Rapid Increase in Genetic Diversity in an Endemic Patagonian Tuco-Tuco Following a Recent Volcanic Eruption

Jeremy L. Hsu
Chapman University, hsu@chapman.edu

Sharon Kam
Stanford University

Mauro N. Tammone
Centro Nacional Patagónico

Eileen A. Lacey
University of California, Berkeley

Elizabeth A. Hadly
Stanford University

Follow this and additional works at: http://digitalcommons.chapman.edu/sees_articles

Part of the Biodiversity Commons, Biology Commons, Genetics Commons, Other Animal Sciences Commons, and the Zoology Commons

Recommended Citation

Jeremy L. Hsu, Sharon Kam, Mauro N. Tammone, Eileen A. Lacey, Elizabeth A. Hadly; Rapid increase in genetic diversity in an endemic Patagonian tuco-tuco following a recent volcanic eruption. *J Mammal* 2017; 98 (3): 779-792. doi: 10.1093/jmammal/gyx008
Rapid Increase in Genetic Diversity in an Endemic Patagonian Tuco-Tuco Following a Recent Volcanic Eruption

Comments
This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Journal of Mammalogy, volume 98, issue 3, in 2017 following peer review. The definitive publisher-authenticated version is available online at DOI: 10.1093/jmammal/gyx008.

Copyright
American Society of Mammalogists
Rapid increase in genetic diversity in an endemic Patagonian tuco-tuco following a recent volcanic eruption

Jeremy L. Hsu*, Sharon Kam, Mauro N. Tammone, Eileen A. Lacey, and Elizabeth A. Hadly

Department of Biology, Stanford University, Stanford, CA, USA (JH, SK, EAH)
Unidad de Investigación Diversidad, Sistemática y Evolución, Centro Nacional Patagónico (CENPAT-CONICET), Puerto Madryn, Chubut, Argentina (MT)
Programa de Estudios Aplicados a la Conservación (CENAC-PNNH, CONICET), Bariloche, Río Negro, Argentina (MT)

Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, USA (EAL)
Senior Fellow, Woods Institute for the Environment, Stanford University, Stanford, CA, USA (EAH)
Senior Fellow, Center for Innovation in Global Health, Stanford University, Stanford, CA, USA (EAH)

*Corresponding author

E-mail: hsu@chapman.edu (JLH)

Present address: Chapman University, 1 University Dr, Orange, CA 92866

Running header: Rapid genetic change in Patagonian rodents
Catastrophic natural events can have profound impacts on patterns of genetic diversity. Due to the
typically unpredictable nature of such phenomena, however, few studies have been able to
directly compare patterns of diversity before and after natural catastrophic events. Here, we
examine the impacts of a recent volcanic eruption in southern Chile on genetic variation in the
colonial tuco-tuco (*Ctenomys sociabilis*), a subterranean species of rodent endemic to the area
most affected by the June 2011 eruption of the Puyehue-Cordón Caulle volcanic complex. To
provide a comparative context for interpreting changes in genetic variation in this species, we
also analyze the effects of this eruption on genetic variation in the geographically proximate but
more widely distributed Patagonian tuco-tuco (*C. haigi*). Our analyses indicate that while both *C.
sociabilis* and *C. haigi* displayed significant post-eruption decreases in population density, the
apparent impacts of the eruption on genetic diversity differed between species. In particular,
genetic diversity at multiple microsatellite loci increased in *C. sociabilis* after the eruption while
no comparable post-eruption increase in *C. haigi* was observed at these loci. No changes in post-
eruption diversity at the mitochondrial cytochrome b locus were detected for either species. To
place these findings in a larger spatio-temporal context, we compared our results for *C. sociabilis*
to genetic data from additional modern and ancient populations of this species. These
comparisons, combined with Bayesian serial coalescent modeling, suggest that post-eruption
gene flow from nearby populations represents the most probable explanation for the apparent
increase in post-eruption microsatellite diversity in *C. sociabilis*. Thus, detailed comparisons of
pre- and post-eruption populations provide important insights into not only the genetic
consequences of a natural catastrophic event, but also the demographic processes by which these
changes in genetic diversity likely occurred.

Key words: *Ctenomys*, genetic diversity, subterranean rodents, volcanic eruption
Catastrophic natural events (e.g., hurricanes, floods, earthquakes) can severely impact genetic diversity in natural populations, with such changes typically occurring within a short period of time relative to the lifespan of the affected organisms (Pujolar et al. 2011). Such catastrophic events often result in demographic bottlenecks that reduce genetic diversity and alter the selective pressures acting on populations (Akey et al. 2004). However, determining the precise demographic and genetic impacts of catastrophic events is challenging, in part because the generally unpredictable nature of such events often precludes the collection of pre- and post-catastrophic data, thereby necessitating inferences based solely on post-event sampling of populations. Because few studies have directly compared pre- and post-event data, the specific demographic processes underlying genetic responses to catastrophic change remain poorly understood (Beheregaray et al. 2003; Pujolar et al. 2011; Wilmer et al. 2011).

