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Predicting trait-environment relationships for venation networks 
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Abstract.   Understanding functional trait-environment relationships (TERs) may improve 
predictions of community assembly. However, many empirical TERs have been weak or lacking 
conceptual foundation. TERs based on leaf venation networks may better link individuals and 
communities via hydraulic constraints. We report measurements of vein density, vein radius, 
and leaf thickness for more than 100 dominant species occurring in ten forest communities span-
ning a 3,300 m Andes-Amazon elevation gradient in Peru. We use these data to measure the 
strength of TERs at community scale and to determine whether observed TERs are similar to 
those predicted by physiological theory. We found strong support for TERs between all traits 
and temperature, as well weaker support for a predicted TER between maximum abundance-
weighted leaf transpiration rate and maximum potential evapotranspiration. These results pro-
vide one approach for developing a more mechanistic trait-based community assembly theory.

Key words:   abundance-weighting; Amazon basin; Andes; community assembly; community-weighted 
mean; conductance; environmental filtering; functional trait; leaf thickness; trait-environment relationship; 
vein density; vein radius.

Introduction

A major goal of trait-based ecology is to use simple 
measurements of traits to create and inform predictive 
models of community assembly (Lavorel and Garnier 
2002, McGill et al. 2006, Violle et al. 2014). The perfor-
mance of different traits should vary within environment 
(Weiher and Keddy 1999, Suding et al. 2008), because of 
either physiological limitations, species interactions 
(Cody and Diamond 1975, Connor and Simberloff 1979), 
or historical/stochastic processes not related to traits 
(Vellend and Agrawal 2010, Fukami 2015). In the first 
two cases, selection should lead to filtering of species by 
response trait values along environmental gradients 
(Díaz et al. 1998, Shipley et al. 2006, Weiher et al. 2011) 
and thus differential community assembly along environ-
mental gradients. Integrating these ideas into predictive 
community ecology requires progress in two key areas: 
identifying empirical trait-environment relationships 

(TERs) and developing theory to quantitatively predict 
them.

Establishing strong empirical TERs has been chal-
lenging. Abundance-weighted functional trait distribu-
tions may show the clearest response to climate because 
of stronger filtering on common species (Cingolani et al. 
2007) and the centrality of common species in trait space 
(Umaña et  al. 2015). However, both weighted and 
unweighted patterns are often weak. For example, the 
global leaf economics spectrum (Wright et  al. 2004) 
shows stratification across biomes (Reich et  al. 1999, 
Wright et al. 2005), but large fractions of the global range 
of ecological strategies are represented within any local 
community (Wright et al. 2004, Elser et al. 2010, Blonder 
et al. 2013, Edwards et al. 2014). Similarly, neither tem-
perature nor precipitation could explain more than 29% 
of the variance in 21 different traits (Moles et al. 2014). 
Indeed, individual traits thought to have major ecological 
importance, that are often used as proxies for overall 
growth strategy (Craine 2009, Reich 2014), also show 
highly variable and often weak or opposite relationships 
among species and locations (e.g., leaf mass per area 
Read et al. 2014).
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Some stronger relationships have unclear origins. In 
paleoclimate reconstruction, the fraction of species with 
toothed vs. entire leaves within a community predicts 
community temperature (Bailey and Sinnott 1915, Peppe 
et al. 2011), while a wider set of leaf morphological var-
iables has been used to reconstruct other climate vari-
ables (Wolfe 1993, Royer et  al. 2005). However, the 
underlying processes often remain unknown (but see 
Royer and Wilf 2006), or are driven by the colonization 
of large regions by clades showing phylogenetic niche 
conservatism (Little et al. 2010, Hinojosa et al. 2011). As 
a result, trait-environment relationships may vary 
unpredictably across regions if relationships are pri-
marily driven by shared biogeographic history and phy-
logenetic position rather than species sorting based on 
the function of that trait. Such effects limit our ability to 
use traits to predict the composition of communities in 
response to novel environmental conditions because of 
ambiguity about underlying processes and the need to 
make out-of-sample predictions (Jackson and Overpeck 
2000, Jordan 2011).

In addition to the challenges associated with discerning 
strong TERs, there is limited theory that can quantita-
tively predict them. The strongest approach would be to 
establish mechanistic linkages between traits and perfor-
mance, then between performance and fitness across envi-
ronmental contexts, which could be solved to direct 
predict relationships between traits and environment 
(Arnold 1983). There are a small number of models for 
plant performance that are based on environmental 
forcing of individuals with different trait combinations 
(Thornley 1991, Scheiter et al. 2013, Fyllas et al. 2014), or 
based on couplings between hydraulics and environment 
(Tyree and Sperry 1988, Bartlett et al. 2012, Manzoni et al. 
2013, Martínez-Vilalta et al. 2014). In other cases, models 
exist that can predict trait values, e.g., for leaf hydraulics 
(de Boer et al. 2012, Blonder and Enquist 2014), but the 
last stage - explicit linkages to fitness and environment - is 
lacking. As a result, making mechanistic linkages between 
traits and environment remains generally challenging.

