled δ18O) from each month’s regression model to create
a layer that was added to the corresponding monthly regression-based
map of precipitation δ18O.

The kriging steps were tested using different numbers of bins and differ-
ent variogram models; the results were relatively insensitive to these
choices. For simplicity and reproducibility, all reported kriging steps were
implemented using 10 bins (with a cutoff of one third of the maximum
lag distance) and an exponential variogram model.

To assess the predictability of precipitation δ18O derived from the six
isoscape methods outlined above, a leave-one-out approach was used:
isoscapes were iteratively generated using input data from all sites but
one, and then used to predict δ18O at the excluded site. The δ18O predic-
tion was then compared with the excluded δ18Omeasurement. This proce-
dure was repeated for each of the 31 sites and each of the six models. Each
model was evaluated at each of its respective time steps: once for the
long-term mean isoscape, 12 times for the mean monthly isoscapes, once
for the sinusoidal isoscape, and 108 times for the three monthly isoscape
methods. The mean absolute error, averaged across all 31 sites and then
all 108 months, was used as a summary measure of the prediction error
associated with each method (Figure 3). As a summary measure of predic-
tion bias, we also calculated the absolute mean error (that is, the average,
over all 108 months, of the absolute value of the mean error over all 31
sites; Figure 3). The spatial regression models and their relative perfor-
mances were similar for δ18O and δ2H (Table S4), so here we present
only δ18O.

We do not test the predictability of LC-excess using sinusoidal isoscapes or
other methods. We did not pursue this step because site characteristics were poor predictors of the spatial
variations in LC-excess seasonality.

3. Results
3.1. Analysis of Sinusoidal Variations in Precipitation δ18O, δ2H, and LC-Excess

At all sites, the seasonal precipitation cycles of heavier isotopes in summer and lighter isotopes in winter
(Figures 1b and S2) were well approximated by sine functions. Site-specific statistics for these sine functions
are given in Table S2. Fitted amplitudes varied from 2.6 to 6.4‰ in δ18O and from 19.6 to 52.4‰ in δ2H and
were generally lower at lower elevations (Figure 1b). Peak values for fitted sine curves occurred between day
of year 186 and 211 (late June through July). The offset parameter varied from�8.0 to�14.1‰ for δ18O and

Figure 2. A sinusoidal isoscape of Switzerland, with maps of sine parameters
that describe the seasonal dynamics in precipitation δ18O: (a) amplitude,
(b) day of peak δ18O associated with phase φ, and (c) offset of the cycle from
δ18O = 0. The circles indicate the monitoring sites with colors showing
parameter values for sine curves fitted to local observations. Values at
elevations above 2,245 m, the elevation of the highest measurement station,
or at annual precipitation amounts exceeding 207 cm, the highest value at a
measurement station, should be interpreted with caution.
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from�54.8 to�103.7‰ for δ2H, with lower values at higher elevations (Figure 1b). The R2 values of the fitted
sinusoidal cycles varied among sites from 0.47 to 0.94 (0.65 ± 0.10; mean ± 1SD), with root-mean-square
errors of 2.2 ± 0.4‰ δ18O and 18.0 ± 2.7‰ δ2H. Mean absolute deviations from the sinusoidal cycles were
53% larger in winter than in summer. δ18O and δ2H deviations were often similar among nearby sites; in
59 of the 108 months analyzed, semivariogram models explained >50% of the variation in the residuals
from the fitted sine curves, with a mean autocorrelation range of 93 km.

Multiple regression models of site characteristics explained much of the spatial variation in the sine para-
meters that describe the seasonal cycles of precipitation δ18O and δ2H (Table S4). Site characteristics
explained most of the variability in amplitude (R2 of 0.82 and 0.84 for δ18O and δ2H) and offset (R2 of
0.87 and 0.84 for δ18O and δ2H). Although site characteristics only accounted for a small fraction of the
variability in φ, the regression model root-mean-square error was small because φ values did not vary
much (Table S4). Residuals from these linear models were not spatially autocorrelated (Moran’s I < 0.1
and p > 0.3 for amplitude, φ, and offset). The regression parameters were used to generate the maps
describing the sinusoidal isoscape of δ18O, as shown in Figure 2. The regression models and their asso-
ciated statistics were similar for δ2H and resulted in similar interpolated maps of the sinusoidal isoscape
of δ2H (Figure S2).

