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Abstract
The exponential growth of data coupled with the widespread application of artificial intelligence(AI) presents organizations
with challenges in upholding data accuracy, especially within data engineering functions. While the Extraction, Transforma-
tion, and Loading process addresses error-free data ingestion, validating the content within data streams remains a challenge.
Prompt detection and remediation of data issues are crucial, especially in automated analytical environments driven by AI.
To address these issues, this study focuses on detecting drifts in data distributions and divergence within data fields processed
from different sample populations. Using a hypothetical banking scenario, we illustrate the impact of data drift on auto-
mated decision-making processes. We propose a scalable method leveraging the Kullback-Leibler (KL) divergence measure,
specifically the Population Stability Index (PSI), to detect and quantify data drift. Through comprehensive simulations, we
demonstrate the effectiveness of PSI in identifying and mitigating data drift issues. This study contributes to enhancing data
engineering functions in organizations by offering a scalable solution for early drift detection in data ingestion pipelines.
We discuss related research works, identify gaps, and present the methodology and experiment results, underscoring the
importance of robust data governance practices in mitigating risks associated with data drift and improving data observability.

Keywords Kullback-Leibler divergence(KL) · Data drift · Population Stability Index(PSI) · Real-time data validation ·
Explainable AI · Concept drift · Data observability

1 Introduction

Organizations worldwide are experiencing exponential data
growth and effective use of such data in analytical workflows
presents unprecedented challenges for data engineering func-
tions (Abedjan et al. 2016). Extraction, Transformation and
Loading (ETL) process within data management functions
is tasked with validation of incoming data input files, file
structure verification and audit of source formats (Kimball
and Ross 2013). While the process ensures the data files are
ingested without error, it does not validate the content within
a data field. For instance, when multiple sources feed a data
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field, scale, unit, or plus-minus signs can be different for a
newly added data source, but they often go undetected during
the ETL process. Derived data fields like a score, output of
a mathematical model or a formula, could easily hide issues
with data inputs from standard ETL validations. Such data
input issues are commonly observed by the downstreamusers
of the model and are denoted as manifestation of “concept
drift”.

Concept drift refers to the changes in distributions and
statistical properties within data over time (Gama et al.
2014; Riess 2022) This makes it challenging for machine
learning models to accurately project previously learned pat-
terns to new circumstances. This results in a degradation of
model performance, and depending on the application, con-
sequences can be severe. However this is a gradual process,
with a primary emphasis on adapting to evolving data pat-
terns and implementing corrective actions to the model

Remedying data issues promptly in a production environ-
ment is expensive and any delay in such intervention risks the
automated analytical functions making decisions based on
erroneous data prior to issue detection. This becomes increas-
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ingly critical in the context of recent artificial intelligence
(AI) applications, where data-driven decision-making occurs
with minimal supervision (Polyzotis et al. 2017). Many of
these data observability challenges caught the interest of the
datamanagement research community only recently.Amajor
issue is that the behavior of AI systems depends on the data
ingested, which can change due to errors in upstream data
pipelines.As a consequence, algorithmic and system-specific
challenges can often not be disentangled in complexAI appli-
cations (Polyzotis et al. 2018).

1.1 Problem statement

This study addresses the problem of detecting drifts in data
distributions and divergence within the same data fields
(input variables) processed from two different sample popu-
lations. We will elaborate on this problem using a hypothet-
ical bank example. Bank A obtains a monthly performance
data file from a credit bureau for all its credit card hold-
ers. One of the fields is a customer behavior model(CBM)
score, which is useful for the bank as it helps predict the
future payment delinquency of the credit card holders. The
bank automates the credit card renewal processes, and the
automated policy prevents auto renewals when CBM score
is less than 620. In November 2022, the bank observed a
decline in auto-renewal rates, falling from 95 percent to 90
percent.With amillion customers renewing everymonth, this
translated to 50,000 credit cards requiring manual renewal.
Upon reviewing the input files, analysts noticed an issue with
the data file, which is shown in the graphs below.