Many ecological models remain largely conceptual 
rather than quantitative (Houlahan 2016). Conceptual 
models are those that yield non-specific predictions, e.g., 
a positive relationship between A and B that can be 
assessed by using linear regression. Such a model can be 
assessed by proposing a form Y = AX+B and fitting values 
of coefficients A and B, then determining if they are dif-
ferent than zero. In contrast, quantitative models are 
those that propose a fully determined model, e.g., Y = 
AX+B where the values of A and B take specific predicted 
numerical values. Such a model can be assessed by deter-
mining how observed values of Y differ from predictions. 
The key difference is that in the former case, the coeffi-
cients and form of the model are discovered from the test 
data; in the latter, both are predicted independent of the 
test data (Marquet et al. 2014). Such quantitative predic-
tions are common in physics (e.g., the orbit of a planet in 
a gravitational field), but have been more difficult in the 

more complex systems characterizing community ecology 
(Levins 1966, Levins and Lewontin 1985).

Here we ask how leaf venation network traits are 
coupled to the environment. The motivation for exploring 
vein traits is the broad evidence indicating that these net-
works are ecophysiologically linked to plant response to 
environment. Veins supply the water lost via transpiration 
through stomata, with denser venation leading to increased 
hydraulic conductance (Roth-Nebelsick et  al. 2001). In 
general, there is a coupling between hydraulic conductance 
and stomatal conductance so that water supply and 
demand are matched (Brodribb and Jordan 2011). Because 
higher stomatal conductance enables higher rates of 
carbon assimilation (Brodribb et  al. 2007), selection 
against plants with certain water-use or carbon-gain strat-
egies could result in environmental filtering on a suite of 
venation network traits. Consistent with this idea, 
venation network TERs generally appear to be strong and 
have been described for environmental gradients at both 
interspecific (Uhl and Mosbrugger 1999, Kessler et  al. 
2007, Sack and Scoffoni 2013, Blonder et al. 2016) and 
intraspecific (Blonder et al. 2013) scales. At the community 
scale, this pattern also appears to hold in New World 
tropical forests and temperate subalpine/alpine environ-
ments, with limited phylogenetic niche conservatism 
observed in venation network traits (Blonder and Enquist 
2014). At longer macroevolutionary time scales, there is 
also evidence for TERs between global environmental 
change and novel network geometries, e.g., across the 
Cretaceous (Boyce et al. 2009, Brodribb and Feild 2010).

A key composite trait for leaf venation networks is 
hydraulic path length, which determines the maximum 
distance between the epidermis and any vein (Fig. 1). This 
variable is a function of several traits including leaf 
inter-vein maximum distance (IVD, mm), leaf thickness 
(dy, mm), and vascular bundle radius (rv, mm). Lower 
hydraulic path lengths have been shown to predict higher 
leaf hydraulic conductance (Brodribb et  al. 2007), 
although several other anatomical variables, discussed in 
the Methods, are also implicated. IVD is mathematically 
related to a commonly measured trait, vein density (VD; 
mm−1), by the relationship VD * IVD = k, where k is a 
number that depends on areole geometry, and can be 
shown based on planar geometry to take a limited range 
of values 1 ≤ k ≤ 2 (Blonder et al. 2011).

TER theory focused on paleoclimate reconstruction has 
been developed to predict community climate based on 
community-weighted mean venation traits (Blonder and 
Enquist 2014). The hypothesis is that maximum leaf tran-
spiration rate (Emax) (a function of hydraulic conductance 
and thus venation network traits) should be proportional 
to maximum potential evapotranspiration (α PETmax), 
where α is a Priestley-Taylor coefficient. This model was 
algebraically solved using simple quantitative sub-models 
for Emax, α, and PETmax that predicted a nonlinear 
function for the relationship between VD and air temper-
ature. This prediction was supported in both tropical and 
temperate sites (Blonder and Enquist 2014), although 
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both similar and opposite empirical patterns have been 
found in some clades (Mason and Donovan 2015, Blonder 
et al. 2016). An open question is whether this theory can 
also provide an approach for predicting community-
weighted venation network traits from climate.

To move towards more predictive understandings of 
TERs, we present an empirical study of a 3,300 m ele-
vation gradient in eastern Peru. Venation network traits 
for Andean and Amazonian species and communities 
have been poorly described, despite the high regional bio-
diversity. We report empirical patterns of abundance and 
venation network trait variation in more than 100 dom-
inant angiosperm tree species in ten 1-ha plots. We then 
use these data to describe the strength of empirical TERs 
involving venation network traits at community scale, 
to  critically compare observations to expected TERs 
predicted by the vein-climate model, and to examine 
phylogenetic structure in observed relationships.

Methods

Study site

This study included 10 plots that belong to a group of 
permanent 1-ha plots along elevation gradients in the 
departments of Cusco and Madre de Dios in SE Peru. A 
detailed map of these plots can be found in Malhi et al. 
(in review). Six of the plots are montane plots in the 
Kosñipata Valley, spanning an elevation range 1500–
3500 m (Malhi et al., 2010), two are submontane plots 
located in the Pantiacolla front range of the Andes (range 

600–900  m) and two plots are found in the Amazon 
lowlands in Tambopata National Park (elevation range 
200–225  m). The elevation gradient is very moist 
(Table 1), with seasonal cloud immersion common above 
1,500 m elevation (Halladay et al. 2012).

The plots are part of a long-term research effort 
coordinated by the Andes Biodiversity Ecosystems 
Research Group (ABERG, http://www.andesconserva 
tion.org) and are part of the ForestPlots (https://www.
forestplots.net/) and Global Ecosystems Monitoring 
Network (GEM; http://gem.tropicalforests.ox.ac.uk/pro 
jects/aberg) networks. Plots were established between 
2003 and 2013 in areas that have relatively homogeneous 
soil substrates and stand structure, as well as minimal evi-
dence of human disturbance (Girardin et al. 2014a).