LC-excess in precipitation also varied seasonally (Figure 1c). Despite the strong collinearity between δ18O and
δ2H values, the slight phase shifts in their seasonal cycles resulted in seasonal patterns in LC-excess. These LC-
excess seasonal patterns could also be partially approximated by sine curves, with R2 values varying from 0.05
to 0.51 (mean of 0.24 ± 0.11). The statistical significance of the sinusoidal cycle in LC-excess was p < 0.001 at
25 of the 31 monitoring sites. LC-excess amplitude varied from 0.7 to 3.6‰ (mean of 1.7 ± 0.6‰) with
standard errors that averaged one-fourth of the amplitude itself. These amplitude values demonstrate a
substantial seasonal oscillation in the relationship between δ18O and δ2H that is not captured by the
LMWLs. Peak LC-excess mostly occurred in the autumn (day of year 257 to 316), lagging the peak in δ18O
by 92 ± 13 days (mean ± standard deviation). Spatial variations in the sine parameters of the LC-excess sea-
sonal cycles were not well explained by multiple regression models of site characteristics (Table S4); the R2

values for these LC-excess regression models were 0.26 and 0.21 for amplitude and offset. There were no sta-
tistically significant predictors of φ (p> 0.1). Although these results demonstrate measurable seasonal cycles

Figure 3. Distributions of prediction errors (observations-predictions) in predicted monthly δ18O of precipitation for 31 measurement sites. δ18O values were
predicted for each site using only data from the other 30 sites (i.e., a leave-one-out approach to separate calibration and validation data sets). The color gradient
illustrates time of year (lightest yellow for July and the darkest blue for January). The long-term mean isoscape cannot capture seasonal isotope cycles, and thus, its
(a) prediction errors were distinctly larger than those from the (b) mean monthly and (c) sinusoidal isoscapes. Those isoscapes are not calibrated to each month
individually, and thus, they cannot account for monthly anomalies that are captured by the (d) sinusoidal + monthly kriging, (e) individual-month, and
(f) individual-month + monthly kriging isoscapes. Those that account for monthly anomalies have smaller errors (mean absolute deviation; section 2.3), and much
lower biases (absolute mean deviation; section 2.3).
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in LC-excess, we did not map a sinusoidal isoscape for LC-excess because the parameters describing these
seasonal cycles were not strongly explained by the site characteristics we examined.

3.2. Comparison of Isoscape Methods for Predicting Precipitation δ18O and δ2H

The mean absolute error in predicting monthly values of precipitation δ18O was, unsurprisingly, larger for
isoscape methods that generated predictions at coarser time scales. The sinusoidal and mean monthly
isoscapes, which incorporate seasonal dynamics, had 42 and 44% smaller errors, respectively, in predicting
monthly precipitation δ18O than the long-term mean isoscape did (Figure 3). The three approaches using
monthly calibrations (sinusoidal + monthly kriging, individual-month, and individual-month + monthly
kriging) further reduced the mean absolute error by 28–35%, compared to the approaches that only repre-
sented seasonal dynamics (sinusoidal andmeanmonthly isoscapes; Figure 3). Of these, the twomethods that
used a monthly kriging step, sinusoidal + monthly kriging and individual-month + kriging methods, did not
have significantly smaller errors (1.30 and 1.22‰ δ18O, respectively) than the simpler individual-month iscos-
cape (mean of 1.28‰ δ18O). The long-term and, to a lesser degree, the mean monthly and sinusoidal iso-
scapes frequently resulted in individual months with substantial prediction bias (Figures 3a–3c); those
biases were almost entirely eliminated in the isoscapes using monthly calibration (Figures 3d–3f), as an inevi-
table consequence of separately fitting each monthly model to the data. However, those considering using
the individual-month or individual-month + monthly kriging approaches should note that they are data-
hungry and also potentially unstable, as demonstrated by the erratic regression coefficients that often chan-
ged sign from one month to the next (Figure S1). Furthermore, the stepwise model selection algorithm
yielded regression models that included different variables in different months (Table S5 and Figure S1).