The below graph shows that the November 2021 CBM
score distribution was centered around a mean value of 675,
but as the November 2022 file was processed, there was a
drift in this distribution, with the average score shifting to
600, even though there was no known change in the profile
of the credit card holders. Later, analysts discovered that the
CBM scoring model at the bureau did not accurately process
one of the inputs, resulting in more customers falling into
less than 600 CBM buckets. Such hard-to-detect ETL data
issues are expensive for a bank that relies on automation.
In this instance, 50,000 customers experienced automatic
renewal denials, necessitating manual review efforts, and
adversely impacting the overall customer experience. It’s
not just rolling back the incorrect data in production, but the
downstream impact of reversing a decision poses operational
and reputational risks to the Bank. As more organizations
embrace AI for automating and decisioning processes, the
severity of challenges related to input data problems becomes
more pronounced.

The efficiency of ETL processes lies in their ability to
handle input files of diverse frequencies and sizes. How-
ever, these processes lack a built-in mechanism to assess
the variance of content within data fields. The presence of
inconsistent data can significantly distort the results of mod-
els, often negating the benefits of AI approaches (Hellerstein
2008).As data continues to grow exponentially, and the adop-
tion of black-box machine learning models rises, it becomes
crucial to monitor less obvious data issues such as drift, as
manual front-end validations prove impractical.

The concept of data drift can be traced back to early studies
in information theory and statistics, laying the groundwork
for subsequent advancements in research related to drift
detection, adaptation strategies, and their integration into
machine learning frameworks. A seminal paper published
in 1951 (Kullback and Leibler 1951), which discussed data
drift and later became widely acknowledged as Kullback-
Leibler (KL) divergence in data distributions, has played a
foundational role in many such studies. This paper builds
upon these research and proposes a novel method for early
drift detection in data ingestion pipelines.

1.2 Objectives of the sudy

The objective of this study is two-fold: firstly, to present
Kullback-Leibler (KL) divergence as a method for detecting
drifts early in data distributions, and secondly, to propose
a solution addressing the identified drift problem, with
the specific aim of enhancing data engineering functions
in organizations that have adopted AI in automation and
decision-making.

The rest of the paper is organized as follows. In Section 2,
we discuss related research works and how we identified the
gap and formulated the objective. In Section 3, we present the
methodology in two components: first, the derivation of Pop-
ulation Stability Index(PSI) as a variant of Kullback-Leibler
divergence, and second, the description of the simulation
approach employed to generate data for the application of
the PSI technique developed in the preceding section. In
Sections 4, we present the experiment results and their impli-
cations, followed by a concise summary and concluding
remarks in Section 5, outlining potential avenues for future
research.

2 Related work

The literature we have reviewed in this context can be cate-
gorized into three groups. The first set of studies addresses
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various ETL and non ETL data issues, including incorrect
or inconsistent data, outliers, duplicates, missing values,
integrity constraint violations, data validity in model qual-
ity, schema evolution, training-serving skew, and overall data
management challenges in the context of machine learning
model management (Fig. 1).

The common theme among the second set of studies is
the exploration of concept drift in machine learning models,
particularly in online supervised learning scenarios. These
studies delve into adaptive learning processes and strate-
gies to handle evolving data distributions. Additionally, they
highlight the utilization of various techniques such as evolu-
tionary algorithms, metaheuristics, and ensemble methods to
effectively detect and adapt to concept drift in non-stationary
data streams.

The last set of studies specifically focus on the applica-
tion of Kullback-Leibler (KL) divergence, or its variants, in
various domains to address issues related to data distribution
shifts, concept drift detection, and classifier evaluation.These
studies utilizeKL divergence as a statistical measure to quan-
tify dissimilarity between probability distributions, enabling
the detection of anomalies, monitoring of system behavior,
and identification of distributional shifts. he following para-
graphs will summarize these three groups of studies.

