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Abstract—We use a region-specified machine learning 

approach to inverse design highly absorptive multilayer plasmonic 

nanoparticles. We demonstrate the design of particles with a wide 

range of absorption to scattering ratios (i.e., cloaked absorbers 

and bright absorbers) and for different visible wavelengths. 

Keywords—convolutional neural networks, scattering and 

absorption, nanoparticles, inverse design, machine learning. 

I. INTRODUCTION 

Machine learning has shown a great potential to accelerate 
photonic modeling and inverse design [1]. The neural network 
is trained to learn the underlying dynamics of the wave-matter 
interaction and subsequently the trained network is used to 
design photonic systems with the desired performance. This 
process is different from iterative optimization approaches and 
does not require continuous access to a photonic simulator.  

Here, we report using convolutional neural networks (CNN) 
to inverse design multilayer plasmonic nanoparticles 
maintaining high absorption levels. Simultaneously, our model 
controls the relative absorption to scattering ratio ranging from 
small (cloaked absorbers) to large (high-scattering absorbers) 
ratios.  

II. ELECTROMAGNETIC AND MACHINE LEARNING MODELS 

The studied physical platform is a three-layer plasmonic 
nanoparticle. Three scaling factors are defined to describe the 
geometry of the particle. The spectral responses of the particle 
(absorption and scattering metrics) are considered as the input 
data for a residual one-dimensional CNN and the three scaling 
factors ( 1,2,3α ) are the outputs of the network, as illustrated in 

Fig. 1. A schematic of the particle is shown in the inset of Fig. 
2a. Layer radiuses are related to scaling factors as 

31
700nmrα =

, 
22 3

r rα = , 
13 2
r rα = allowing us to work with normalized 

design parameters. The model is trained in Adam with mean 
squared error as loss function [1]. More details about the 
network can be found in [3]. The training dataset consists of 
2310 nanoparticles with maximum diameter of 280 nm. 
Consequently, the spectral response of the particles is more 
dynamic toward shorter wavelengths (near 350 nm) and 
featureless toward longer wavelengths (near 700 nm). Out of the 
2310 particles, we picked 1452 particles (removing those with 
extremely high 

Ratio
σ ). The datapoints are then augmented by 25 

fold by defining various regions of interest [3], [4].  

 
Fig. 1. The implemented CNN: The desired spectral response is the input and 

the three scaling factors are the outputs of the network.  

We consider plane wave illumination and calculate the 
scattering and absorption response of the particles using the first 
ten Mie coefficients [5]. We are interested in particles that can 
efficiently absorb the incident wave (modeling a good antenna 
or emitter) with low (or high) scattering levels [6]. Therefore, 
we define two normalized metrics that are independent of the 
particle size, as follow, 

 abs abs
Norm Ratio

1, abs-max scs

,
σ σ

σ σ
σ σ

= = ⋅  (1) 

Here 
Norm

σ  is the ratio between the absorption cross section 

of the particle (
abs

σ ) and the maximum theoretically attainable 

dipolar absorption ( 2

1, abs-max 3 8σ λ π= ), while 
Ratio

σ  is the ratio 

between absorption and scattering cross sections. Throughout 
the next section, we fix 

Norm
σ  at one, pushing the particle to 

absorb as much as a conjugate matched dipole. By using a 
machine learning model, we aim to show that 

Ratio
σ  can be 

independently controlled while maintaining high absorption, 
consistent with previous theoretical studies [6].  

III. RESULTS AND DISCUSSIONS 

We assess the performance of the model through two 
separate test samples. For the first group of test samples, we 
randomly pick four sets of scaling factors (as reported in Table 
I), and use Mie theory to generate the scattering and absorption 
spectrums,

Norm
σ , and 

Ratio
σ  metrics of the corresponding 

particles (solid lines in Fig. 2). The generated metrics are then 
used as the inverse design goals and fed into the trained network 
as inputs. In addition, for each case we select a desired spectral 

Channels/Kernel size
C

o
n

v
1
D

 (
2

0
0

)

64/1

R
e
sB

lo
c
k
1

D
 (

2
0

0
)

128/25

R
e
sB

lo
c
k
1

D
 (

1
0

0
)

128/20

R
es

B
lo

ck
1

D
 (

5
0
)

256/10

R
e
sB

lo
c
k
1

D
 (

2
5

)

128/8

R
es

B
lo

ck
1

D
 (

1
2
)

64/6

Max pool 

/ 2

Dense

(1024)

Dense

(256)

Dense

(64)

Dense

(3)

1α

2α

3α

This material is based upon work supported by the National Science 
Foundation under Grant No. 2138869 and the Chapman Faculty Opportunity 

Fund (2021). 

