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Abstract 

1. Restoring resilient ecosystems in an era of rapid environmental change requires a flexible 

framework for selecting assemblages of species based on functional traits. However, current 

trait-based models have been limited to algorithms that select species assemblages that only 

converge on specified average trait values, and could not accommodate the common desire 

among restoration ecologists to generate functionally diverse assemblages. 

2. We have solved this problem by applying a nonlinear optimization algorithm to solve for the 

species relative abundances that maximize Rao’s quadratic entropy (Q) subject to other 

linear constraints. Rao’s Q is a closed-form algebraic expression of functional diversity that is 

maximized when the most abundant species are functionally dissimilar. 

3. Previous models have maximized species evenness subject to the linear constraints by 

maximizing the entropy function (H’). Maximizing Q alone produces an undesirable species 

abundance distribution because species that exhibit extreme trait values have the highest 

abundances. We demonstrate that the maximization of an objective function that additively 

combines Q and H’ produces a more even relative abundance distribution across the trait 

dimension. 

4. Some ecological restoration projects aim to restore communities that converge on one set 

of traits while diverging across another. The selectSpecies R function can derive assemblages 

for any size species pool that maximizes the diversity of any set of traits, while 

simultaneously converging on average values of any other set of traits. We demonstrate 

how the function works through examples using uniformly spaced trait distributions and 

data with a known structure. We also demonstrate the utility of the function using real trait 

data collected on dozens of species from three separate ecosystems: serpentine grasslands, 

ponderosa pine forests, and subtropical rainforests. 
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5. The quantitative selection of species based on their functional traits for ecological 

restoration and experimentation must be both rigorous and accessible to practitioners. The 

selectSpecies function provides ecologists with an easy-to-use open-source solution to 

objectively derive species assemblages based on their functional traits. 

 

1  Introduction 

Restoring ecosystems that are functionally resilient in an era of rapid environmental change 

is a key challenge facing land managers globally (Suding 2011). While historical reference conditions 

have traditionally provided empirical data about how to define compositional targets for restoration 

projects, historical assemblages may not be well-adapted to future climate or novel environmental 

conditions (Harris et al. 2006). This realization prompted the development of quantitative algorithms 

that derive species assemblages that exhibit traits to achieve specific functions (Laughlin 2014a), 

such as optimizing pollinator habitat (M'Gonigle et al. 2016), invasion resistance (Yannelli et al. 

2018), or drought resistance and fire tolerance (Laughlin et al. 2017).  

One limitation of the original approach is that it tended to select assemblages of species that 

were functionally similar and therefore not functionally diverse. Restoration practitioners have long 

been interested in restoring diverse assemblages of species for conservation, and there has been 

increasing interest in selecting species that optimize functional diversity in restoration projects (Funk 

et al. 2008; Ostertag et al. 2015; Giannini et al. 2016). Functional diversity may bolster the stability 

of a community (Hallett, Stein & Suding 2017), may enhance invasion resistance (Hooper & Dukes 

2010), and can be important to the delivery of multiple ecosystem services (Gagic et al. 2015). 

However, we have lacked the quantitative methods to select functionally-diverse species objectively, 

especially in high-dimensional cases when multiple traits are evaluated concurrently. Here we 

introduce a new approach that solves this problem. Our new R function assigns relative abundances 
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to each species in the species pool to derive an assemblage that conforms with specified average 

trait values, maximizes the diversity of a trait, or achieves both simultaneously (Fig. 1). 

To generate assemblages that conform to average trait values, the model should derive an 

assemblage of species whose average trait value equals the specified ‘optimal’ trait value (see x-axis 

in Fig. 2). In other words, the trait values of the community converge on this trait value (Fig. 2). 