4. Discussion

Our results demonstrate that sine curves can represent seasonal cycles in precipitation δ18O, δ2H, and, to a
lesser extent, LC-excess (Figure 1). Seasonal sine curves can be used to predict precipitation δ18O and δ2H
because their parameters can be modeled as functions of site characteristics using multiple regression.
These regression relationships facilitate mapping of seasonal variations in precipitation isotopes (i.e., the
sinusoidal isoscape; Figure 2). By accounting for monthly deviations from these seasonal patterns, monthly
δ18O and δ2H values of precipitation can be predicted more accurately than by sine-curve-based models
alone (Figure 3).

The seasonal cycles of precipitation δ18O and δ2H observed here were correlated with site characteristics
including latitude, longitude, elevation, total annual precipitation, and annual temperature range.
However, these correlations are different in other regions. For example, across the GNIP data set, seasonal
variation is larger at higher latitudes (Halder et al., 2015). This is the opposite of the pattern we observed
in Switzerland, where seasonal variation was smaller at higher latitudes. However, in Switzerland, latitude also
reflects proximity to the Alps, which has multiple effects on precipitation isotopes and their seasonality.
Spatial variations in δp seasonality in Switzerland likely reflect differences in cloud processes, moisture
sources, and air mass trajectories across this topographically complex landscape Kern et al., 2014). Beyond
affecting air mass trajectories, the topography of the Alps influences the role of convective storms.
Convective storms peak in late summer, especially in the Alpine region (Frei et al., 2003), which could explain
why there were larger δ18O and δ2H amplitudes in the Alpine region; convective storms yield precipitation
with high δ18O and δ2H, and it has been posited that the fraction of convective versus stratiform precipitation
may be the primary driver of spatiotemporal variations in precipitation δ18O and δ2H (Aggarwal et al., 2016).
Alpine topography also influences the recycling of moisture (Froehlich et al., 2008), which may also account
for differences in the seasonal cycles of LC-excess from site to site. As such, the correlations between site
characteristics and the processes that control δp will be specific to individual regions. This provides a rationale
for using locally calibrated isoscapes based on site characteristics, even if they do not mechanistically repre-
sent the processes that drive variations in δp.

The sinusoidal isoscape more accurately represented monthly precipitation δ18O than the long-term mean
isoscape. The existence of a seasonal cycle implies that the long-term mean isoscape will be a seasonally
biased predictor of monthly δp (Figure 3a). Furthermore, the spatial variability in the amplitude of δp cycles
(Figure 2) implies that the spatial gradients in δp across the landscape will also vary seasonally. Under
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these conditions, long-term mean isoscapes will not accurately reflect spatial gradients in δp for specific
times of the year. In our study, these spatial gradients were better predicted by sinusoidal or mean
monthly isoscapes.

Both the sinusoidal and mean monthly isoscapes yielded similar prediction errors (Figure 3), demonstrating
that sine curves can reasonably represent seasonal precipitation δ18O variations in Switzerland. An important
benefit of the sinusoidal isoscape is that it can be calibrated with sparse or irregular observations of δp
(Dutton et al., 2005; Jasechko et al., 2016; Wilkinson & Ivany, 2002), which are more readily available than
dense, gap-free time series. In contrast to the sinusoidal isoscape, individual-month isoscapes require simul-
taneous measurements from multiple locations at every time step. However, because the sinusoidal and
mean monthly isoscapes are not separately calibrated to every time step, they cannot describe deviations
from seasonal patterns, patterns that arise in atypical months or years (Figure 3), or long-term trends (e.g.,
Stumpp et al., 2014).