 



window and as such, the solid lines in Fig. 2 are limited to only 
specific wavelength regions. The predicted scaling factors from 
the network are reported in Table I. We use Mie theory once 
again with these predicted scaling factors and generate

Norm
σ  and 

Ratio
σ  metrics, as shown by dashed lines in Fig. 2. While these 

metrics are plotted across the 350-700 nm range, we are only 
interested in the corresponding window set by the input.  

TABLE I.  EXACT AND PREDICTED SCALING FACTORS FOR THE DATA 

PRESENTED IN FIG. 2. 

Panel # (Fig.2) (a) (b) (c) (d) 

1
α : exact, predicted 0.12,0.13 0.13,0.14 0.18,0.19 0.09,0.07 

2
α : exact, predicted 0.74,0.72 0.56,0.54 0.38,0.42 0.23,0.11 

3
α : exact, predicted 0.08,0.08 0.22,0.12 0.48,0.48 0.6,0.51 

 
Inspecting Fig. 2, it can be seen that the network successfully 

designs particles that mimic the desired 
Norm

σ  and 
Ratio

σ  metrics. 

In addition, the retrieved values of scaling factors reported in 
Table I are close to the exact ones. This is an important 
validation step for the performance of the network, especially 
considering that we use a small training dataset.  

For the second set of test samples we aim to design highly 
absorptive particles with 

Norm
1σ =  and across two spectral 

windows of 350-367.5 nm and 437.5-455 nm. In each case we 
consider 

Ratio
0.25σ =  and 

Ratio
4.75σ = , corresponding to near 

cloaked (low-scattering) and bright (high-scattering) particles. 
The desired spectrum is assumed to be flat across the spectral 
window, however the performance may be improved by 
considering more realistic spectral responses [3], [4]. Relying on 
previous theoretical predictions [6], we expect to achieve the 
desired design goals (at least) across shorter wavelengths where 
the particle sizes allow for the excitation of higher order modes.  

 

Fig. 2. 
Norm

σ  (black) and 
Ratio

σ  (orange) metrics calculated using Mie 

theory for the exact (solid lines) and predicted (dashed lines) scaling factors 

reported in Table I. Inset of panel (a) shows the configuration of the three-layer 
particle. (Core and outer shell: silicon dioxide, middle layer: silver). 

 

Fig. 3. Predicted 
Norm

σ  (black-dashed) and 
Ratio

σ  (orange-dashed) metrics 

to achieve 
Norm

1σ =  and (a,c) 
Ratio

0.25σ = , (b,d) 
Ratio

4.75σ =  across two 

different spectral windows. The desired responses are shown with solid lines.   

Figure 3 illustrates the performance of the network in the 
inverse design of such “non-physical” spectral responses. As 
expected, for wavelengths between 350-367.5 nm (Fig. 3a, b), 
the inverse designs nicely follow the desired high levels of 
absorption, albeit with different line shapes. The scattering 
levels (captured in 

Ratio
σ ) also follow the desired low (panel a) 

and high (panel b) values. For wavelengths between 437.5-455 
nm (Fig. 3c, d), the relative radiuses of the particles in the 
training dataset are smaller compared to operation wavelength. 
Consequently, the quality of the training dataset is lower, and 
the inverse designs only partially follow the desired goals (Fig. 
3c, d). In summary, we investigated the inverse design of highly 
absorptive nanoparticles across different wavelength regions 
using a small training dataset. Our findings can find applications 
in design of nanoparticles, metamolecules, and antennas, where 
the generation of training dataset can be computationally 
expensive. 
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