Basing a restoration on average trait values alone may lead to functioning communities under 

certain circumstances, but could lead to problems in others. For example, a community dominated 

by functionally-similar species may not be resilient to unexpected disturbances. Therefore, to select 

species that are also functionally diverse, the model should derive an assemblage of species that 

maximizes the diversity of a trait (see y-axis in Fig. 2). Practitioners may want to re-assemble 

communities that exhibit convergence toward an average value of one trait but simultaneously 

exhibit diversity of another trait. In these scenarios, the assemblage of species will need to reflect 

complex multidimensional trait distributions (Fig. 2). 

In this paper, we (1) describe the system of linear equations for constraining the assemblage 

to average trait values, (2) describe how the choice of objective function for optimization can be 

used to maximize functional diversity, and (3) present multiple examples that use the new 

selectSpecies function to optimise specific traits and functional diversity simultaneously to derive 

species assemblages for ecological restoration and experimentation. 

 

2  Constraining specific trait values 

Suppose we want to create a species assemblage drawn from a pool of S species. For each of these 

species, we know the mean trait value for K different traits. In addition, for each trait, we want the 

community-weighted mean (Shipley, Vile & Garnier 2006) of the assemblage to equal a predefined 
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value that we believe will optimize survival in a given environmental condition (Laughlin 2014a). To 

achieve this aim, we need to satisfy the following system of K + 1 linear equality constraints: ∑ ௌୀଵݐ = ܶതതത ,   for k = 1, 2, …, K     (eqn 1), 	∑ ௌୀଵ = 1          (eqn 2). 

where tik is the known mean trait value of the kth trait for the ith species, pi is the unknown 

proportion of the ith species within the assemblage, ∑ ௌୀଵ	ݐ is thus the community-weighted mean 

for trait k, ܶതതത is the predefined value of the kth trait that we believe will optimize survival, and the 

unknown probabilities (i.e., relative abundances) must be non-negative and less than one (0 < pi < 1, 

i = 1, …, S). There must be fewer traits than species because if the number of equations (K + 1) 

exceeds the number of unknowns (S), this usually results in an overdetermined system with no 

solution. When K + 1 < S, then we have the desirable situation of an underdetermined system of 

equations with many possible solutions. 

 Shipley et al. (2006) proposed to select the solution that maximizes the following objective 

function: 

 H’ = −∑  ln ௌୀଵ          (eqn 3). 

Eqn 3 is the entropy function (H’), also known by ecologists as Shannon’s diversity index. Maximizing 

the entropy function under the constraints of Equations 1 and 2 will produce an assemblage of 

species whose average trait values are equal to ܶതതത and whose distribution is as even as possible 

given the trait value constraints. 

The selectSpecies function in the R package Select (Laughlin & Chalmandrier 2018) uses the 

general nonlinear optimization method using augmented Lagrange multipliers (Ye 1988), which has 

been implemented in the Rsolnp R package by Ghalanos and Theussl (2015). When entropy is 

maximised using the selectSpecies function, the results are virtually identical to the solutions 

obtained by the maxent function in the FD package of R (Laliberté, Legendre & Shipley 2014), which 

uses a different algorithm (Shipley, Vile & Garnier 2006). One advantage of the selectSpecies 
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function over the maxent function is that selectSpecies can easily accommodate negative trait values 

(e.g., stable isotopes), whereas the latter requires a transformation because the values must be non-

negative. Consider a pool of five species whose trait values range between one and five (Fig. 3). The 

maximum entropy solution that constrains തܶ = 3.5 produces the most even distribution of relative 

abundances across all species given that constraint (Fig. 3A). The R code for these examples are fully 

described in a vignette in the Supporting Information, which is also available in the R package on 

CRAN. 

If enough information on intraspecific trait variability is available, then the Traitspace model 

(Laughlin et al. 2012) could also be used to select species for restoration based on explicit 

parameterizations of community-level trait distributions. However, restoration practitioners rarely 

have enough intraspecific trait data to parameterise multidimensional trait distributions for multiple 

species, which is a requirement in the Traitspace model. Our goal was to develop a model that could 

be readily implemented by restoration practitioners and empirical ecologists. Average trait values 

per species are increasingly available, so we built a framework that could use species-level average 

trait values. Moreover, using a system of linear equations allows for the optimisation of a well-

known functional diversity index, which we now describe.  