Census and abundance data

Within each plot, all stems ≥10 cm diameter at breast 
height were tagged, sized, and identified to species-level 
by William Farfan and Miles Silman during a 2013 or the 
most recent year before 2013 tree census, and then 
recorded in the ForestPlots database (https://www.for 
estplots.net). A subset of these stems were selected based 
on their abundance for trait sampling. These individuals 
were examined and potentially renamed by taxonomic 
experts at the Carnegie Institution for Science (https://
cao.carnegiescience.edu/spectranomics) (Malhi et al., in 
review). Abundances for each taxon within each plot were 
then calculated using the revised names as summed basal 
area across all stems.

Fig. 1.  Conceptual diagram of a proposed trait-environment relationship. Intervein maximum distance (IVD), vein radius (rv), 
and leaf thickness (dy) combine geometrically to determine the hydraulic path length, Dm. Lower values of Dm reduce the distance 
water travels between a vein and an evaporative surface, and thus increase the maximum hydraulic conductance. Higher conductance 
can in turn increase the maximum transpiration rate (Emax). The model proposes that when potential evapotranspiration (α PETmax; 
above-leaf gradient) in the environment is high, Emax should also be high (below-leaf gradient), driving lower values of Dm. Variation 
in Dm can be achieved by variation in VD, rv, dy, and other anatomical traits. [Colour figure can be viewed at wileyonlinelibrary.
com]

Dm dy/2
rv

IVD

αPETmax

Dm

Emax

http://www.andesconservation.org
http://www.andesconservation.org
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http://gem.tropicalforests.ox.ac.uk/projects/aberg
https://www.forestplots.net
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http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


1242 Ecology, Vol. 98, No. 5BENJAMIN BLONDER ET AL.

Trait sampling approach

From April–November 2013, we measured plant traits 
as part of the CHAMBASA (CHallenging Attempt to 
Measure Biotic Attributes along the Slopes of the Andes) 
project. Based on census data for 2013 or the most recent 
census year before 2013, a sampling protocol was adopted 
wherein species were sampled that maximally contributed 
to plot basal area (a proxy for plot biomass or crown area). 
We aimed to sample the minimum number of species that 
contributed to 80% of basal area, although in the diverse 
lowland forest plots we only sampled species comprising 
60–70% of plot basal area. Within each sampled species in 
each plot, five trees in upland sites and three trees in 
lowland sites were chosen for sampling. If three trees were 
not available in the chosen plot, we sampled additional 
individuals of the same species from an area immediately 
surrounding the plot. Using single rope tree climbing tech-
niques, we sampled one fully sunlit canopy branch and a 
fully shaded branch where possible, each at least 1  cm 
diameter, from each tree. Across all plots, approximately 
40% of trees had also shade branches sampled (some trees 
had no shade branches available). From each branch, we 
measured five leaves from simple-leaved species, or five 
individual leaflets from compound-leaved species (both 
referred to as “leaf” below) for trait measurements. 
Branches and leaves with minimal damage were chosen.

For this study, data are reported for only angiosperms, 
because the TER model described below is not neces-
sarily applicable to gymnosperms and ferns with differing 
physiologies. However angiosperms do comprise the 
overwhelming majority of biomass and number of indi-
viduals across these plots (Malhi et al. in review).

Trait measurements

Area shrinkage (S; m2 m−2).—We calculated the frac-
tion of leaf area that was lost upon drying (varying from 
0 to 1). We used the supplementary data provided by 
Blonder et al. (2012) to calibrate a leaf-level shrinkage 
using a random forest regression model with leaf mass 
per area, fresh lamina area and leaf thickness as predic-
tor variables. This model explained 46.6% of the vari-
ation in the calibration data. On application to leaves 
from this dataset, it yielded shrinkage values of S = 0.12 
± 0.05 SD.

Leaf thickness (dy; mm).—We measured the thickness 
of each leaf in the field immediately after collection using 
a micrometer (Tresna, 211-101F). Measurements were 
taken on the lamina, avoiding primary, secondary, and 
tertiary veins.

Vein density and intervein distance (VD, mm−1; IVD, 
mm).—Using pressed dried leaf material, we prepared 
a slide-mount of each leaf’s venation network follow-
ing standard chemical clearing and staining protocol, 
with leaf epidermal layers removed using a small brush T
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(Pérez-Harguindeguy et  al. 2013). We then photo-
graphed each slide-mounted leaf using a Olympus SZX-
12 microscope with transillumination and coupled to a 
Canon T1i digital camera. Images were obtained with 
a final resolution of 179 pixels mm−1, with a full extent 
of 12.8 mm × 19.3 mm. Images were enhanced using in 
MATLAB by applying contrast limited adaptive histo-
gram equalization to the green channel of each image, 
using a sliding window of 200 pixels and a gain of 0.01. 
We traced all veins within a well-cleared polygonal re-
gion of interest of each image (mean area 36 ± 23 SD 
mm2). We calculated VDraw in MATLAB by dividing 
the total length of the skeletonized traced veins by 
the total area of the region of interest. We calculated 
IVDraw by performing a Euclidean distance transfor-
mation on the skeletonized image. Within each areole, 
the maximum of this distance transformation is equiv-
alent to the maximum distance from a vein. We then 
calculated IVDraw as the mean of this distribution. We 
then corrected raw measurements for shrinkage using a 
factor using the relationship between areal and linear 
scales as