Methods that are fitted to individual months, either by regression (the individual-month isoscape), by geos-
tatistical interpolation (the sinusoidal + monthly kriging isoscape), or both (the individual-month + monthly
kriging isoscape), intrinsically eliminate the directional biases that arise in many months (Figure 3). These can
sometimes be large; for example, the sinusoidal isoscape underestimated precipitation δ18O in December
2015 by an average of 3.8‰ due to isotopically anomalous precipitation (Figure 3a). Interstorm and intra-
storm variations can be significant in time (e.g., Celle-Jeanton et al., 2001; Coplen et al., 2015; Munksgaard
et al., 2012) and space (Fischer et al., 2017), so isotopically anomalous months are likely to be common,
and assuming that individual months follow seasonal patterns could be inadequate for some applications.
The choice of which monthly calibrated isoscape to use was unimportant here: all of those methods had simi-
lar prediction errors (Figure 3).

Though the sinusoidal isoscape was not more accurate than the mean monthly isoscapes in predicting
monthly δp, it may be a more efficient approach to representing seasonal oscillations because it only requires
mapping three sine parameters (i.e., amplitude, φ, and offset) rather than constructing 12 independent
monthly maps. Furthermore, the sinusoidal isoscape provides continuous δp functions that can be evaluated
at any point in time, avoiding the need to interpolate between look-up tables, as required with independent
monthly maps. This considerably simplifies the task of calculating average isotopic inputs over intervals of
particular ecological importance (e.g., growing seasons).

Many of our sites exhibited statistically significant seasonal cycles in LC-excess, although the spatial varia-
tions in those cycles could not be effectively predicted by multiple regression on site characteristics. While
seasonal cycles in precipitation LC-excess have rarely been described in the literature, recent studies have
differed in their attribution of precipitation deuterium excess variations to source effects versus within-
and below-cloud processes (Pfahl & Sodemann, 2014; Risi et al., 2013). Regardless of their driving mechan-
isms, seasonal cycles in LC-excess (with phases offset from those of seasonal cycles of δ18O and δ2H) are
important for many hydrological, climatological, and biological tracer or proxy applications. Although we
were unable to effectively predict spatial patterns in the seasonal cycles of LC-excess in Switzerland, ignor-
ing these seasonal cycles could bias the interpretation of LC-excess signals in ecological and hydrological
studies. For example, a lake water sample with LC-excess lower than that of mean annual precipitation
may be interpreted as implying evaporation, although it may instead simply have come from precipitation
that fell during a season with low LC-excess. This example illustrates how quantifying the spatiotemporal
variability in precipitation LC-excess may be important for accurately interpreting LC-excess signals in
landscapes and ecosystems.

Modeling δp as continuous sine curves may be broadly useful for ecological and hydrological applications. In
hydrology, the damping and phase shift of seasonal cycles of water isotopes as they propagate through soil
profiles or catchments can provide insight into the relative importance of advective and dispersive transport,
and thus help constrain models of storage and mixing. Thus, sinusoidal isoscapes are a cornerstone of a new
technique for assessing watershed transit-time behavior (the young water fraction; Kirchner, 2016a, 2016b;
Jasechko et al., 2016). However, they should also find application in ecology, for example, in determining
the origins or quantifying the turnover of water isotope signals in plants and animals (Treydte et al., 2014;
Vander Zanden et al., 2014).
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5. Conclusions