 

3  Optimizing functional diversity 

 In the previous example, the community-weighted mean trait value of the model 

assemblage is the user-selected ‘optimal’ trait value തܶ (Fig. 3A). However, restoration practitioners 

often want to restore diverse assemblages of species that are functionally different. For example, if 

the goal is to restore habitat for a range of pollinators that are active at different times throughout 

the growing season, then practitioners want to maximize the diversity of flowering phenology 

(M'Gonigle et al. 2016). If the goal is invasion resistance and the maintenance of species coexistence 
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by limiting the functional similarity of species, then trait diversity may be an important factor in 

designing the restored assemblage (Hooper & Dukes 2010). 

To achieve functionally diverse assemblages, we can maximize a different objective function: 

Q = ∑ 	ௌିଵୀଵ ∑ ݀ௌୀାଵ         (eqn 4), 

where dij is a dissimilarity metric between the trait value(s) of the i-th and j-th species. The 

selectSpecies function accepts either a numerical trait matrix, which is used to compute a Euclidean 

distance matrix, or a dissimilarity matrix defined by the user. This function, known as quadratic 

entropy (Q), is defined as the expected distance between two entities in a collection (Rao 1982; 

Pavoine 2012). 

Quadratic entropy is maximized when the most abundant species are functionally dissimilar, 

and is widely used as a quantitative measure of diversity in ecology and evolution (Pavoine 2012). 

Quadratic entropy is viewed as a multivariate measure of functional divergence (Mason et al. 2005) 

and is similar to functional dispersion (Laliberté & Legendre 2010). When quadratic entropy is 

maximized using the selectSpecies function, the solution maximizes the relative abundances of the 

most functionally dissimilar species (Fig. 2B). Note the absence of species in the middle of the trait 

axis in Fig 3B because the function maximizes trait divergence. This may not be a desirable property 

for selecting functionally diverse assemblages for restoration. Practitioners may want the species to 

span the full range of the trait axis, not just the two extremes (Fig. 2). It has been demonstrated that 

this undesirable behaviour of Q can be avoided by using an ultrametric functional dissimilarity 

matrix, i.e., a matrix that reflects the branch lengths of an ultrametric functional tree where all end 

nodes are equidistant from the root of the tree (Pavoine, Ollier & Pontier 2005). However, raw trait 

data is rarely structured this way and building an ultrametric functional tree from trait data is non-

trivial (Mouchet et al. 2008). 
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To produce an assemblage that spans the full range of a trait, we propose an alternative 

procedure to compensate this undesirable effect when the dissimilarity matrix is not ultrametric: 

maximize the functional diversity index and entropy simultaneously. Consider a new function, Ω, 

where quadratic entropy (Q) and entropy (H’) are additive: 

 Ω = ߮ܳ + ሺ1 − ߮ሻܪ′        (eqn 5), 

Ω = ߮∑ 	ௌିଵୀଵ ∑ ݀ௌୀାଵ + ሺ1 − ߮ሻ − ∑  ln ௌୀଵ	    (eqn 6). 

Each term in Eqn 6 is weighted by the parameter phi (߮), which ranges from 0 to 1. The selectSpecies 

function by default sets ߮ = 0.5 so that both terms are weighted equally, but ߮ can be varied to 

place more weight on either Q or H’, depending on the objectives of the user. In fact, ecologists 

could vary ߮ systematically and compare the output of the model to natural vegetation in a future 

study to improve our understanding of trait distributions observed in nature. The output that 

maximizes Ω (Eqn 6) illustrates two important features (Fig. 3C): higher relative abundances still 

gravitate toward the extremes yet species in the middle of the trait axis are not ignored, and the 

solution still satisfies the constraint that തܶ = 3.5. 