Hellerstein (2008) examines data quality challenges in
large organizations, particularly focusing on incorrect or
inconsistent data. They emphasize data cleaning techniques
like outlier detection and exploratory data analysis to effec-
tively address these issues. Abedjan et al. (2016) explore data
cleaning for enterprise applications, addressing errors such as
outliers, duplicates, missing values, and integrity constraint
violations. They stress the importance of using a combina-
tion of tools and strategies for comprehensive error coverage.
Gudivada et al. (2017) discuss data quality considerations

in the context of big data and machine learning, suggest-
ing a reevaluation of traditional approaches. They introduce
a data governance-driven framework and highlight tools
for managing data quality beyond traditional cleaning and
transformations. Polyzotis et al. (2017) tackle data manage-
ment challenges within machine learning pipelines, focusing
on tasks such as comprehending, validating, cleaning, and
enriching training data. They emphasize the significance
of data validity in model quality and address challenges
like schema evolution and training-serving skew. Polyzotis
et al. (2018) address data management issues in the context
of machine learning model management, covering various
aspects from training to deployment and monitoring. They
underline the complexity of managing ML models and call
for further research on data management challenges specific
to ML systems.

Gama et al. (2014) provide a comprehensive examina-
tion of concept drift in online supervised learning, detailing
adaptive learning processes, categorizing strategies for han-
dling concept drift, and surveying techniques and algorithms.
Their review serves as a valuable resource for understand-
ing concept drift adaptation. In contrast, Ghomeshi et al.
(2019) focus on addressing concept drifts in non-stationary
data stream classification by introducing the Evolutionary
Algorithm-based Concept Drift (EACD) ensemble method.
This approach dynamically adjusts its ensemble to detect and
resize types, offering superior performance in diverse non-
stationary environments compared to existing algorithms.
Riess (2022) explores automated adaptation to concept
drift in machine learning models, highlighting population-
based methods like Genetic Algorithm and Particle-Swarm
Optimization. The study identifies challenges in evaluating
minority class performance and transparency in real-world

Fig. 1 The first graph shows the drift in most recent month compared
to same month previous year. The second histogram arranges the CBM
score by deciles and shows the percentage difference in each bucket. In

a data intensive environment, where data files are processed daily and
every file contains hundreds of fields, front-end validations like this is
not practical
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data drift characteristics, suggesting future research direc-
tions for improved concept drift detection and correction.

Zeng et al. (2014) develop statistics based on KL diver-
gence for monitoring large-scale technical systems. Their
study focuses on detecting anomalous system behavior by
comparing estimated density functions with reference den-
sity functions, particularly for Gaussian distributed process
variables. Basterrech and Wozniak (2022) address concept
drift in continual learning, introducing Kullback-Leibler
divergence for ongoing monitoring of changes in probabil-
ity distributions in multi-dimensional data streams. Their
method, KL-divergence-based concept drift detector (KLD),
offers a fast and robust decision rule to predict and understand
concept drift occurrences. Ponti et al. (2017) introduces the
decision cognizant Kullback-Leibler divergence (DC-KL) as
a measure for evaluating classifier agreement in decision-
making systems with multiple classifiers. This research
contributes to discerning between classifier congruence and
incongruence in pattern recognition systems. Lin (2017)
applies a variant of KL divergence called population sta-
bility index (PSI) in financial model validation, aiming to
measure distributional shifts between two samples over time.
Yurdakul (2018) explores KL divergence and specifically
PSI properties in scorecard monitoring, providing statistical
properties of PSI. This study provided a valuable reference
to PSI as a distinct case of KL divergence offering deeper
insights into the interpretability of PSI statistics.

The existing literature extensively investigates data man-
agement challenges, offering valuable insights into data
quality, cleaning, and management. However, there is a
noticeable gap in integrating scalable techniques like KL
divergence or its variants for drift detection in data ingestion
pipelines. While KL divergence and similar algorithms are
employed for concept drift detection or front-end model val-
idations, they primarily focus on adjusting to evolving data
patterns and are slow to detect data issues. As organizations
increasingly adopt AI technologies, there is a pressing need
for robust data governance practices tomitigate this risk. This
paper aims to address this gap by proposing a scalable drift
detection algorithm,within data ingestion pipelines, utilizing
a variant of KL divergence.