We demonstrated that seasonal cycles in δ18O and δ2H of precipitation (Figure 1) can be represented by sinu-
soidal cycles and that the parameters describing these sine functions correlate with site characteristics.
Multiple regression models based on these characteristics can predict the spatial variations in the seasonality
of δ18O and δ2H values, which can be mapped as sinusoidal isoscapes (Figures 2 and 3). The sinusoidal
isoscape method provided an efficient tool for predicting seasonal and spatial variations in precipitation
isotopes across Switzerland. Prediction errors of the sinusoidal isoscape were smaller than those of the
long-term mean isoscape but larger than those of isoscapes calibrated individually to each month
(Figure 3). We also showed that precipitation LC-excess can exhibit seasonal cycles (Figure 1c). Interpreting
δ18O, δ2H, and LC-excess values in soils and biota will often require accounting for seasonal and spatial
patterns in water isotopes in precipitation. Sinusoidal isoscapes efficiently encapsulate these patterns, thus
providing a promising new tool for isotope studies in hydrology and ecology.

References
Aggarwal, P. K., Romatschke, U., Araguas-Araguas, L., Belachew, D., Longstaffe, F. J., Berg, P., et al. (2016). Proportions of convective and

stratiform precipitation revealed in water isotope ratios. Nature Geoscience, 9(8), 624–629. https://doi.org/10.1038/ngeo2739
Bowen, G. J. (2008). Spatial analysis of the intra-annual variation of precipitation isotope ratios and its climatological corollaries. Journal of

Geophysical Research, 113, D05113. https://doi.org/10.1029/2007JD009295
Bowen, G. J., West, J. B., Vaughn, B. H., Dawson, T. E., Ehleringer, J. R., Fogel, M. L., et al. (2009). Isoscapes to address large-scale Earth science

challenges. Eos, Transactions American Geophysical Union, 90(13), 109–110. https://doi.org/10.1029/2009EO130001
Cable, J., Ogle, K., & Williams, D. (2011). Contribution of glacier meltwater to streamflow in the Wind River Range, Wyoming, inferred via a

Bayesian mixing model applied to isotopic measurements. Hydrological Processes, 25(14), 2228–2236. https://doi.org/10.1002/hyp.7982
Celle-Jeanton, H., Travi, Y., & Blavoux, B. (2001). Isotopic typology of the precipitation in the western Mediterranean region at three different

time scales. Geophysical Research Letters, 28(7), 1215–1218. https://doi.org/10.1029/2000GL012407
Coplen, T. B., Neiman, P. J., White, A. B., & Ralph, F. M. (2015). Categorisation of northern California rainfall for periods with and without a

radar brightband using stable isotopes and a novel automated precipitation collector. Tellus B, 67(1). https://doi.org/10.3402/tellusb.
v67.28574

Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16(4), 436–468. https://doi.org/10.1111/j.2153-3490.1964.tb00181.x
Delavau, C., Chun, K. P., Stadnyk, T., Birks, S. J., & Welker, J. M. (2015). North American precipitation isotope (δ

18
O) zones revealed in time

series modeling across Canada and northern United States. Water Resources Research, 51, 1284–1299. https://doi.org/10.1002/
2014WR015687

Dutton, A., Wilkinson, B. H., Welker, J. M., Bowen, G. J., & Lohmann, K. C. (2005). Spatial distribution and seasonal variation in
18
O/

16
O of

modern precipitation and river water across the conterminous USA. Hydrological Processes, 19(20), 4121–4146. https://doi.org/10.1002/
hyp.5876

Fischer, B. M. C., van Meerveld, H. J., & Seibert, J. (2017). Spatial variability in the isotopic composition of rainfall in a small headwater
catchment and its effect on hydrograph separation. Journal of Hydrology, 547, 755–769. https://doi.org/10.1016/j.jhydrol.2017.01.045

Frei, C., Christensen, J. H., Déqué, M., Jacob, D., Jones, R. G., & Vidale, P. L. (2003). Daily precipitation statistics in regional climate models:
Evaluation and intercomparison for the European Alps. Journal of Geophysical Research, 108(D3), 4124. https://doi.org/10.1029/
2002JD002287

Froehlich, K., Kralik, M., Papesch, W., Rank, D., Scheifinger, H., & Stichler, W. (2008). Deuterium excess in precipitation of Alpine regions—
Moisture recycling. Isotopes in Environmental and Health Studies, 44(1), 61–70. https://doi.org/10.1080/10256010801887208