 

4  Simultaneously optimising a specific trait value and functional diversity 

 Practitioners may want to restore a community that converges on one trait but diverges on 

another (Fig. 2). The selectSpecies function can be used to constrain the average to a specific value 

of one trait, while maximizing the diversity of another trait (Fig. 4). Consider the idealized scenario 

where species are evenly distributed in a 2-dimensional trait space and each trait ranges from one to 

four. One can constrain a specific value of trait X (e.g., തܶ = 3), while optimising the diversity of trait 

Y. The solutions that are obtained by optimising Q (Eqn 4) are illustrated in Fig 4A, whereas the 

solutions that are obtained by optimising Ω (Eqn 6) are illustrated in Fig 4B. Note that the potentially 
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undesirable absence of species in the middle of the trait Y axis in Fig. 4A is corrected in Fig. 4B, but 

intermediate trait values are still not evenly represented in Fig. 4B. 

The selectSpecies function has an additional option to cap the distance matrix at ݀, the 

average Euclidean distance between species in trait space, where 

  ݀ = ଶ∑ ∑ ௗೕೄೕసశభೄషభసభௌሺௌିଵሻ .        (eqn 7) 

Capping the distance matrix at ݀ yields species abundances that are more evenly distributed across 

the range of trait Y, as illustrated in Fig. 4C. Note that the relative abundance distributions in Fig. 4B 

and 4C are similar to the multidimensional trait distribution in Fig. 2. Future studies can also 

determine which capped values (other than the mean distance) produce species abundance 

distributions that most closely approximate natural vegetation or produce the most even 

distribution of traits. 

 We leave it to the user to decide whether to vary	߮ or to cap the distance matrix at ݀, but 

the choice depends on the objectives. To maximize trait divergence, set ߮ to 1 (or equivalently select 

Q, rather than Q+H’, as the objective function) and do not cap the distance matrix (Fig. 4A). To 

achieve a balance between functional divergence and species evenness, then set ߮ = 0.5 (the 

function default) and do not cap the distance matrix (Fig. 4B). To achieve a balance between species 

evenness and an even distribution of trait values in the assemblage, we recommend setting ߮ = 0.5 

and capping the distance matrix at ݀ (Fig. 4C). 
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5  Examples 

5.1 Optimising drought tolerance in a Serpentine grassland 

Three examples demonstrate how to use this function with real data (Fig. 5). Restoring 

ecosystems that are resilient to drought is often an important management goal (Funk, Hoffacker & 

Matzek 2015). Drought tolerant plants can exhibit high water use efficiency (WUE), the rate of 

carbon assimilation per unit of water used (Noy-Meir 1973). Therefore, selecting species with traits 

that converge on high water use efficiency can be one restoration objective. Rooting depth also 

influences drought tolerance, but a drought-resilient community would likely exhibit a diversity of 

rooting depths to optimize complementary water use throughout the soil profile (Hooper et al. 

2005). Therefore, selecting species that optimize rooting depth diversity would be important. Using 

a dataset of 48 species from a serpentine grassland in California (Funk & Wolf 2016), we normalized 

traits by first taking the logarithm of log-normally distributed traits and then standardized each 

variable to unit variance. We used the selectSpecies function to derive an assemblage with a high 

average WUE by constraining the assemblage to the 67th percentile of the distribution of WUE, but 

diversified the range of rooting depths by optimizing Ω with a capped distance matrix ݀ (Fig. 5A). 

This output can be used to design a seed or planting mix for a restoration project by selecting 

species with the highest relative abundances. 