The June 2011 eruption of the Puyehue-Cordón Caulle volcanic complex (40.5°S, 72.2°W, Fig. 1) in southeastern Chile provides a rare opportunity to explore the demographic and associated genetic consequences of a naturally occurring catastrophic environmental event. The eruption continued for more than 2 weeks (Collini et al. 2012), releasing more than 950 million tons of tephra (ash and other organic matter) across northern Patagonia, from the Andean crest eastward to the Atlantic Ocean (Gaitán et al. 2011). The impacts on livestock in the region were substantial, with an estimated 60% decrease in populations of sheep and goats (Wilson et al. 2012). The eruption also impacted non-agricultural taxa; among exotic species, the eruption caused fluoride intoxication and reduced longevity in European red deer (Cervus elaphus) (Flueck and Smith-Flueck 2013; Flueck et al. 2014) as well as significant reductions in the population sizes of introduced vespid wasps (Masciocchi et al. 2012). Native species were also affected, as evidenced by reported reproductive abnormalities in liolaemid lizards (Boretto et al. 2012).
2014) and disruptions of both plant-pollinator relationships (Morales et al. 2014) and aquatic invertebrate communities (Lallement et al. 2014). In sum, ash fall from the Puyehue-Cordón Caulle eruption had widespread, diverse, and profound effects on the flora and fauna of northern Patagonia.

Among the native taxa impacted by the ash fall were 2 species of tuco-tucos (Rodentia: Ctenomyidae). Since 1992, the colonial tuco-tuco (*Ctenomys sociabilis*) and the Patagonian tuco-tuco (*C. haigi*) have been the subjects of intensive field research aimed at characterizing the behavior, ecology, and demography of each species (Lacey et al. 1997, 1998, 1999; Hadly et al. 2003; Chan et al. 2005; Lacey and Ebensperger 2007; Chan and Hadly 2011). As a result, data from these herbivorous, burrow-dwelling taxa provide a rare opportunity to directly assess the demographic and genetic consequences of the Puyehue-Cordón Caulle eruption. Both species breed once per annum and have a generation time of 1 year (Chan et al. 2006). The colonial tuco-tuco, listed as critically endangered by the IUCN, is endemic to a less than 1500 km² area in southern Neuquen Province, Argentina, that includes the western side of the Limay River Valley and adjacent hills (Fig. 1). In contrast, the parapatric *C. haigi* is widely distributed in the eastern Limay Valley and adjacent portions of Río Negro Province, where it occurs in habitats similar to those occupied by *C. sociabilis* (Lacey and Wieczorek 2004). Despite their close geographic proximity and use of similar habitats, the 2 species differ markedly in their behavior: *C. haigi* is solitary, with each adult occupying its own burrow system, while *C. sociabilis* is the only ctenomyid species that has been demonstrated to live in groups (Lacey et al. 1997, 1998). The long-term focal study populations for these species are located in the Limay Valley (Fig. 1), approximately 100 km east of the Puyehue- Cordón Caulle volcanic complex. As a result, both study sites experienced substantial (3-5 cm) ash fall following the 2011 eruption (Masciocchi et
Here, we examine the impacts of the 2011 eruption on the genetic variation in the populations of *C. sociabilis* that have been the focus of long-term demographic research. Specifically, we compare levels of microsatellite and cytochrome b genetic variation in pre- and post-eruption samples from these populations to assess the genetic consequences of this event. To provide a comparative context for these analyses, we also analyze pre- and post-eruption variation in the focal study population of *C. haigi*. To place our findings in a larger spatio-temporal framework, we also consider pre-eruption data on genetic variation from several additional populations of each species as well as available mitochondrial paleogenetic data from these taxa, allowing us to contrast short-term changes in genetic diversity with more extended responses to environmental change. Finally, we use Bayesian serial coalescent modeling informed by demographic and genetic data from our study to identify population processes that may have contributed to post-eruption changes in genetic diversity. Collectively, these analyses offer important insights into the demographic processes underlying the immediate genetic consequences of a natural catastrophic event.

Materials and Methods

Sample collection and demographic analysis.—Non-destructive tissue samples from *C. sociabilis* and *C. haigi* were collected during the austral summers (November-January) of 1993-1998 and 2011-2013 (designated as pre- and post-eruption, respectively), following the trapping and sampling procedures described in Lacey (2001). We analyzed samples from 85 individuals (54 pre-eruption, 31 post-eruption) from the focal population of *C. sociabilis* at Estancia Rincon
Grande and 62 individuals (45 pre-eruption, 17 post-eruption) from the focal population of *C. haigi* at Estancia San Ramon (Table 1; Fig. 1). These localities have been the focus of an intensive annual mark-recapture program since 1992 and thus genetic analyses of samples from these populations could be linked to pre- and post-eruption demographic information from the same animals (E. A. Lacey pers. obs.). To gain a more comprehensive picture of pre-eruption genetic variation in these focal populations, we also included data from an additional 20 individuals per species from the pre-eruption time period; genotypes for these individuals were generated as part of Lacey (2001). Given that sampling between the pre- and post-eruption periods was separated by over a decade, none of the individuals included in the pre-eruption sampling were present during or after the eruption. To assess the potential impacts of including individuals of different ages in our analyses, we segregated the data set by age (adult versus juvenile), ran separate analyses for each age class, and then compared the results from these partitioned data sets to those from the full data set.

To place our comparisons of genetic variation in a broader spatial context, we included samples from 4 additional populations (hereafter referred to as ancillary populations) of *C. sociabilis* (*n* = 42 individuals) and 2 additional populations of *C. haigi* (*n* = 25 individuals) collected between 1993 and 1998, during the pre-eruption time period (Fig. 1, Table 1). We defined a population as a contiguous set of burrows that was spatially distinct from other collections of burrows. These populations were clearly defined ecologically, given the distance (~1 km) between clusters. The ancillary populations were not sampled after the eruption due to difficulties accessing these sites under post-eruption conditions. Thus, direct comparisons of pre- and post-eruption genetic variation were not possible for these localities. We have included data from these ancillary localities, however, because they provide a broader spatial perspective on
pre-eruption genetic variation. The specific subsets of samples used in each analysis are indicated in Table 1. Similarly, to provide a broader temporal context for our data, we included previously published data on mitochondrial cytochrome b variation among 34 *C. sociabilis* and 31 *C. haigi* (Chan et al. 2006) samples dating back to 12,000 years before present.