Halder, J., Terzer, S., Wassenaar, L. I., Araguás-Araguás, L. J., & Aggarwal, P. K. (2015). The Global Network of Isotopes in Rivers (GNIR):
Integration of water isotopes in watershed observation and riverine research. Hydrology and Earth System Sciences, 19(8), 3419–3431.
https://doi.org/10.5194/hess-19-3419-2015

Hobson, K. A., & Wassenaar, L. I. (Eds.) (2008). Tracking animal migration with stable isotopes. Amsterdam: Academic Press.
International Atomic Energy Agency/World Meteorological Organization (2018). Global network of isotopes in precipitation. The GNIP

Database. Retrieved from http://www.iaea.org/water
Ingraham, N. L. (1998). Isotopic variations in precipitation. In C. Kendall & J. J. McDonnell (Eds.), Isotope Tracers in Catchment Hydrology

(pp. 87–118). Amsterdam: Elsevier Science. https://doi.org/10.1016/B978-0-444-81546-0.50010-0
Jasechko, S., Kirchner, J. W., Welker, J. M., & McDonnell, J. J. (2016). Substantial proportion of global streamflow less than three months old.

Nature Geoscience, 9(2), 126–129. https://doi.org/10.1038/ngeo2636
Jasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. J., Yi, Y., & Fawcett, P. J. (2013). Terrestrial water fluxes dominated by transpiration. Nature,

496(7445), 347–350. https://doi.org/10.1038/nature11983
Kern, Z., Kohán, B., & Leuenberger, M. (2014). Precipitation isoscape of high reliefs: Interpolation scheme designed and tested for monthly

resolved precipitation oxygen isotope records of an Alpine domain. Atmospheric Chemistry and Physics, 14(4), 1897–1907. https://doi.org/
10.5194/acp-14-1897-2014

Kirchner, J. W. (2016a). Aggregation in environmental systems—Part 1: Seasonal tracer cycles quantify young water fractions, but not mean
transit times, in spatially heterogeneous catchments. Hydrology and Earth System Sciences, 20(1), 279–297. https://doi.org/10.5194/hess-
20-279-2016

Kirchner, J. W. (2016b). Aggregation in environmental systems—Part 2: Catchment mean transit times and young water fractions under
hydrologic nonstationarity. Hydrology and Earth System Sciences, 20(1), 299–328. https://doi.org/10.5194/hess-20-299-2016

Landwehr, J. M., & Coplen, T. B. (2006). Line-conditioned excess: A newmethod for characterizing stable hydrogen and oxygen isotope ratios
in hydrologic systems. In Isotopes in Environmental Studies, Proceedings of an International Conference Held in Monaco 25–29 October 2004
(pp. 132–135). Vienna, Austria: International Atomic Energy Agency.

Liu, Z., Bowen, G. J., & Welker, J. M. (2010). Atmospheric circulation is reflected in precipitation isotope gradients over the conterminous
United States. Journal of Geophysical Research, 115, D22120. https://doi.org/10.1029/2010JD014175

10.1029/2018GL077458Geophysical Research Letters

ALLEN ET AL. 9

Acknowledgments
We thank Jason West and Rolf Siegwolf
for helpful discussions and comments.
The data used in this study are publicly
available at the URLs listed below. We
acknowledge data contributions by the
International Atomic Energy Association
and GNIP contributors (http://www.iaea.
org/water), as well as Swiss, German,
and Austrian federal monitoring agen-
cies: MeteoSwiss (http://www.meteos-
wiss.admin.ch/), the Swiss Federal Office
for the Environment (FOEN) and its
National Groundwater Monitoring
Program (NAQUA, its data available on
the GNIP database), the Austrian
Network of Isotopes in Precipitation
(https://wasser.umweltbundesamt.at/
h2odb/), the Austrian Zentralanstalt für
Meteorologie und Geodynamik (https://
www.zamg.ac.at/cms/en/news), and the
Deutscher Weterdienst (https://www.
dwd.de/). This project was funded by
the Swiss Federal Office for the
Environment. G. Goldsmith was sup-
ported by funding from the European
Community’s Seventh Framework
Program (FP7-People Marie-Curie
Actions/2007-2013) under grant agree-
ment 290605 (COFUND: PSIFELLOW).
while previously working at the Paul
Scherrer Institute.