3 Methodology

The selection of Kullback-Leibler (KL) divergence as the
evaluation metric in this study is based on the comprehensive
review of existing literature, which highlights its signifi-
cance in addressing data distribution shifts and concept drift
detection. Unlike other algorithms that primarily focus on
adjusting to evolving data patterns, KL divergence offers
a statistical measure to quantify dissimilarity between data
distributions, enabling the early detection of anomalies and
automated intervention.

3.1 PSI as a variant of KL divergence

Given twoprobabilitydistributionsP (actual), andQ (expected)
of a discrete randomvariable x , x = x1, x2, ..., xB , KL diver-
gence is defined as:

DKL(P(x) || Q(x)) =
B∑

i=1

P(xi ) · ln
(
P(xi )

Q(xi )

)
(1)

An interpretation of KL divergence is that it measures
the expected excess surprise in using the actual distribution
versus the expected distribution as a divergence of the actual
from the expected. B is the number of buckets (discrete) of
the distribution.

DKL measures divergence however, researchers note that
it’s not a true distance measure as its definition is not sym-
metric. That is:
DKL(Q(x) || P(x)) �= DKL(P(x) || Q(x))

A symmetric measure is obtained by defining:

D(P, Q) = DKL (Q || P) = DKL (P || Q)

=
B∑

i=1

P(xi ) ln

(
P(xi )

Q(xi )

)
+

B∑

i=1

Q(xi ) ln

(
Q(xi )

P(xi )

)

=
B∑

i=1

P(xi ) ln

(
P(xi )

Q(xi )

)
−

B∑

i=1

Q(xi ) ln

(
P(xi )

Q(xi )

)

=
B∑

i=1

(P(xi ) − Q(xi )) ln

(
P(xi )

Q(xi )

)

This variant of KL divergence is known as Population
Stability Index (PSI) and is widely used in machine learning
and model validations as a divergence measure. The follow-
ing steps will show how to compute PSI using the CBM score
data we discussed in the problem statement.

From the derivation above,

PSI =
B∑

i=1

(P(xi ) − Q(xi )) ln

(
P(xi )

Q(xi )

)
(2)

In the context of CBM score data distribution, B is the
number of bins CBM accounts data was grouped into. For
example, bin 1 contains the number of accounts with CBM
score between 300 and 400. P(xi ) is the percent of accounts
in bin i, in November 2022. This is the actual data. Q(xi ) is
the percent of accounts in bin i in November 2021. This is
the baseline or expected data distribution in that bin. PSI is
then calculated as shown in the Table 1 below.

PSI calculated in this example is 0.1106. PSI thresholds
are used to determine similarity between the baseline andnew
samples. PSI less than 0.1 is considered similar or no signif-
icant drift. PSI between 0.1 and 0.2 is considered substantial
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Table 1 Calculation of PSI Bin %Base-Nov 21 %TTD Nov-22 (1) (2) (1)*(2)
B Q P P-Q ln(P/Q) Part PSI

1 1% 3% 0.0144 0.6844 0.0099

2 7% 12% 0.0431 0.4612 0.0000

3 12% 19% 0.0719 0.4767 0.0343

4 18% 22% 0.0422 0.2144 0.0090

5 21% 16% −0.0455 −0.2499 0.0114

6 18% 12% −0.0540 −0.3655 0.0197

7 12% 8% −0.0360 −0.3655 0.0132

8 7% 5% −0.0225 −0.3655 0.0082

9 3% 2% −0.0090 −0.3655 0.0033

10 1% 1% −0.0045 −0.3655 0.0016

100% 100% PSI(Sum of part PSI)= 0.1106

divergence and PSI > 0.2 is considered significant shift.
However, these are only guidelines and confidence intervals
can be different for different distributions.