Vein radius (rv; mm).—On each cleared leaf image, we 
randomly selected 50 vein segments from the ultimate 
venation network with a MATLAB program. We then 
measured the maximum diameter of each vein segment 
using a software ruler tool and calculated a raw diameter 
as the median of this distribution (rv,raw; mm) for each 
image. We then multiplied by a shrinkage factor, yielding

Hydraulic path length (Dm; μm).—We estimated the 
approximate hydraulic path length for water flow away 
from veins through the mesophyll towards an evapora-
tive surface via apoplastic pathways (Fig. 1) as

Here X and Y are horizontal and vertical distances 
through the mesophyll via apoplastic pathways. 
Following (Brodribb et al. 2007), we assume that indi-
vidual cells have dimensions Cx and Cy.These terms then 
can be written as

Here v and t are distances that can be related to func-
tional traits as

parsimoniously assuming that veins are located halfway 
between the abaxial and adaxial surface of the leaf, where 
θ is the angle between the plane of the leaf and the origin 
point of the maximum-length minimum path from the 
vein to the epidermis, and where the factor of 1,000 con-
verts mm to μm. An exact but complex expression for θ 
can be found by solving for dDm

dθ
=0, or alternatively, an 

approximate solution can be obtained assuming that the 
maximum-length path proceeds between the horizontal 
and vertical, i.e., θ = π/4. Eq. 3 therefore simplifies to

Estimated leaf hydraulic conductance (Kest; mmol H2O 
m−2 s−1 MPa−1).—We estimated maximum leaf hydrau-
lic conductance following the data of Brodribb et  al. 
(2007) as

Leaf hydraulic conductance also depends on several 
physiological and environmental variables beyond 
venation network traits such as xylem conduit number/
size, bundle sheath anatomy, etc. (Rockwell et al. 2014, 
Buckley et al. 2015, Simonin et al. 2015). However, the 
model of Eq.  7 fits a wide set of species and does not 
require additional labor-intensive anatomical measure-
ments. It therefore provides a first approximation for 
how venation networks constrain water flow within a 
leaf.

Gap-filling.—A small number (<10%) of trait measure-
ments for leaf mass per area, fresh lamina area, and dy 
were missing at random. We filled missing values using 
multiple imputation via chained equations, with predic-
tive mean matching. We imputed 10 datasets for a matrix 
including these variables, plot code and sun/shade status. 
We then used mean values across these replicates to gap-
fill missing observations in the original data matrix.

A physiological model for TERs

We tested a simplified version of the Blonder and 
Enquist (2014) TER model. This model proposed 
that  leaves have a physiological capability for transpi-
ration that matches the climate-determined potential 
evapotranspiration in the leaf’s microenvironment. This 
model effectively assumes that the capacity for high 
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transpiration rates can be adaptive in terms of supporting 
carbon assimilation under some environmental condi-
tions. The model in its most general form can be expressed 
as

where Emax is maximum leaf transpiration rate, α is a 
Priestley-Taylor coefficient that depends climate and 
forest structure (Priestley and Taylor 1972), and PETmax 
is maximum potential evapotranspiration. The model’s 
does not include a correction for leaf area index because 
the water supply-demand matching is assumed to occur 
at leaf scale.

The original presentation of the model expanded 
αPETmax into a set of nonlinear terms that could be 
related to latitude, temperature, [CO2], and a range of 
other leaf physiological variables, e.g., optimal stomatal 
control parameters. Most of these parameters were orig-
inally assumed to take constant values, despite evidence 
that they empirically vary across contexts and poten-
tially co-vary with each other. The rationale for this 
choice was that the model was built for reconstructing 
paleoclimate, i.e., inferring climate from traits. In this 
context, only a small set of venation traits would be 
available from fossils and all other model parameters 
would be unknown.

However, this parameter-heavy approach can be criti-
cized in the present context of predicting community trait 
distributions from climate, i.e., in exploring how environ-
mental filtering on traits may drive community assembly. 
In this case much of complexity of the original model 
presentation can be avoided, because αPETmax can be 
directly calculated from weather station data. We build 
directly on the model’s fundamental Eq. 8, and assume 
that αPETmax is a measured quantity, and that maximum 
transpiration can be expressed as the product of Kest, the 
hydraulic conductance, and ΔΨls, the water potential 
gradient from stem xylem to leaf (Sack and Holbrook 
2006) under maximum transpiration conditions. This 
yield the relationship:

Combining Eqs 7–10, a simplified TER is obtained as:

Equation  11 predicts that, all else being held 
constant, sites with higher potential evapotran
spiration should have higher vein density or lower 

inter-vein distance, large vein radii, and/or lower leaf 
thicknesses.

There are an infinite number of ways for the venation 
traits to satisfy Eq. 10. As such, rv, dy, and VD or IVD are 
all potentially mutually uncorrelated. However natural 
selection may lead to correlations between these variables 
(Blonder et  al. 2013). For example, some species may 
have high rv to provide resistance to herbivory, while 
others may have high dy to provide additional water 
capacitance. Alternatively, variables may be coordinated 
because of selection on integrated phenotypes. For 
example, optimal water transport should lead to an even 
supply of water throughout the leaf, suggesting that 
regions between or above the leaf veins should not be 
oversupplied or undersupplied (Fig.  1; Noblin et  al. 
2008). Assuming that veins are located midway between 
the upper and lower surfaces of the leaf (not always the 
case but a useful approximation Wylie 1946), this leads 
to the prediction that

If this relationship holds, then the dimensionality of 
the trait space will be reduced, and α PETmax becomes a 
function of only IVD and rv.