 

5.2 Optimising pollinator habitat in low fertility soil 

Restoration practitioners may wish to plant species that maximise the range of flowering 

times to provide floral resources for pollinators throughout the growing season, while 

simultaneously constraining the list to species that can tolerate infertile soil conditions. Using a 

dataset of 34 forb species from a ponderosa pine forest in Arizona, we determined the median 

flowering date (day of year) of each species using local floras, and we used leaf carbon-to-nitrogen 
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(C:N) ratio as an indicator of each species ability to tolerate infertile soil conditions. High leaf C:N 

ratios are indicative of a resource-conservation strategy. We used the selectSpecies function to 

derive an assemblage with a diverse range of flowering times by diversifying flowering date, but 

constraining leaf C:N ratio to the 67th percentile of the distribution of leaf C:N ratio (Fig. 5B). This 

output can be used to design a seed or planting mix for a restoration project by selecting species 

with the highest relative abundances. 

 

5.3 Optimising seedling growth rate and canopy stratification in a tropical forest 

Restoration practitioners who are restoring rainforests by planting tree seedlings directly 

into clearings may wish to plant species with high specific leaf area to promote fast seedling growth 

and rapid canopy closure. However, they may also want the canopy to stratify after reaching the 

sapling stage. Species with greater carbon allocation to dense wood tissue will exhibit slower growth 

than species with low wood density. Therefore, canopy stratification may be achieved by planting 

species with a diversity of wood densities. Using a dataset of 41 tree species from a subtropical 

rainforest in Queensland Australia (McCarthy 2018), we derived an assemblage with a diverse range 

of wood densities, but a high average specific leaf area (Fig. 5C). This output can be used to design a 

planting mix to optimise initial growth rates and early canopy stratification. 

 

6  Conclusion 

In this paper, we have used examples where species assemblages were derived using only 

two traits for illustrative purposes. However, the selectSpecies function can derive species 

assemblages based on any number of traits: there is no upper limit to the number of trait values 

used as constraints (eqn 1) and there is no upper limit to the number of traits when maximizing 

functional diversity (eqn 4-6). However, there must be fewer traits than species (i.e., K + 1 < S) 
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because mathematical systems with more equations than unknowns usually have no solution (Lay 

2006). We recommend using traits that exhibit low correlation and reflect independent aspects of 

organism function to maximize the information content of the traits (Laughlin 2014b). 

The selectSpecies R function provides ecologists with an easy-to-use open-source solution to 

the problem of objectively selecting species based on their functional traits. In the case of 

experimental restoration ecology, contrasting trait values can be selected to design alternative 

restoration assemblages to test which trait values perform best under a range of experimental 

conditions (Laughlin 2014a). The Select package version 1.3 under license GPL (>=2) is available on 

CRAN (cran.r-project.org) and is compatible with version 3.3.0 of R and above. 
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Data Accessibility 

The datasets and code used in this paper are available in the R package ‘Select’ version 1.3, which is 

available on CRAN at https://CRAN.R-project.org/package=Select. After installing the R package and 

loading the library ‘Select’, datasets can be accessed using the data() function, where the name of 

the three datasets (serpentine, pineforest, and tropicalforest) can be entered within the 

parentheses. 

 

Supporting Information 

Vignette for using the selectSpecies( ) function 

 

References 

Funk, J.L., Cleland, E.E., Suding, K.N. & Zavaleta, E.S. (2008) Restoration through reassembly: plant 

traits and invasion resistance. Trends in Ecology and Evolution, 23, 695-703. 

Funk, J.L., Hoffacker, M.K. & Matzek, V. (2015) Summer irrigation, grazing and seed addition 

differentially influence community composition in an invaded serpentine grassland. 

Restoration Ecology, 23, 122-130. 

Funk, J.L. & Wolf, A.A. (2016) Testing the trait‐based community framework: Do functional traits 

predict competitive outcomes? Ecology, 97, 2206-2211. 

Gagic, V., Bartomeus, I., Jonsson, T., Taylor, A., Winqvist, C., Fischer, C., Slade, E.M., Steffan-

Dewenter, I., Emmerson, M. & Potts, S.G. (2015) Functional identity and diversity of animals 

predict ecosystem functioning better than species-based indices. Proceedings of the Royal 

Society of London B: Biological Sciences, 282, 20142620. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Ghalanos, A. & Theussl, S. (2015) Rsolnp: General Non-linear Optimization Using Augmented 

Lagrange Multiplier Method. R package version 1.16. 