In data validation applications, the PSI threshold can be
adjusted to capture even minor changes, depending on the
risk appetite of the business. Additionally, the computation of
PSI can be extended to encompass all data fields that impact
downstream AI models. By adopting this approach, compre-
hensive real-time data validation is ensured before critical
decisions are made by these systems.

3.2 Simulation approach

Simulation of the data to reflect the real-life data scenarios is
an important step in this study. The advantage of simulation is
that we could reproduce all known data issueswithout having
to wait to experience them in the production environment.
Also, we could experiment and document how the proposed
technique solves the issues.

To test the similarity of base(Q) and target(P) distribu-
tions we created the following four scenarios. Base file had

Table 2 Base sample(Q) - simulation criteria

Data field Sample size Mean Standard deviation

Ad response 100,000 8,000 1,000

Sales volume 100,000 350,000 13,000

Deposits 100,000 75,000 20,000

CBM score 100,000 610 50

SAS: Mersenne-Twister pseudo-random number generator was used

four data fields, Advertisement Response, Sales Volume,
Deposits, and CBM Score. Sample size, Mean and standard
deviation used for each field are summarized in the Table 2
below. Assumption of normality is not necessary for PSI cal-
culations, but these data fields tend to be normal in real life
around the specified mean.

Next step is to simulate the target sample of the same
data fields by introducing data issues from the real world.
The error scenarios applied to the above four data series are
summarized in the Table 3 below.

Ad response Advertisement response is a data series that
reports the number of responses to various advertisement
campaigns from the online advertisements delivered through
advertisement platforms like Google, Facebook, Twitter, etc.
At times incomplete files may be delivered from these plat-
forms. 10 percent of the values selected at random were set to
missing tomimicdatamissing fromoneof themajor platforms.

Sales volume The field represents the sales transactions
of an international luxury car dealer. It’s quite unlikely that
prices fluctuate significantly in this segment, so a significant
price increase suggests some double counting or accounting

Table 3 Through the door sample (P) simulation

Data field TTD Sample simulation criteria

Ad response 10% observations have missing value

Sales volume 50% records in Q1 had sales value increased by 10%

Deposits 20% of random observations are reported in $ 1000s

CBM score 10% Q4 customers had 50 points drop in CBM
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mistakes during a system migration. Sales transaction price
was increased by 10 percent in the quartile one for 50 percent
of the random records. This would shift many of them to the
2nd quartile of the base sample.

DepositsDeposit distribution of amajor bank for millions
of their customers. A newly added branch banking system
reports the numbers in 1000s instead of actual numbers for
20 percent of random cases.

CBMscoreCBM is amonthly behavior score of the credit
card holders of a bank, refreshed monthly to monitor the
health of the portfolio. 10 percent of the quartile four cus-
tomers of a bank show a score drop of 50 points due to some
input error in the model, sending them to lower buckets.

Simulated base and target (TTD) distributions are plotted
below (Figs. 2, 3, 4 and 5) to visualize the divergence in
samples.

4 Experiment results

Tables 4 and 5 exhibit the summary of PSI calculations for
each data distribution at decile and demi-decile levels respec-
tively. For Ad Response, the PSI component values range
from 0.00043 (at decile 5) to 0.10097 (at decile 1), with an
overall PSI of 0.06724. While the overall PSI suggests no
significant drift, the high PSI value at decile 1 indicates a
potential anomaly in the data. This observation is supported
by the graph for Ad Response. The PSI’s capability to detect
such drifts at the component level offers valuable flexibility
in implementing a configurable rule to pause the ETLprocess

Fig. 2 Ad response

for an investigation. Furthermore, Table 5 for Ad Response
demonstrates that when we expanded the number of bins to
20, the issue was magnified, with the total PSI value now
reaching 0.1. For Sales Volume, Deposits, and CBM Score,
the total PSI values indicate a moderate to significant level of
data drift, aligning with the graphical representations. Addi-
tionally, in all cases, expanding the bins led to increased PSI
values, highlighting the sensitivity of PSI values to bin sizes.
We provide a comprehensive breakdown of calculations at
both decile and demi-decile levels in the Appendix.