This study was carried out in compliance with all local, national, international, and institutional regulations. Permits for fieldwork were granted by the Delegación Tecnica Regional Patagonia de Parques Nacionales Argentinas and Provincia Rio Negro. All activities involving live animals were approved by the Animal Care and Use Committee at the University of California, Berkeley, and were consistent with the guidelines of the American Society of Mammalogists for the use of wild mammals in research (Sikes et al. 2016).

DNA extraction and microsatellite amplification.— DNA was extracted from tissue samples using a DNeasy Blood and Tissue extraction kit (Qiagen, Valencia, California). The success of extractions was assessed via polymerase chain reaction, with negative controls included to test for contamination. Following extraction, we amplified 5 *C. sociabilis*-specific microsatellite loci using published primers from Lacey et al. (1999) and Lacey (2001). These loci were chosen because 1) they represent the only species-specific loci known to be variable in *C. sociabilis* (Lacey 2001), and 2) they were successfully genotyped in greater than 80% of our samples, thus minimizing the potential for biases in the resulting data on genetic variation. Although other loci have been genotyped for members of both species, previous analyses indicate that *C. sociabilis* is monomorphic at these loci (Lacey et al. 1999; Lacey 2001), and thus analyses of these markers were not expected to be informative regarding the effects of the 2011 eruption. The general
reaction protocol for PCR amplification and locus-specific annealing temperatures used were the
same as those specified in Lacey et al. (1999), Lacey (2001), and Chan et al. (2005).

Microsatellite genotyping and scoring.— Following PCR amplification of microsatellite loci, all
samples were sent to Molecular Cloning Laboratories (ABI 3730XL; South San Francisco,
California) or the Stanford Protein and Nucleic Acid facility (ABI 3130XL; Stanford, California)
for genotyping. The resulting fragment lengths were analyzed and individual genotypes were
assigned using Geneious Pro (Biomatters Limited). All genotypes were determined independently
by at least 3 different individuals; any discrepancies in allele assignments were resolved by re-
genotyping the locus for the sample in question. To further ensure accurate scoring of genotypes,
approximately 20% of DNA extracts from our post-eruption samples from *C. sociabilis* were re-
amplified or re-genotyped. In addition, multiple PCR products were sequenced by ElimBio
Pharmaceuticals (Hayward, California) to confirm the presence of a microsatellite repeat;
comparing these data against reference sequences in GenBank confirmed that flanking sequences
matched those from *C. sociabilis* and *C. haigi*. Finally, all samples were independently amplified,
genotyped, and scored by the Stanford Protein and Nucleic Acid facility to provide additional
verification; as a result, all samples in our data set were genotyped and scored in duplicate. The
resulting data were examined for evidence of null alleles and allelic dropout using MicroChecker
v2.2.3 (van Oosterhout et al. 2004). Based on these analyses (van Oosterhout et al. 2004), all loci
were retained for further analyses. We then pooled our data with genotypes for 20 pre-eruption
samples from each focal population obtained from Lacey (2001) to generate a more robust data
set for analyses of genetic variation. To ensure consistency across studies, a randomly chosen
subset of these samples analyzed by Lacey (2001) (*n* = 6) was re-genotyped to confirm allelic
assignments.
Power analyses of microsatellite data.— Given the relatively limited number of microsatellite loci genotyped, we used POWSIM (Ryman and Palm 2006) to infer the statistical power of our analyses. POWSIM employs a series of empirical parameters (number of loci, number of alleles per locus, allele frequencies, and sample size), a specified number of populations, and a predetermined level of genetic diversity to estimate the power of a data set to detect genetic differentiation. POWSIM analyses were run using a range of predefined F_{ST} values (0.01, 0.025, and 0.05) to determine the power of our microsatellite data to detect potential differences in pre- and post-eruption variation in each focal population as well as to detect differences between the focal and ancillary populations of each study species.

In addition, to ensure that differences in sample sizes did not bias our comparisons of pre- and post-eruption data, we conducted a bootstrapping analysis of microsatellite genotypes using a custom R script (available upon request). For the focal population of each study species, the number of pre-eruption samples analyzed ($C. sociabilis$, $n = 74$; $C. haigi$, $n = 65$) was greater than the number of post-eruption samples ($C. sociabilis$, $n = 31$; $C. haigi$, $n = 17$). Accordingly, we randomly sub-sampled 31 and 17 pre-eruption samples for $C. sociabilis$ and $C. haigi$, respectively. This sub-sampling was repeated 1,000 times, after which bootstrapped values were compared to the observed values calculated for the entire data set to determine if estimates of microsatellite variation were impacted by sample size.

Analyses of microsatellite variation.— To characterize microsatellite variation in the study species, we tested for departures from Hardy-Weinberg equilibrium and calculated values for standard population genetic parameters (observed and expected heterozygosity, F_{IS}, F_{ST}, allelic richness and variance, genotypic differentiation, gene diversity) using GenePop (Raymond and Rousset 1995), FSTAT (Goudet 1995), and Arlequin (Excoffier and Laval 2005). Allelic richness
was calculated per locus and population with a minimum sample size of 16 individuals. All statistically significant outcomes for these and other analyses are explicitly indicated in the text of the results or associated figures.