https://doi.org/10.1038/ngeo2739
https://doi.org/10.1029/2007JD009295
https://doi.org/10.1029/2009EO130001
https://doi.org/10.1002/hyp.7982
https://doi.org/10.1029/2000GL012407
https://doi.org/10.3402/tellusb.v67.28574
https://doi.org/10.3402/tellusb.v67.28574
https://doi.org/10.1111/j.2153-3490.1964.tb00181.x
https://doi.org/10.1002/2014WR015687
https://doi.org/10.1002/2014WR015687
https://doi.org/10.1002/hyp.5876
https://doi.org/10.1002/hyp.5876
https://doi.org/10.1016/j.jhydrol.2017.01.045
https://doi.org/10.1029/2002JD002287
https://doi.org/10.1029/2002JD002287
https://doi.org/10.1080/10256010801887208
https://doi.org/10.5194/hess-19-3419-2015
http://www.iaea.org/water
https://doi.org/10.1016/B978-0-444-81546-0.50010-0
https://doi.org/10.1038/ngeo2636
https://doi.org/10.1038/nature11983
https://doi.org/10.5194/acp-14-1897-2014
https://doi.org/10.5194/acp-14-1897-2014
https://doi.org/10.5194/hess-20-279-2016
https://doi.org/10.5194/hess-20-279-2016
https://doi.org/10.5194/hess-20-299-2016
https://doi.org/10.1029/2010JD014175
http://www.iaea.org/water
http://www.iaea.org/water
http://www.meteoswiss.admin.ch/
http://www.meteoswiss.admin.ch/
https://wasser.umweltbundesamt.at/h2odb/
https://wasser.umweltbundesamt.at/h2odb/
https://www.zamg.ac.at/cms/en/news
https://www.zamg.ac.at/cms/en/news
https://www.dwd.de/
https://www.dwd.de/


Martin, N. J., Conroy, J. L., Noone, D., Cobb, K. M., Konecky, B. L., & Rea, S. (2018). Seasonal and ENSO influences on the stable isotopic
composition of Galápagos precipitation. Journal of Geophysical Research: Atmospheres, 123, 261–275. https://doi.org/10.1002/
2017JD027380

McCarroll, D., & Loader, N. J. (2004). Stable isotopes in tree rings. Quaternary Science Reviews, 23(7-8), 771–801. https://doi.org/10.1016/j.
quascirev.2003.06.017

Munksgaard, N. C., Wurster, C. M., Bass, A., & Bird, M. I. (2012). Extreme short-term stable isotope variability revealed by continuous rainwater
analysis. Hydrological Processes, 26(23), 3630–3634. https://doi.org/10.1002/hyp.9505

Pfahl, S., & Sodemann, H. (2014). What controls deuterium excess in global precipitation? Climate of the Past, 10(2), 771–781. https://doi.org/
10.5194/cp-10-771-2014

Risi, C., Noone, D., Frankenberg, C., & Worden, J. (2013). Role of continental recycling in intraseasonal variations of continental moisture as
deduced from model simulations and water vapor isotopic measurements. Water Resources Research, 49, 4136–4156. https://doi.org/
10.1002/wrcr.20312

Rozanski, K., Araguás-Araguás, L., & Gonfiantini, R. (1993). Isotopic patterns in modern global precipitation. In P. K. Swart, K. C. Lohmann,
J. Mckenzie, & S. Savin (Eds.), Climate Change in Continental Isotopic Records (Chap. 1, pp. 1–36). Washinton, DC: American Geophysical
Union. https://doi.org/10.1029/GM078p0001