5 Summary and conclusion

As detailed in Section 4, in order to simulate the data diver-
gence issue within data streams, we chose four baseline
data fields: Ad Response, Sales Volume, Deposits, and CBM
Score. To introduce realistic variations, we deliberately intro-
duced real-life errors, causing distortions in the distributions.
Subsequently, we computed the Population Stability Index
(PSI) with various bin sizes, and the summarized results are
presented in Table 6 below.

The guidelines used are as follows: when PSI is less than
0.1, the distributions are considered similar or show ’lit-
tle drift.’ PSI values falling between 0.1 and 0.25 indicate
a ’moderate drift,’ which warrants a review. On the other
hand, PSI greater than 0.25 suggests significant divergence
or ’significant drift’ from the baseline distribution, requiring
immediate attention.

As expected, PSI effectively detected the distortions
introduced into the data fields during the simulations. Ad

Fig. 3 Sales volume
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Fig. 4 Bank deposits

Response is the only data field that showed a below thresh-
old number when PSI was measured using deciles. However,
when binned into twenty buckets, PSI was significant with
0.11. Demi-decile binning in general produced a higher PSI
value.

To conclude, PSI provides a straightforward and inter-
pretable metric of distributional shifts between two samples
over time, making it easy to understand and implement in
practical scenarios. Unlike many complex drift detection
algorithms, PSI calculation involves simple computations,
which is easy to implement using SQLwhile processing data.
Additionally, PSI is robust to changes in data volume and
frequency, allowing for effective monitoring of data drift in
dynamic environments where data streams may vary in size
and frequency of updates. Moreover, PSI can detect subtle
shifts in data distributions by setting appropriate thresholds
to detect issues early and intervene timely to mitigate poten-
tial issues arising from data drift. Overall, the simplicity,
robustness, and sensitivity of PSI make it a valuable tool for
detecting data drift andmaintaining the integrity of analytical
workflows in data-driven organizations.

Future research PSI thresholds followed currently are
from the industry best practices borrowed from engineering
and modeling applications. The properties of PSI need to
be studied in the context of large volume data engineering
applications. The cost of false positives and false negatives
differ with type of data fields so determination of PSI thresh-
olds should be based on the cost benefit analysis. Optimal
discretization (binning) is another area left to explore in a
future study.

Fig. 5 CBM score

Table 4 Summary of PSI results - PSI at deciles

Deciles Ad response Sales volume Deposits CBM score

1 0.057695 0.03445 0.18514 0.09691

2 0.001071 0.03493 0.0043 0.00002

3 0.000995 0.00638 0.00465 0.00000

4 0.001062 0.00001 0.00453 0.00000

5 0.000976 0.00002 0.00477 0.00000

6 0.001008 0.00009 0.00416 0.00000

7 0.001123 0.00034 0.00471 0.00000

8 0.001108 0.00124 0.00422 0.00632

9 0.00104 0.00644 0.00434 0.03397

10 0.001162 0.04062 0.00445 0.03385

PSI 0.06724 0.12452 0.22527 0.17107

Table 5 Summary of PSI Results - PSI at Demi-deciles

Demi-deciles Ad response Sales volume Deposits CBM score

1 0.10097 0.01759 0.29832 0.14313

2 0.00053 0.01687 0.00234 0.00016

3 0.0005 0.01724 0.00197 0.00002

4 0.00058 0.01769 0.00234 0.00000

5 0.00043 0.01562 0.00235 0.00000

6 0.00057 0.00000 0.0023 0.00000

7 0.00053 0.00000 0.0022 0.00000

8 0.00053 0.00000 0.00233 0.00000

9 0.00053 0.00001 0.00254 0.00000

10 0.00045 0.00001 0.00223 0.00000
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Table 5 continued