To evaluate spatial structuring of pre-eruption genetic diversity, we examined all microsatellite data (pre- and post-eruption) from each focal population as well as data from the associated ancillary populations for each species. Samples from focal and ancillary populations had been collected during the same range of pre-eruption years (1993-1998). To explore potential temporal genetic differentiation within the focal populations, we also included data from these populations collected after the eruption (2011-2013). Assessments of potential spatial and temporal genetic differentiation among conspecifics were conducted using the analysis of molecular variance (AMOVA) test, as implemented in Arlequin. To determine if patterns of post-eruption genetic variation in *C. sociabilis* and *C. haigi* revealed evidence of a recent decrease in population size, we examined the microsatellite data for signatures of population bottlenecks following the methods of Cornuet and Luikart (1996) and Garza and Williamson (2001). Specifically, we tested for both heterozygosity excess and changes in the M-ratio, which represents the ratio of the number of alleles to the range of allele sizes (Garza and Williamson 2001). Reductions in population size are expected to reduce the number of alleles more rapidly than the range of allele sizes; thus, this ratio can reveal evidence of past bottlenecks (Garza and Williamson 2001; Peery et al. 2012).

The use of 2 analytical methods that rely on different signals of change in a putatively bottlenecked population provides additional power for detecting the effects of such historical events. We used BOTTLENECK v1.2.02 (Piry 1999) to test for heterozygosity excess in each post-eruption focal study population. We employed both a stepwise mutation model (S.M.M.)
and a 2-phase mutation model (T.P.M.) with the proportion of single mutations set at multiple values (80%, 85%, 90%, 95%) considered appropriate for microsatellite loci (Funk et al. 2010). We set the variance in mutation lengths at 0.36 and ran each test for 1,000 iterations. The significance of any apparent excess in heterozygosity was assessed using a Wilcoxon signed rank test. M-ratios were calculated with Arlequin, with critical values for this parameter determined using M-crit (Garza and Williamson 2001). We set the average size of multi-step mutations to be 3.5 with 10% multi-step mutations in the model. Based on estimates provided by Chan et al. (2006), we estimated the effective size for each focal population to be 300 individuals. We varied the mutation rate from 10^{-3} to 10^{-4}, which corresponds to the range of mutation rates typically found at microsatellite loci (Mapelli et al. 2012). Based on the equation $\theta = 4N_eM$, this thus produced values of θ ranging from 1.2 to 12. Critical M-ratio values based on these values of theta were then compared to the observed M-ratio values to determine the significance of apparent signatures of bottlenecks.

Mitochondrial DNA sequencing and analyses.— To provide a potentially different perspective on post-eruption changes in genetic variation and to enable comparisons of our pre- and post-eruption samples with paleogenetic information from the same locus in the study species (Hadly et al. 2003; Chan et al. 2005), we amplified portions of the mitochondrial cytochrome b locus (C. sociabilis, $n = 900$ base pairs [bp]; C. haigi, $n = 600$ bp) across a subset of samples from both species (C. sociabilis, $n = 45$; C. haigi, $n = 30$; Table 1). Amplification was performed using primers MVZ05 (Smith 1998) and MVZ108 (Chan et al. 2005), which were designed to encompass the regions of this locus that had been sequenced previously from paleogenetic samples (Chan et al. 2006). PCR conditions followed those of Chan et al. (2005). Sequencing of these products was completed by ElimBio Pharmaceuticals, after which the resulting sequences
were cleaned, assembled, and aligned using SeqMan (Lasergene Suite from DNASTar; Madison, Wisconsin). Putative haplotypic variants were verified via visual inspection of the associated electropherograms. All haplotypes generated were compared to cytochrome b sequences for *C. sociabilis* and *C. haigi* available in GenBank. All novel sequences generated were accessioned to GenBank (accession IDs KY013598-KY013609).

To characterize mitochondrial sequence diversity and examine potential signals of demographic change in each species, we used Arlequin to calculate Tajima’s D, Fu’s F, F_{ST} and F_{IS} values, θ_S (as defined by Watterson 1975), and θ_n (as defined by Tajima 1983) from our cytochrome b sequences. Arlequin was also used to conduct an AMOVA for each species to assess relative variation within versus among populations. To examine potential differences in haplotype distributions over time, we generated haplotype network maps using TempNet (Prost and Anderson 2011), which allows the temporal partitioning of heterochronous sequence data. We generated a temporal haplotype network with the pre- and post-eruption samples from the focal populations as distinct temporal layers. To provide a deeper temporal perspective on haplotypic variation, we pooled cytochrome b sequence data generated by this study with paleogenetic data from Hadly et al. (2003) and Chan et al. (2006) to examine potential changes in haplotype variation over the last 12,000 years. These analyses were completed using only those portions of the modern cytochrome b sequence data (*C. sociabilis*, 398 bp; *C. haigi*, 288 bp,) that corresponded to the paleogenetic sequences for each study species. Comparisons of modern and paleogenetic data were conducted using TempNet.

Bayesian serial coalescent modeling.— To explore how potential demographic processes such as changes in population size, mutation rate, and migration may have contributed to changes in genetic diversity over time, we used BayeSSC (Anderson et al. 2005) with an approximate
Bayesian computation (ABC) framework to simulate the impacts of a bottleneck on the focal study population of *C. sociabilis*. We used demographic estimates from trapping records (E. A. Lacey pers. obs.) and from Chan et al. (2006) to simulate a 52.9% decrease in population size 2 generations prior to the collection of our data set; this timeline was chosen to encompass all possible generations present at the time of our post-eruption sample. \(N_e\) prior to the bottleneck was set at 50 individuals, a conservative estimate based on our demographic data. We simulated the effects of the eruption for the microsatellite data, using a mutation rate of 0.001 mutations/generation. This figure represents the upper end of the range of mutation rates considered biologically feasible for microsatellites (Mapelli et al. 2012). We ran simulations for 1,000,000 samples and calculated the percentage of runs that displayed a change in heterozygosity matching the change observed post-eruption in our empirical data set.