Model parameterization

We explored the consequences of variation in the two 
unmeasured parameters of Eq. 10: Cy/Cx and ΔΨls. Both 
are labor-intensive to measure and not commonly 
available for broad comparative studies. Under the high-
transpiration conditions for which the model would 
apply, ΔΨls should take a range of values across species 
varying from approximately 0.2 to 1.0 MPa, with most 
values skewed to the lower end of this range (Choné et al. 
2001, Brodribb et al. 2002, Franks 2006, Simonin et al. 
2015). We therefore modeled it as being uniformly dis-
tributed as

Similarly, Cy/Cx can take a range of positive values. 
We used the 25–75% quantile range from (Brodribb et al. 
2007), leading to the assumed distribution:

We drew 1,000 values from each of these prior distribu-
tions and used these in Eq. 10 to estimate the 25%, 50%, 
and 75% quantiles of the posterior distribution of Eest.

Community-weighting traits

Trait distributions for IVD and VD, dy, rv, and the 
quantiles of Eest at each site were community-weighted by 
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species’ abundance, as measured by summed basal area 
across all stems (Table 1). We also repeated calculation 
of community-weighted means using only sun leaves and 
using only shade leaves.

The weight was defined as wij, for each site i and for 
each species j ≤ Ji, where Ji is the total number of species 
in plot i. We also calculated Tim, the species-at-site mean 
values of trait T for the subset of species 

{

mi

}

⊂{1,… ,Ji} 
in plot i for which trait data were available.

The weighted mean value of T in plot i was calculated 
as:

Note that because ||
|

{

mi

}

|

|

|

<Ji, this estimator is poten-

tially biased by the trait values of species that are in the 
community, but were unmeasured either because their 
abundance or biomass was low or because trait measure-
ments were unavailable. However, simulation studies 
suggest that our approach leads to <5% difference in 
means and <20% difference in variance at our 80% 
biomass sampling intensity (Paine et al. 2015).

Climate data

We obtained climate data from a set of weather sta-
tions located adjacent to each one of the study sites 
(Table 1). The most complete annual time series for most 
weather stations were for year 2013 and incoming radi-
ation, temperature, precipitation, and relative humidity 
were recorded at 30-min intervals. We used these time 
series to estimate the average daily climate. For days that 
the diurnal profile was not available, the average daily 
values were obtained by interpolating the daily param-
eters of the previous and following 3 d. Because of poor 
humidity sensor performance at TRU-04, we estimated 
relative humidity there following a calibration based on 
dewpoint temperature at WAY-01 using the methods of 
Ephrath et al. (1996).

Daily total αPET was estimated within the climate sub-
model of the Trait-based Forest Simulator model (Fyllas 
et al. submitted) at each site using the Priestley-Taylor 
(PT) model and neglecting the heat flux into the ground 
(Priestley and Taylor 1972), with additional daily param-
eters estimated following Allen et al. (1998). We corrected 
temperature for altitudinal differences using an adiabatic 
rate of 5.5°C/km (Girardin et al. 2014b) and assumed no 
change of radiation and precipitation with altitude. We 
then estimated a maximum annual value, αPETmax, as 
the daily maximum value of αPET. We converted units to 
mmol m2 s−1 from mm d−1 via a multiplicative factor of 
1.285 = 24/12 * 106/18.01/86400, where the factor of 24/12 
accounts for evapotranspiration only occurring during 
approximately 12/24 daylight hours and all other factors 
represent the direct unit conversion.

Phylogenetic analysis

We constructed a phylogenetic tree for all species for 
which trait measurements were obtained using stand-
ardized names. Voucher specimens can be viewed at 
https://cao.carnegiescience.edu/spectranomics using the 
branch codes in Data S2. We built the phyogenetic tree 
using the phylomatic function in Phylocom 4.2 (Webb 
et al. 2008) using the “R20120829” megatree. We then 
calculated approximate crown ages for each clade using 
Phylocom’s bladj function, with constraints for internal 
nodes originally provided by (Wikström et al. 2001) and 
corrected for file transcription errors by Gastauer and 
Meira-Neto (2013). We then assigned trait values to the 
tips of this tree by calculating mean trait values across 
all branches and sites for which a measurement was 
available.

Statistical analyses

We conducted all analyses in R version 3.2.2. 
Phylogenetic analyses were conducted with the ape, 
picante, and phytools packages; hierarchical variance par-
titioning with the nlme package following Messier et al. 
(2010); random forest regression with the randomForest 
package, SMA regression with the smart package.

Results

Climate variation

Across the 3,300 m elevation transect, annual temper-
atures varied from 9.0 to 24.4°C; annual precipitation 
from 1,560 to 5,300 mm, and maximum daily potential 
evapotranspiration from 6.2 to 9.2  mmol m−2 s−1. 
Elevation predicted temperature (R2  =  0.99) and α 
PETmax (R2 = 0.68), but not precipitation (R2 = 0.02).