Demi-deciles Ad response Sales volume Deposits CBM score

11 0.00045 0.00003 0.00207 0.00000

12 0.00055 0.00007 0.00209 0.00000

13 0.0006 0.00013 0.00235 0.00000

14 0.00052 0.00021 0.00237 0.00000

15 0.00054 0.00039 0.0022 0.00000

16 0.00056 0.00089 0.00203 0.01648

17 0.00048 0.00169 0.00213 0.01726

18 0.00057 0.00518 0.00222 0.01672

19 0.00059 0.01792 0.00217 0.01658

20 0.00057 0.02276 0.00228 0.01727

PSI 0.11105 0.1343 0.34083 0.22762

Table 6 Summary of PSI results - PSI at demi-deciles

Decile Demi-Decile

Ad response 0.067 0.111

Sales volume 0.125 0.134

Deposits 0.225 0.341

CBM score 0.171 0.228

Appendix

DetailedPSI Calculationatdecileanddemi-decile levels

Table 7 Ad Response Table

Bin Ad response %Base %TTD (1) (2) (1)*(2)
B decile range Q P P-Q ln(P/Q) Part PSI

1 4630−6970 10% 19% 0.0902 0.6396 0.057695

2 6980−7320 10% 9% −0.01 −0.1069 0.001071

3 7330−7570 10% 9% −0.0097 −0.1029 0.000995

4 7580−7790 10% 9% −0.0101 −0.1048 0.001062

5 7800−7990 10% 9% −0.0096 −0.102 0.000976

6 8000−8200 10% 9% −0.0099 −0.1014 0.001008

7 8210−8410 10% 9% −0.0101 −0.1108 0.001123

8 8420−8670 10% 9% −0.0104 −0.1065 0.001108

9 8680−9010 10% 9% −0.0098 −0.106 0.00104

10 9020−11670 10% 9% −0.0105 −0.1104 0.001162

PSI= 0.067239

Table 8 Sales volume table

Bin Sales volume %Base %TTD (1) (2) (1)*(2)
B Decile range Q P P-Q ln(P/Q) Part PSI