Giannini, T.C., Giulietti, A.M., Harley, R.M., Viana, P.L., Jaffe, R., Alves, R., Pinto, C.E., Mota, N.F., 

Caldeira, C.F. & Imperatriz‐Fonseca, V.L. (2016) Selecting plant species for practical 

restoration of degraded lands using a multiple‐trait approach. Austral Ecology. 

Hallett, L.M., Stein, C. & Suding, K.N. (2017) Functional diversity increases ecological stability in a 

grazed grassland. Oecologia, 1-10. 

Harris, J.A., Hobbs, R.J., Higgs, E. & Aronson, J. (2006) Ecological restoration and global climate 

change. Restoration Ecology, 14, 170-176. 

Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., 

Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A.J., Vandermeer, J. & Wardle, D.A. 

(2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. 

Ecological Monographs, 75, 3-35. 

Hooper, D.U. & Dukes, J.S. (2010) Functional composition controls invasion success in a California 

serpentine grassland. Journal of Ecology, 98, 764-777. 

Laliberté, E. & Legendre, P. (2010) A distance-based framework for measuring functional diversity 

from multiple traits. Ecology, 91, 299-305. 

Laliberté, E., Legendre, P. & Shipley, B. (2014) FD: Measuring functional diversity from multiple traits, 

and other tools for functional ecology. R Foundation for Statistical Computing, The 

Comprehensive R Archive Network (CRAN), Vienna, Austria. 

Laughlin, D.C. (2014a) Applying trait-based models to achieve functional targets for theory-driven 

ecological restoration. Ecology Letters, 17, 771-784. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Laughlin, D.C. (2014b) The intrinsic dimensionality of plant traits and its relevance to community 

assembly. Journal of Ecology, 102, 186-193. 

Laughlin, D.C. & Chalmandrier, L. (2018) Select: Estimates Species Probabilities Based on Functional 

Traits. R Package version 1.3. 

Laughlin, D.C., Joshi, C., van Bodegom, P.M., Bastow, Z.A. & Fulé, P.Z. (2012) A predictive model of 

community assembly that incorporates intraspecific trait variation. Ecology Letters, 15, 1291-

1299. 

Laughlin, D.C., Strahan, R.T., Huffman, D.W. & Sánchez Meador, A.J. (2017) Using trait-based ecology 

to restore resilient ecosystems: historical conditions and the future of montane forests in 

western North America. Restoration Ecology, 25, S135-S146. 

Lay, D.C. (2006) Linear Algebra and Its Applications, 3rd edn. Pearson Education, Boston. 

M'Gonigle, L.K., Williams, N.M., Lonsdorf, E. & Kremen, C. (2016) A Tool for Selecting Plants When 

Restoring Habitat for Pollinators. Conservation Letters, n/a-n/a. 

Mason, N.W.H., Mouillot, D., Lee, W.G. & Wilson, J.B. (2005) Functional richness, functional 

evenness and functional divergence: the primary components of functional diversity. Oikos, 

111, 112-118. 

McCarthy, J.K. (2018) Predicting the diversity and functional composition of woody plant 

communities under climate change. PhD, PhD Thesis. School of Biological Sciences, The 

University of Queensland. 

Mouchet, M., Guilhaumon, F., Villéger, S., Mason, N.W.H., Tomasini, J.A. & Mouillot, D. (2008) 

Towards a consensus for calculating dendrogram‐based functional diversity indices. Oikos, 

117, 794-800. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Noy-Meir, I. (1973) Desert ecosystems: environment and producers. Annual Review of Ecology and 

Systematics, 4, 25-51. 

Ostertag, R., Warman, L., Cordell, S. & Vitousek, P.M. (2015) Using plant functional traits to restore 

Hawaiian rainforest. Journal of Applied Ecology, 52, 805-809. 