We then explored the effects of changes in population size, mutation rate, and migration rate on post-eruption genetic diversity. For the microsatellite data set, we varied the prior distributions for these parameters in our simulations, which were again run for 1,000,000 samples. We applied an ABC framework with a 5% rejection threshold for the posterior distributions to determine the most likely estimates for the priors. Specifically, we compared 4 summary statistics (pre- and post-eruption observed heterozygosities and allelic variances) from the empirical data set to our posterior distributions to determine the most likely estimate (MLE) for each prior. We ran analyses using the average observed heterozygosity and allelic variance calculated across all microsatellite loci as well as the observed heterozygosity and allelic variance from the 2 loci (*Sociabilis 4* and *Sociabilis 7*) that had the largest and smallest post-eruption changes in heterozygosity, respectively (see results). Use of these extremes provided an upper and lower bound for our MLEs of priors. We varied the uniform distributions used for priors to
assess the consistency of the resulting posterior distributions and MLE values. In the event of
large variations in MLE values, we assessed the fit of standard statistical distributions (uniform,
exponential, normal, and gamma distributions) to the posterior using negative log likelihood and
Akaike Information Criteria (AIC) values and, if necessary, modified the associated prior.

The first parameter examined was population size, which was set as a uniform prior
ranging from 0 to 5,000 individuals, a conservative range chosen to encompass any biologically
feasible population size for this species. Next, to explore the impact of mutation rate, we ran
simulations with the mutation rate set as a prior and with a constant population size (pre-eruption
estimate of 50 individuals); for these runs, we used a uniform distribution of mutation rates
ranging from 0 to 0.3, which encompasses the range of substitution rates reported for mammalian
microsatellites (Yue et al. 2002; Mapelli et al. 2012). Finally, to examine the impacts of
migration, we repeated these simulations but allowed for the presence of a second population,
representing the pooled ancillary populations for the species. For these analyses, we set the
forward-in-time migration rate from the neighboring localities into the focal population of *C.
sociabilis* as a prior with a uniform distribution. We varied 1) \(N_c \) for the neighboring localities
(range = 50 to 10,000 individuals), and 2) forward-in-time migration rate from the focal
population to neighboring localities (migration rate ranged from 0 to 0.1). All simulations were
run for 100,000 samples. While simulations were run backward in time, all migration rates here
are presented as forward-in-time for clarity.

Results

Microsatellite genotypes were largely consistent across multiple independent rounds of
amplification, genotyping, and scoring, providing verification of our results (individual
microsatellite genotypes are available by request). Within species, we found no differences in microsatellite variation between data sets containing adults only, juveniles only, or adults and juveniles together and thus all subsequent analyses were conducted using all samples for each species. Our bootstrapping analyses provided evidence that sample size did not affect estimates of variation: with the exception of 1 locus in *C. haigi* (Sociabilis 1), all measures of heterozygosity in our pre-eruption samples fell within 95% confidence intervals for estimates of heterozygosity obtained via bootstrapping, suggesting that differences in sample sizes for pre- and post-eruption data sets did not impact estimates of genetic diversity. The 1 locus that differed in *C. haigi* (Sociabilis 1) had a mean bootstrapped heterozygosity value that was less than 0.01 different from the empirical value of heterozygosity across all samples, and thus was still included in analyses to obtain more robust results. Accordingly, we included all available pre- and post-eruption genotypes in our analyses of microsatellite variation.

Our POWSIM results indicated that our microsatellite data set had sufficient power to detect genetic differentiation. A power of 0.80 or greater has been suggested as the threshold for providing adequate statistical power (Cohen 1988); we found that the power of our comparisons between pre- and post-eruption variation in our focal populations as well as between the focal and ancillary populations in each species were largely greater than this threshold. Specifically, given a predefined F_{ST} value of 0.025 or greater, the POWSIM analyses indicated that the data set for *C. sociabilis* had a power of 0.75 to detect genetic differentiation (all values provided from chi-squared test). Statistical power rose to 0.91 if these analyses were run with $F_{ST} > 0.05$. Estimated power of the data set from the focal population of *C. haigi* was greater, with a power of 0.99 for $F_{ST} > 0.025$ and a power of 1.00 for F_{ST} value > 0.05. When the ancillary populations for each species were included, power was 0.93 and 1.00 for *C. sociabilis* and *C. haigi*, respectively, for
F_{ST} > 0.025. Power rose to 0.99 and remained at 1.00 for \textit{C. sociabilis} and \textit{C. haigi}, respectively, for \(F_{ST} > 0.05 \). Given that observed values of \(F_{ST} \) (see results section below) for both study species were greater than those used in the POWSIM analyses, and given that the resulting estimates of power were generally greater than the 0.80 threshold, our data set appeared to be sufficient to detect genetic differentiation in both study species. Thus, we retained all microsatellite loci in our analyses and used these loci to compare temporal and genetic divergence among populations.