Range of trait variation

Our final dataset included trait measurements for 811 
leaves from 130 taxa. This reflected collections at each 
site of 17  ±  6 SD species and 81  ±  18 SD branches 
(Table 1). All venation network traits showed extensive 
variation. Vein density (VD) varied from 4.8 mm−1 for 
Clusia alata  (Clusiaceae) to 21.7  mm−1 for Pourouma 
bicolor (Urticaceae) (Fig. 2), while IVD showed inverse 
variation, from 0.043  mm for Pourouma bicolor to 
0.277 mm for Clusia alata. Median minor vein radius 
(rv) varied from 0.018  mm in Rauvolfia leptophylla 
(Apocynaceae) to 0.07 mm in Clusia alata (Clusiaceae). 
Leaf thickness (dy) varied from 0.128  mm in Rinorea 
viridiflora (Violaceae) to 0.805 mm in Clusia flaviflora 
(Clusiaceae). Boxplots of trait distributions across 
individuals within each species and plot are available 
for VD (Appendix S1: Fig. S1), IVD (Appendix S1: 
Fig. S2), rv (Appendix S1: Fig. S3), and dy (Appendix S1: 
Fig. S4).
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There also were statistically significant, but biologi-
cally small, shifts in some venation network traits across 
canopy vs. shade light environments. When considering 
the distribution of differences between sun means and 
shade means for each taxon at each site, rv was higher in 

the sun (mean shift 0.001 mm, P = 0.002), dy was higher 
in the sun (mean shift 0.025 mm, P < 10−6) and IVD was 
lower in the sun (mean shift −0.003 mm, P < 0.03). The 
distribution of VD did not significantly shift with light 
(Fig. 3).

Fig. 2.  Venation network traits vary widely along the elevation gradient, including leaves from species such as (A) Pourouma 
bicolor (Urticaceeae) with VD = 22.8 mm−1 and (B) Clusia alata (Clusiaceae), with mean VD = 4.0 mm−1. Dimensions for each 
image are 19.3 mm × 12.8 mm.

A) B)

Fig. 3.  Variation in venation traits across light environments. Filled distributions indicate the distribution of sun mean minus 
shade mean values within each species, across all species-sites combinations. The null expectation of zero is shown as a black line. 
The mean of the observed distribution is shown as a solid light vertical line if significantly different from zero and dashed light line 
if not. [Colour figure can be viewed at wileyonlinelibrary.com]
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Trait intercorrelations

The venation network traits were intercorrelated with 
each other. At the leaf-level, higher VD was generally asso-
ciated with lower rv, and lower dy. However the spread was 
relatively large, with absolute values of Pearson’s r taking 
values above >0.52 for leaf-level data (Fig. 4). We repeated 
this analysis with a GLS regression on re-centered and 
scaled species-mean data employing a Brownian phyloge-
netic correlation structure. In this case, all slope estimates 
(an approximate parallel to Pearson’s r) took absolute 
values above 0.29 (Appendix S1: Table S1).

We also examined the predicted 1:1 relationship between 
dy/2 and IVD. We found a positive relationship between 
these variables (SMA regression on log-transformed data; 
R2 = 0.35, P < 10−15). Observed data were close, but not 
equal, to the prediction of zero intercept and slope of unity 
(95% confidence interval for intercept, [−0.36, −0.13]; 
slope, [0.96, 1.08]) (Appendix S1: Fig. S5).

Phylogenetic patterns

Hierarchical variance decomposition indicated that 
VD and IVD were primarily determined at family level 
(≥39% variation), while thickness and vein radius were 
primarily determined at species or intraspecific levels 
(more than 26% variation) (Fig. 5).

There was wide variation in traits across the phyloge-
netic tree (Fig. 6). In general, the lowest values of VD were 
found amongst the Clusiaceae, and the highest among the 
Fabaceae, Urticaceae, and Moraceae, while the opposite 
was true for IVD. The lowest values of rv and dy were 
found consistently among the Fabaceae, while the highest 
values of rv and dy were found among the Clusiaceae.

Most traits varied more rapidly than under a Brownian 
motion model (Blomberg et al. 2003). The K value for VD 
was 0.90; for IVD, 1.32, for rv, 0.47, for dy, 0.43 (all 
P ≤ 0.002). This result is consistent with limited evolu-
tionary constraints on most venation network traits.

Fig.  4.  Venation network trait-trait correlations. Upper panels show pairs plots, with points representing individual leaves 
shaded by plot elevation. Lower panels show Pearson correlation coefficients. For phylogenetic regression see Appendix S1: 
Table S1.
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Community-scale patterns

At community scale, abundance-weighted trait means 
showed correlations with climate. The strongest rela-
tionships were observed for temperature (all R2 >0.45, 
P < 0.05), with warmer sites associated with higher VD, 
smaller rv, lower dy, and higher Kest (Fig. 7). Relation
ships with α PETmax also existed (all R2 >0.5, P < 0.05, 
with higher water demand associated with higher VD, 
smaller rv, lower dy, and higher Emax. No relationships 
were observed between any trait variable and log10 pre-
cipitation (P  >  0.05). This latter result is unsurprising 
given the high precipitation at all sites and likely lack of 
water limitation. However, there was a clear division in 
sites, with low evapotranspiration occurring at sites in 
the cloud immersion zone (above 1,500  m) and high 
evapotranspiration occurring below sites outside this 
zone.