1 296260−333270 10% 5% −0.0499 −0.6908 0.03445

2 333280−339080 10% 5% −0.0502 −0.6963 0.03493

3 339090−343200 10% 8% −0.0236 −0.2702 0.00638

4 343210−346760 10% 10% 0.0009 0.0089 0.00001

5 346770−350070 10% 10% 0.0016 0.0155 0.00002

6 350080−353310 10% 10% 0.003 0.0298 0.00009

7 353320−356890 10% 11% 0.006 0.0579 0.00034

8 356900−361020 10% 11% 0.0114 0.1081 0.00124

9 361030−366720 10% 13% 0.027 0.2388 0.00644

10 366730−407000 10% 17% 0.0736 0.5517 0.04062

PSI= 0.12453

Table 9 Deposits table

Bin Deposits %Base %TTD (1) (2) (1)*(2)
B Decile Range Q P P-Q ln(P/Q) Part PSI

1 −63520 10% 28% 0.1799 1.0292 0.18514

2 49320−58140 10% 8% −0.0197 −0.2188 0.0043

3 58150−64460 10% 8% −0.0204 −0.2281 0.00465

4 64470−69860 10% 8% −0.0201 −0.2248 0.00453

5 69870−74880 10% 8% −0.0206 −0.2311 0.00477

6 74890−80020 10% 8% −0.0194 −0.2151 0.00416

7 80030−85460 10% 8% −0.0205 −0.2295 0.00471

8 85470−91730 10% 8% −0.0195 −0.2168 0.00422

9 91740−100590 10% 8% −0.0198 −0.2199 0.00434

10 100600−153830 10% 8% −0.02 −0.2229 0.00445

PSI= 0.22527

Table 10 CBM score table

Bin CBM score %Base %TTD (1) (2) (1)*(2)
B Decile range Q P P-Q ln(P/Q) Part PSI

1 378−545 10% 22% 0.1211 0.8002 0.09691

2 546−567 10% 10% 0.0013 0.0131 0.00002

3 568−583 10% 10% 0.0003 0.0026 0.00000

4 584−597 10% 10% 0.0001 0.0007 0.00000

5 598−609 10% 10% 0.0000 0.0002 0.00000

6 610−622 10% 10% 0.0000 0.0001 0.00000

7 623−635 10% 10% 0.0000 0 .0000 0.00000

8 636−651 10% 8% −0.0237 −0.2674 0.00632

9 652−673 10% 5% −0.0499 −0.6815 0.03397

10 674−823 10% 5% −0.0493 −0.6865 0.03385

PSI= 0.17108
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Table 11 Ad response table

Bin Ad response %Base %TTD (1) (2) (1)*(2)
B Decile range Q P P-Q ln(P/Q) Part PSI

1 4630−6680 5% 15% 0.0952 1.0604 0.10097

2 6690−6970 5% 5% −0.005 −0.105 0.00053

3 6980−7170 5% 5% −0.0049 −0.1017 0.0005

4 7180−7320 5% 4% −0.0051 −0.1123 0.00058

5 7330−7450 5% 4% −0.0045 −0.0962 0.00043

6 7460−7570 5% 5% −0.0052 −0.1095 0.00057

7 7580−7680 5% 4% −0.005 −0.1062 0.00053

8 7690−7790 5% 5% −0.0051 −0.1035 0.00053

9 7800−7890 5% 4% −0.0049 −0.1078 0.00053

10 7900−7990 5% 5% −0.0046 −0.0965 0.00045

11 8000−8090 5% 4% −0.0046 −0.099 0.00045

12 8100−8200 5% 5% −0.0054 −0.1035 0.00055

13 8210−8300 5% 4% −0.0052 −0.1159 0.0006

14 8310−8410 5% 4% −0.0049 −0.1058 0.00052

15 8420−8530 5% 5% −0.0051 −0.1063 0.00054

16 8540−8670 5% 5% −0.0053 −0.1067 0.00056

17 8680−8820 5% 4% −0.0047 −0.1016 0.00048

18 8830−9010 5% 4% −0.0051 −0.1104 0.00057

19 9020−9310 5% 5% −0.0054 −0.1103 0.00059

20 9320−11670 5% 4% −0.0052 −0.1104 0.00057

PSI= 0.11105

Table 12 Sales volume table

Bin Sales volume %Base %TTD (1) (2) (1)*(2)
B Decile range Q P P-Q ln(P/Q) Part PSI

1 296260−328560 5% 2% −0.0252 −0.6996 0.01759

2 328570−333270 5% 3% −0.0247 −0.682 0.01687

3 333280−336510 5% 2% −0.0249 −0.6919 0.01724

4 336520−339080 5% 2% −0.0253 −0.7006 0.01769

5 339090−341270 5% 3% −0.024 −0.652 0.01562

6 341280−343200 5% 5% 0.0003 0.0066 0.00000

7 343210−345020 5% 5% 0.0004 0.0085 0.00000

8 345030−346760 5% 5% 0.0005 0.0093 0.00000

9 346770−348440 5% 5% 0.0008 0.0153 0.00001

10 348450−350070 5% 5% 0.0008 0.0157 0.00001

11 350080−351690 5% 5% 0.0012 0.0235 0.00003

12 351700−353310 5% 5% 0.0018 0.0359 0.00007

13 353320−355050 5% 5% 0.0026 0.0508 0.00013

14 355060−356890 5% 5% 0.0033 0.0645 0.00021

15 356900−358800 5% 5% 0.0045 0.086 0.00039

16 358810−361020 5% 6% 0.0069 0.1291 0.00089

17 361030−363540 5% 6% 0.0096 0.1757 0.00169

18 363550−366720 5% 7% 0.0174 0.298 0.00518

19 366730−371400 5% 8% 0.0343 0.5222 0.01792

20 371410−407000 5% 9% 0.0393 0.5796 0.02276

PSI= 0.13429
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