Temporal changes in cytochrome b diversity.— We analyzed cytochrome b sequences for 45 individuals from the focal population of \textit{C. sociabilis} and 30 individuals from the focal population of \textit{C. haigi} (Table 1); this sample included data from 14 \textit{C. sociabilis} and 13 \textit{C. haigi} sampled during the pre-eruption time period (1993-1998) that had been sequenced previously by Lacey (2001) and Hadly et al. (2003). Only a single cytochrome b haplotype was detected in the focal population of \textit{C. sociabilis} both before (1993-1998, \(n = 17 \)) and after (2011-2013, \(n = 26 \)) the 2011 eruption. In contrast, the focal population of \textit{C. haigi} was characterized by multiple haplotypes in both time periods (5 haplotypes pre-eruption; 10 haplotypes post-eruption; Fig. 2). Expansion of our analyses to include cytochrome b genotypes from paleogenetic samples from each species (Chan and Hadly 2011) revealed a general pattern of declining haplotype diversity in \textit{C. sociabilis} over the past 10,000 years (Supplementary Data S1A); in comparison, \textit{C. haigi} has maintained relatively consistent levels of haplotype diversity over this same time period (Supplementary Data S1B).

Patterns of nucleotide diversity at the cytochrome b locus paralleled interspecific differences in haplotypic diversity. With only 1 haplotype detected in both pre- and post-eruption samples, there was no change in diversity in \textit{C. sociabilis}. In contrast, analyses of haplotypes
from the focal population of *C. haigi* revealed considerably greater levels of nucleotide diversity for all measures considered. Prior to the eruption, θ_S was 1.66 and θ_π was 1.24; post-eruption, these values were 3.01 and 2.88, respectively. Values for Tajima’s D (pre-eruption = -0.92, $P = 0.22$; post-eruption = -0.17, $P = 0.47$) were negative, as were values for Fu’s F_s (pre-eruption = -18.1; post-eruption = -18.55; P for both < 0.005). AMOVA analyses revealed that 97.8% of the variation detected occurred within the study population, with the remainder occurring between the pre- and post-eruption subsets of this population. The F_{ST} between pre- and post-eruption samples was 0.0218 ($P = 0.25$). In sum, these analyses indicate that cytochrome b haplotypes were characterized by considerably more nucleotide diversity in *C. haigi* than in *C. sociabilis*.

Temporal changes in microsatellite diversity.—In *C. sociabilis*, only 1 microsatellite locus (Sociabilis 4) deviated significantly from Hardy-Weinberg expectations (Hardy-Weinberg probability tests, 1000 iterations; $P < 0.005$; Table 2a) in the pre-eruption focal population, although there was evidence of a significant departure from neutral expectations when data from all loci were considered together (Fisher’s exact test, $P < 0.05$). After the 2011 eruption, no loci deviated from Hardy-Weinberg expectations in this population (Table 2a), and similarly there was no deviation from Hardy-Weinberg expectations when data from all loci were considered together (Fisher’s exact test, $P = 0.18$). Prior to the eruption, 4 of 5 microsatellite loci displayed positive values of F_{IS}; in contrast, all post-eruption values of F_{IS} were negative (Table 2a; all $P > 0.05$).

The number of alleles detected in the focal population of *C. sociabilis* did not change before versus after the eruption for 2 of 5 loci (Sociabilis 1 and 5) and decreased by only a single allele after the eruption at each of the remaining loci (Sociabilis 4, 6, and 7). Similarly, pre- and post-eruption allelic richness did not change appreciably for Sociabilis 1, 5, and 7 and decreased...
only modestly for Sociabilis 4 and 6 (Table 2a). Comparisons of pre- and post-eruption genotypes revealed significant temporal differentiation at only one locus (Sociabilis 1, exact G test, \(P < 0.05 \)). In contrast, observed heterozygosity increased significantly after the eruption (Fisher’s combined probability test, \(P < 0.05 \)); this pattern was evident for all loci genotyped and significant for 2 loci (Fig. 3A). Values of gene diversity for all loci were greater after the eruption, with mean diversity across all loci increasing from 0.23 to 0.32 (Table 2a). Similarly, estimates of \(\theta_H \) increased after the eruption for all loci. Although AMOVA analyses revealed that only 4.53% of microsatellite variation was due to temporal differences among samples, comparisons of pre- and post-eruption data sets indicated small but statistically significant temporal population subdivision (\(F_{ST} = 0.055, \ P < 0.05 \)). Thus, these analyses indicate that microsatellite heterozygosity and most associated measures of genetic diversity in the focal population of *C. sociabilis* were greater after the eruption.

Applications of the same analyses to microsatellite data from the focal population of *C. haigi* revealed a substantially different pattern of pre- versus post-eruption genetic diversity. Prior to the eruption, none of the 5 loci examined revealed significant departures from Hardy-Weinberg expectations; post-eruption, only 1 locus (Sociabilis 6) deviated from Hardy-Weinberg expectations (Table 2b). Across all loci, no evidence of significant departure from Hardy-Weinberg expectations was found for either pre- or post-eruption data sets (Fisher’s Exact Test, pre-eruption \(P = 0.63 \); post-eruption \(P = 0.48 \)). During both time periods, 2 of 5 loci were characterized by negative \(F_{IS} \) values, although the identities of these loci differed for pre- versus post-eruption data sets (Table 2b).

The number of alleles detected in the focal population of *C. haigi* decreased after the eruption for 4 of the 5 loci examined; differences in allelic richness were generally small pre-
versus post-eruption, with the exceptions of loci Sociabilis 6 and 7 (Table 2b). There was no consistent pattern of change in gene diversity across time periods, with the largest changes occurring at 3 loci (Sociabilis 5, 6, and 7; Table 2b). Although observed heterozygosity did not differ consistently or significantly before versus after the eruption (Fig. 3b), genotypic diversity at each locus was reduced in the post-eruption samples (Fisher’s Exact G test, all $P < 0.05$).