We also repeated this analysis for only sun leaves and 
for only shade leaves. Results were broadly consistent 
with the complete dataset (sun leaves; Appendix S1: 
Fig. S6; shade leaves, Appendix S1: Fig. S7). Shade 
leaves showed stronger relationships than seen in the 
complete dataset. For example, the R2 value for the 
mean annual temperature – VD relationship increased 
from 0.50 to 0.80, and the R2 value for the Emax and α 
PETmax relationship increased from 0.41 to 0.59. 
However, this stratified analysis is potentially biased 
because some common species had canopies with no 
sun leaves or no shade leaves and as a result only con-
tributed to the community-weighted trait in some cases. 
Nevertheless,

TER predictions

The TER model predicted a 1:1 relationship between 
Emax and α PETmax. Observations differed from the 1:1 
expectation (R2 = 0.41, P = 0.046, root mean square error 
of prediction, 1.06  mmol m−2 s−1). However, both esti-
mated coefficients overlapped the expectation of zero 
intercept and slope of unity (95% confidence interval for 
intercept, [−10.2, 3.3]; for slope, 0.0, 1.8]) (Fig.  8). 
Uncertainty due to unmeasured variation in ΔΨls and 
Cy/Cx was also important, with mean interquartile range 
variation in predicted values of Emax of 3.2 ± 1.3 mmol m−2 
s−1. While bias in these non-venation parameters could 
limit the power of the overall analysis, this bias would be 
insufficient to reject a positive relationship between Emax 
and α PETmax. Thus, the overall model was strictly falsified 
due to underestimation of Emax, but the relationship 
between these variables that was of the correct direction-
ality and of approximately the correct magnitude.

We also assessed whether Emax increased with α 
PETmax within individual species. Because of high beta 
diversity along the gradient, only 8 species had meas-
urements of Emax at more than two sites and none at 
more than four (Appendix S1: Fig. S8). Of these, 2/8 
had slopes that were significantly greater than zero 
(P < 0.05) and 1/8 had a slope that was significantly less 
than zero.

Discussion

While patterns for VD and IVD have been reported 
across climate gradients at regional scale for small sets of 
species (Uhl and Mosbrugger 1999, Kessler et al. 2007, 
Blonder et al. 2016) or globally in a meta-analysis (Sack 
and Scoffoni 2013), descriptions at the community scale 
are rare (Blonder and Enquist 2014). Our results, col-
lected at the community scale in an understudied tropical 
ecosystem, support the consensus trend of increasing VD 
and decreasing IVD, rv, and dy at lower elevations and 
higher temperatures. These traits were integrated such 
that their combined effect on Emax also led to strong 
TERs. The lack of phylogenetic signal in all traits, as evi-
denced by low Blomberg’s K values and non-zero phy-
logenetic regression slopes, suggests that these TERs are 
not likely to be driven by biogeographic constraints on 
the distributions of different clades along the elevation 
gradient. Rather, our results suggest that climate plays a 
strong mechanistic role in constraining trait values and 
thus the occurrence patterns of these angiosperm species. 
This constrasts with many of the TERs underlying pale-
oclimate reconstruction approaches (e.g., Wilf 1997, 
Little et al. 2010). The empirical TERs we report for VD, 
IVD, dy, and rv, advance understandings of trait coordi-
nation across environments and may be useful for paleo-
climate reconstruction and community assembly studies. 
They also provide novel measurements for a wide set of 
tropical rainforest taxa from the Andean and Amazonian 
region.

Fig.  5.  Variance decomposition for venation network 
traits. Fractional bar lengths indicate variance partitioned 
at  each taxonomic scale. [Colour figure can be viewed at 
wileyonlinelibrary.com]
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Within this trait correlation network, the negative rela-
tionship between VD and dy has been previously hypoth-
esized based on optimal flow arguments (Noblin et  al. 
2008). Subsequent critical examination has revealed 
inconsistent results (Blonder et al. 2011, Sack et al. 2013, 

Buckley et al. 2015). However, this study now provides 
evidence that this correlation is also found in Andean and 
Amazonian species, when using leaf half-thickness is a 
proxy for the minimum distance between vein and epi-
dermis. Also, the negative relationship observed between 

Fig. 6.  Phylogenetic relationships among taxa. Circles for each species are shaded by trait value.
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VD and rv indicates integration of venation traits con-
sistent with the findings of other phylogenetically broad 
studies (Sack et al. 2012, Feild and Brodribb 2013). This 
correlation is reasonable based on space-filling con-
straints: if a leaf reaches 1/VD = rv, then the veins will 
overlap each other (Fig. 1). This may have implications 
for the relationship between carbon gain and carbon cost 
in leaves, as total vein density may predict photosynthetic 
rate and total vein volume may predict construction costs 
(Brodribb et  al. 2007, Blonder et  al. 2011, Sack and 
Scoffoni 2013).

The lack of difference in venation network traits 
between sun and shade leaves we observed was surprising. 
Several previous studies (reviewed in Sack and Scoffoni 
2013) have found increased VD in sun leaves. A lack of 

difference has been observed in Nothofagus, but only at 
high elevations in trees with small crowns (Brodribb and 
Jordan 2011). This suggests that leaves nominally deter-
mined to be shaded or sunlit may actually experience 
similar microclimate conditions. However, this is unlikely 
to explain patterns in this elevation gradient, where quan-
titative light logger data has shown sunlit leaves are 
sunnier (A. Shenkin, personal communication). It is pos-
sible that long-lived leaves that were shaded at the time 
of collection were sunlit when they developed, but we did 
not have data to examine this possibility. Alternatively 
there may be less plasticity in vein density in these species 
than has been seen elsewhere.

The theory we tested has some utility for constructing 
hypotheses about TERs and community assembly. 

Fig. 7.  Empirical trait-environment relationships. Points represent individual species and are shaded by plot elevation and sized 
by local abundance as measured by summed basal area. Regression 95% confidence intervals are shown in gray.
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Predictions for the relationships between site-scale 
climate and leaf-scale traits were of the correct sign and 
slope relative to observed data. However, the model sys-
tematically underestimated the data, and the relationship 
between VD and MAT was statistically stronger than the 
proposed relationship between Emax and α PETmax. This 
lack of model congruence with data may arise from five 
possible causes.