Pavoine, S. (2012) Clarifying and developing analyses of biodiversity: towards a generalisation of 

current approaches. Methods in Ecology and Evolution, 3, 509-518. 

Pavoine, S., Ollier, S. & Pontier, D. (2005) Measuring diversity from dissimilarities with Rao's 

quadratic entropy: Are any dissimilarities suitable? Theoretical Population Biology, 67, 231-

239. 

Rao, C.R. (1982) Diversity and dissimilarity coefficients: a unified approach. Theoretical Population 

Biology, 21, 24-43. 

Shipley, B., Vile, D. & Garnier, É. (2006) From plant traits to plant communities: A statistical 

mechanistic approach to biodiversity. Science, 314, 812-814. 

Suding, K.N. (2011) Toward an era of restoration in ecology: Successes, failures, and opportunities 

ahead. Annual Review of Ecology, Evolution, and Systematics, 42, 465-487. 

Yannelli, F.A., Karrer, G., Hall, R., Kollmann, J. & Heger, T. (2018) Seed density is more effective than 

multi‐trait limiting similarity in controlling grassland resistance against plant invasions in 

mesocosms. Applied Vegetation Science, In press. 

Ye, Y. (1988) Interior algorithms for linear, quadratic, and linearly constrained convex programming. 

PhD Thesis, Stanford University, Stanford CA. 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

  

 

Figure 1. The input to selectSpecies() function is a user-specified trait profile of the desired 

community, which consists of a matrix of traits to constrain (‘t2c’), a vector of constraints consisting 

of community-weighted mean (CWM) traits, a matrix of traits to diversify (‘t2d’, or alternatively a 

distance matrix), and the objective function (‘obj’) to maximize (quadratic entropy, entropy, or 

both). The output of the function (‘probs’) is a relative abundance distribution, i.e., proportional 

abundances for every species in the species pool. 
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Figure 2. Hypothetical community-level trait distribution represented as a bivariate contour density 

plot, where red = low density and purple = high density. Marginal histograms are also shown for 

each trait axis. If the goal of the restoration is to re-assemble a community that exhibits convergence 

toward a specific value of one trait (i.e., the trait to constrain on the x-axis) and diversity of another 

trait (i.e. the trait to diversify on the y-axis), then the species that are selected for the project must 

reflect a complex multidimensional trait distribution. 
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Figure 3. Species probability distributions (i.e., relative abundances) for five species whose trait 

values range uniformly between one and five. (A) Model results that constrained the assemblage to 

an average trait value ( തܶ  = 3.5) by maximizing entropy (H’; Eqn 3). (B) Model results that maximized 

functional diversity by maximizing quadratic entropy (Q; Eqn 4) subject to the constraint that തܶ = 3.5. 

(C) Model results that maximized Ω (i.e., Q+H’; Eqn 6) subject to the constraint that തܶ = 3.5. 
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Figure 4. Species relative abundance distributions for 16 species whose trait values range uniformly 

between one and four. These model outputs describe when the desired trait profile is an assemblage 

of species that converges on a specific value of trait X but exhibits a diverse range of trait Y. Each bar 

represents one species and its location within the 2-dimensional trait space. Two maximizations are 

illustrated: (A) maximize Q (Eqn 4) only, (B) maximize Ω (Eqn 6), and C) maximize Ω (Eqn 6) with a 

capped distance matrix. 
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Figure 5.  Examples of species assemblages (i.e., discrete probability distributions) derived from the 

selectSpecies R function that simultaneously constrain one trait and diversify another within (a) 

serpentine grassland in California, USA (photo: J.L. Funk), (b) ponderosa pine forest in Arizona, USA 

(photo: D.C. Laughlin, and (c) subtropical rainforest in Queensland, Australia (photo: Brandon Clark). 

Each bar represents one species and its location within the 2-dimensional trait space.  
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