AMOVA analyses indicated that only 2.39% of microsatellite variation was due to temporal differences among samples. Although temporal differences in allelic frequencies estimated by F_{ST} were low, the difference in this statistic was significant ($F_{ST}=0.024$, $P < 0.05$). Thus, while $C. sociabilis$ was characterized by significant temporal partitioning of microsatellite variation and generally greater microsatellite diversity after the eruption, $C. haigi$ displayed no evidence of strong temporal partitioning or greater microsatellite diversity after the eruption.

Tests for population bottlenecks.— A significant excess of heterozygosity was detected for the post-eruption samples of $C. sociabilis$ (Wilcoxon signed-rank test; 2-phase model with 80% proportion of single mutations; $P < 0.05$). In contrast, no such excess was detected for the post-eruption population of $C. haigi$ (Wilcoxon signed-rank test; 2-phase model with 80% proportion of single mutations; $P = 0.41$). These patterns were consistent when we varied the percentage of single mutations allowed as well as when we repeated analyses using a single mutation model ($C. sociabilis$, $P < 0.05$; $C. haigi$, $P = 0.92$). M-ratio tests (Cornuet and Luikart 1996) revealed that for $C. sociabilis$, observed M-ratios for all loci were below critical M values for all estimates of θ employed (Table 3). In contrast, for $C. haigi$, only 1 locus (Sociabilis 5) was characterized by an M-ratio below the associated critical value. Collectively, these analyses indicate that the 2 focal populations exhibited different genetic signals of recent demographic history, with only $C. sociabilis$ displaying patterns of microsatellite variation consistent with a recent population.
bottleneck. *Modeling of demographic parameters.*— Serial Bayesian coalescent modeling based on demographic data from *C. sociabilis* revealed that observed patterns of pre- and post-eruption microsatellite variation differed between our empirical data and expected outcomes based on our demographic models (*P* < 0.05). This finding suggests that the observed post-eruption increase in microsatellite diversity in *C. sociabilis* was contrary to predictions based on the demography of this species.

Application of an ABC modeling framework to our simulated microsatellite distributions revealed that the most likely estimates (MLEs) of *N* _e_ for the focal population of *C. sociabilis* ranged from 244 to 254 (Fig. 4A); these values are 4 to 5 times greater than empirical estimates of *N* _e_ for this population (E. A. Lacey, pers. obs.), suggesting that the increase in *N* _e_ required to generate the observed post-eruption increase in microsatellite diversity is biologically unlikely. The MLEs for microsatellite mutation rate ranged from 0.0153 to 0.0165 (Fig. 4b); again, these rates fall beyond the range of mutation rates considered biologically likely for microsatellites (10⁻³ to 10⁻⁴; Mapelli et al. 2012), suggesting that mutation cannot account for the post-eruption increase in diversity observed in *C. sociabilis*. When data from the pooled ancillary populations were included in these simulations, posterior distributions revealed a better fit (sharp peaks in posterior distributions, lower delta scores) when migration from the focal population to other populations was allowed (for clarity, all migration rates are presented as going forward in time, although simulations were run backward in time). The fit of posterior distributions increased as the rate of migration from the focal population to other populations was increased or *N* _e_ for the pooled additional populations was increased. Indeed, even a modest migration rate of 0.01 (1% probability per generation for each individual migrating from the focal to the pooled ancillary population), along with a small effective size (*N* _e_ = 50) for the pooled ancillary population
produced a peak indicating a MLE of 0.075 for migration into the focal population. Overall, MLEs for migration rate into the focal population ranged from 0.0176 to 0.075 (Fig. 5), which represents a maximum migration of 4.5 individuals per generation, a number that is biologically plausible for this species (Lacey and Wieczorek 2004).

Discussion

Our analyses indicate that the 2011 eruption of the Puyehue-Cordón Caulle volcanic complex in southern Chile impacted genetic variation in *C. sociabilis* and that the consequences of this event differed between the group-living *C. sociabilis* and the parapatric, solitary *C. haigi*. Long-term behavioral and demographic studies of a population of each species located within the area of ash fall revealed significant reductions in population density in both taxa during the first summer breeding season following the eruption (E. A. Lacey pers. obs.). Such demographic bottlenecks are typically expected to result in a loss of genetic variation (England et al. 2003). However, contrary to this expectation, we found no evidence of a post-eruption decrease in variation at the mitochondrial cytochrome b locus or multiple microsatellite loci in either *C. sociabilis* or *C. haigi*. Instead, our analyses revealed that observed heterozygosity at multiple microsatellite loci was greater in *C. sociabilis*, but not in *C. haigi*, after the 2011 eruption. This apparent post-eruption increase in genetic variation in *C. sociabilis* is intriguing, particularly given the overall low levels of genetic diversity in mitochondrial genes reported for both modern pre-eruption populations of this species and historical populations dating back to 3,000-5,000 years before present (Lacey 2001; Hadly et al. 2003; Chan et al. 2005). Collectively, these analyses concur in suggesting that *C. sociabilis* appears to have experienced repeated demographic bottlenecks during its history. The 2011 eruption of the Puyehue-Cordón Caulle
complex, however, did not result in an immediate loss of microsatellite genetic diversity but
instead led to an unexpected increase in local genetic diversity.