First, the parameterization of the model may have 
been imprecise. Unmeasured variation in parameters 
could have shifted model predictions. Specifically, if 
values of ΔΨls were higher than proposed and values of 
Cy/Cx were lower than proposed, predictions for Emax 
could be higher, resulting in better model fit. However, 
we found that variation in these parameters within their 
assumed ranges of uncertainty would only sometimes 
yield values that would overlap the 1:1 prediction line for 
Emax and α PETmax.

Second, the model for conductance may be too simple. 
Conductance also depends on other anatomical features 
such as bundle sheath extensions and sclereids (Brodribb 
et al. 2007, Sack and Scoffoni 2013, Buckley et al. 2015), 
as well as instantaneous transpiration rate and temper-
ature (Buckley et al. 2015, Simonin et al. 2015). While the 
Brodribb et al. (2007) model provides a good fit to a phy-
logenetically broad sample of species, more detailed 
modeling of conductance could potentially further 
improve it. However, these anatomical traits are very 
time-intensive to measure, so that detailed information 
for several hundred species likely will remain out of reach 
for studies focused on community assembly.

Third, not all species in the community will expe-
rience the same value of α PETmax, as implicitly assumed. 

Variation in the environment among individuals (e.g., 
shaded canopies) could weaken the community-mean 
relationship even though relationships at individual 
scale might still be strong. Previous studies have demon-
strated venation network trait differences between sun 
and shade leaves (reviewed in Sack and Scoffoni 2013). 
In this dataset, we found sun-shade differences in some 
venation network traits, and evidence for stronger 
TERs within shade and sun leaves compared to within 
the entire dataset. However, we did not find consistent 
evidence intraspecific venation network TERs, despite 
evidence for these in other systems (Blonder et al. 2013, 
2015). However, the, high Andean beta diversity and the 
taxonomic breadth of our study necessarily led to 
limited within-species replication. Thus it seems pos-
sible that measuring microclimate variation may help to 
improve the strength abundance-weighted TERs.

Fourth, the model’s assumption about leaf-scale tran-
spiration matching (Eq. 10) may not hold for species that 
have conservative water-use strategies. However, the 
high precipitation (>1,500 mm yr−1) at all communities 
suggests that these strategies are unlikely here. Selection 
may not be occurring on hydraulic capacity, but instead 
on hydraulic vulnerability. A previous study on ever-
green angiosperms in the same Peruvian environments 
showed that species’ climatic limits are consistent with 
linkages between hydraulic vulnerability and rainfall 
(Blackman et al. 2011). Hydraulic capacity may therefore 
be an important, but not complete, predictor of environ-
mental filtering.

Fifth, the underlying data for potential evapotranspi-
ration may have been limited. Data were only available for 
1 yr and may not have been representative of the long-term 

Fig. 8.  Test of the prediction that maximum abundance-weighted mean transpiration (Emax) is equal to maximum potential 
evapotranspiration (α PETmax). Abundance-weighted mean values of Emax at each site take distributions that reflect propagated 
uncertainty due to leaf-stem water potential gradient ΔΨls and cell elongation ratio Cy/Cx: black dots indicate medians and bars 
indicate 25% and 75% quantiles. Points represent medians for individual species and are shaded by plot elevation and sized by local 
abundance as measured by summed basal area. The 1:1 prediction is shown as a gray line; linear regression through median Emax 
values is shown as a solid black line with gray 95% prediction confidence envelope.
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means and extremes that constrain the distribution of 
species in this gradient. Both interannual variation and 
differences in cloud immersion along the gradient are 
likely to play an important and unmeasured role in evap-
otranspiration in these sites by altering vapor pressure 
deficit and suppressing transpiration (Gotsch et al. 2016) 
or by altering the water available for (and the direction of) 
hydraulic conductance through the direct uptake of water 
through leaves (Goldsmith et al. 2013). Leaf-level, whole 
plant and ecosystem transpiration are known to vary 
along tropical montane elevation gradients where cloud-
iness plays a considerable role (Gotsch et al. 2016). This 
may provide an explanation for why several TERs demon-
strated abrupt jumps in trait values at the cloud boundary. 
However, the role of clouds was not directly examined 
here beyond their effects on microclimate (e.g., vapor 
pressure deficit, temperature, and insolation) for statis-
tical reasons because of the high covariation between tem-
perature and cloudiness in this system.

Taken as a whole, the utility of the Blonder and Enquist 
(2014) model for quantitatively predicting TERs remains 
tentative but promising: predictions of the TER slope are 
correct, but predictions for the TER intercept are biased. 
The observation that any correlations are observed at all, 
despite the data challenges and approximations inherent 
to broad comparative studies, suggests that the model 
deserves further examination. Quantitative theories are 
by their nature easy to falsify, but falsified predictions 
indicate a need to refine theory, refine data, or propose 
alternatives. Doing any of these remains an ongoing and 
important challenge.

We have shown that a number of traits linked to leaf 
venation networks are coordinated with each other and 
with climate gradients, leading to strong abundance-
weighted TERs, and that at the community scale, the 
empirical TER between abundance-weighted maximum 
transpiration rate (as modeled using venation network 
traits) and potential evapotranspiration was close, but 
not equal, to the 1:1 prediction. These results offer an 
empirical perspective on the drivers of leaf traits across 
an Andes-Amazon elevation gradient and also highlight 
the challenges inherent to developing trait-based climate 
reconstruction and community assembly.
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