Sánchez-Murillo, R., & Birkel, C. (2016). Groundwater recharge mechanisms inferred from isoscapes in a complex tropical mountainous
region. Geophysical Research Letters, 43, 5060–5069. https://doi.org/10.1002/2016GL068888

Stumpp, C., Klaus, J., & Stichler, W. (2014). Analysis of long-term stable isotopic composition in German precipitation. Journal of Hydrology,
517, 351–361. https://doi.org/10.1016/j.jhydrol.2014.05.034

Treydte, K., Boda, S., Graf Pannatier, E., Fonti, P., Frank, D., Ullrich, B., et al. (2014). Seasonal transfer of oxygen isotopes from precipitation and
soil to the tree ring: Source water versus needle water enrichment. New Phytologist, 202(3), 772–783. https://doi.org/10.1111/nph.12741

Vachon, R. W., White, J. W. C., Gutmann, E., & Welker, J. M. (2007). Amount-weighted annual isotopic (δ
18
O) values are affected by the sea-

sonality of precipitation: A sensitivity study. Geophysical Research Letters, 34, L21707. https://doi.org/10.1029/2007GL030547
Vander Zanden, H. B., Wunder, M. B., Hobson, K. A., Van Wilgenburg, S. L., Wassenaar, L. I., Welker, J. M., & Bowen, G. J. (2014). Contrasting

assignment of migratory organisms to geographic origins using long-term versus year-specific precipitation isotope maps. Methods in
Ecology and Evolution, 5(9), 891–900. https://doi.org/10.1111/2041-210X.12229

Wilkinson, B. H., & Ivany, L. C. (2002). Paleoclimatic inference from stable isotope profiles of accretionary biogenic hardparts—A quantitative
approach to the evaluation of incomplete data. Palaeogeography, Palaeoclimatology, Palaeoecology, 185(1-2), 95–114. https://doi.org/
10.1016/S0031-0182(02)00279-1

Water Information System Austria (2018). Austrian network of isotopes in precipitation. The Water Information System Austria (WISA)
database. Retrieved from https://wasser.umweltbundesamt.at/h2odb/

10.1029/2018GL077458Geophysical Research Letters

ALLEN ET AL. 10

https://doi.org/10.1002/2017JD027380
https://doi.org/10.1002/2017JD027380
https://doi.org/10.1016/j.quascirev.2003.06.017
https://doi.org/10.1016/j.quascirev.2003.06.017
https://doi.org/10.1002/hyp.9505
https://doi.org/10.5194/cp-10-771-2014
https://doi.org/10.5194/cp-10-771-2014
https://doi.org/10.1002/wrcr.20312
https://doi.org/10.1002/wrcr.20312
https://doi.org/10.1029/GM078p0001
https://doi.org/10.1002/2016GL068888
https://doi.org/10.1016/j.jhydrol.2014.05.034
https://doi.org/10.1111/nph.12741
https://doi.org/10.1029/2007GL030547
https://doi.org/10.1111/2041-210X.12229
https://doi.org/10.1016/S0031-0182(02)00279-1
https://doi.org/10.1016/S0031-0182(02)00279-1
https://wasser.umweltbundesamt.at/h2odb/

	Chapman University
	Chapman University Digital Commons
	5-8-2018

	Predicting Spatial Patterns in Precipitation Isotope (δ2H and δ18O) Seasonality Using Sinusoidal Isoscapes
	Scott T. Allen
	James W. Kirchner
	Gregory R. Goldsmith
	Recommended Citation

	Predicting Spatial Patterns in Precipitation Isotope (δ2H and δ18O) Seasonality Using Sinusoidal Isoscapes
	Comments
	Copyright


	Predicting Spatial Patterns in Precipitation Isotope (2H and 18O) Seasonality Using Sinusoidal Isoscapes