Power of analyses to detect genetic differentiation.—Our analyses were based on data from the
mitochondrial cytochrome b locus and multiple microsatellite loci. While we expected the 2011
eruption to have caused decreases in genetic variation, the failure to detect post-eruption changes
in cytochrome b in *C. sociabilis* is unsurprising given that only 1 cytochrome b haplotype was
present in the focal population of this species prior to the eruption and that variation at this locus
appears to have been limited to this single haplotype for at least the past 1,000 years, meaning
that there could be no further reduction in genetic variation at this locus (Hadly et al. 2003).

Similarly, we find no evidence of a post-eruption decrease in genetic variation in the focal
population of *C. haigi*, although such a decrease was possible due to the multiple cytochrome b
haplotypes present before the eruption. The ability to infer demographic events from changes in
variation at a single locus may be limited, however, as not all portions of the genome are equally
capable of capturing the effects of recent demographic events (Matocq and Villablanca 2001;
Kilian et al. 2007). The limitations of examining a single mitochondrial gene, combined with a
smaller number of individuals sampled in *C. haigi* (*n* = 17), may explain the lack of a signal in
cytochrome b for a post-eruption population decline in this species.

In addition, although our microsatellite analyses are based on a relatively limited number
of loci, the results of our POWSIM analyses indicated that these data should have provided
sufficient statistical power to detect pre- and post-eruption differences in genetic diversity as well
as differences between the focal and ancillary populations of the same species. An equivalent
number of loci have been used to document population differentiation in other taxa (Hale et al.
2001; Laikre et al. 2005; Ryman and Palm 2006). Similarly, the number of individuals per
population sampled should have been sufficient to provide reasonable estimates of genetic variation, given that a threshold of 25-30 individuals (and 15-20 individuals for populations with high polymorphism) has been suggested to be adequate for quantifying genetic diversity using microsatellites (Hale et al. 2012). These lines of evidence, combined with our findings that multiple loci were concordant in suggesting an increase in post-eruption diversity in *C. sociabilis*, lead us to conclude that this outcome is robust and that our results reflect overall trends in genetic variation in our study species.

Evidence of bottlenecks and past demographic change.— Our analyses of microsatellite data revealed interspecific differences in the signals for past bottlenecks. Both analyses of heterozygosity excess and M-ratio values consistently indicated a past bottleneck in the focal population of *C. sociabilis*. In contrast, no such evidence of past reductions in population size was obtained for the focal population of *C. haigi*. Although this outcome may at first seem incompatible with the documented decrease in population density in both species and the post-eruption increase in microsatellite variation detected for *C. sociabilis*, these tests are best able to detect bottlenecks occurring between 10 and as far as 50 generations ago (Peery et al. 2012). As such, genetic signals of reductions in population size may not become apparent immediately following such an event (Peery et al. 2012; Hoban et al. 2013), suggesting that our evidence for bottlenecks in *C. sociabilis* may reflect demographic changes occurring prior to this study. Indeed, such bottleneck tests have been demonstrated to be most likely to detect ancient bottlenecks resulting in moderate to severe declines in population size (Girod et al. 2011). Consistent with this, M-ratio tests of microsatellite data from the same focal population during the pre-eruption period have shown signals of such a bottleneck (Lacey 2001), and paleogenetic data along with Bayesian modeling have provided evidence for a severe bottleneck within the past
3,000 years (Hadly et al. 2003; Chan et al. 2006). Thus, it seems likely that the evidence of reductions in population size in *C. sociabilis* reported here reflect older demographic events and not the impacts of the 2011 volcanic eruption.

Interspecific differences in genetic response.— Several factors may have contributed to the apparent interspecific differences in genetic response to the 2011 eruption reported here. Possibilities include a difference in the deposition of ash between the focal populations of the study species. Although these populations are located immediately across the Limay River from each other, ash depth was greater at the *C. sociabilis* study site (E. A. Lacey pers. obs.). As a result, the consequences of the eruption may have been more severe for *C. sociabilis*. At the same time, the 2 species differ markedly with respect to behavior and demography (Lacey et al. 1997, 1998; Lacey and Wieczorek 2004) and these differences may have contributed to the differential genetic responses reported here. In particular, *C. sociabilis* is group living, with multiple closely related adult females sharing the same burrow system and rearing their young communally (Lacey et al. 1997; Izquierdo and Lacey 2008). Groups form due to natal philopatry by females and although all males disperse from their natal burrows, movement of these animals is often within the same local population (Lacey and Wieczorek 2004). In contrast, *C. haigi* is solitary, with individuals of both sexes dispersing from their natal burrow (Lacey et al. 1998). These differences in social behavior and associated dispersal patterns suggest that migration among populations is typically more common in *C. haigi*, which likely contributed to the substantially greater pre-eruption levels of microsatellite diversity in the focal population of this species (Lacey 2001). Together, this background of greater pre-eruption genetic diversity and the presumably higher rates of migration and gene flow among local populations may have served to
minimize the impacts of the 2011 eruption on microsatellite diversity in *C. haigi* as compared to *C. sociabilis*.

Demography and increased post-eruption genetic variation. — The most striking result revealed by our analyses – the apparently greater post-eruption microsatellite variation in *C. sociabilis* – may reflect changes in multiple demographic processes, including drift, mutation, and selection. Each of these processes could influence genetic diversity following a population decline. Our analyses, however, indicate that these factors are unlikely to explain the observed post-eruption change in genetic diversity in *C. sociabilis*. First, our Bayesian modeling demonstrates that our microsatellite results do not fit the expected window of change given random genetic drift (and absent selection, mutation, and migration) after such a demographic bottleneck. In addition, such modeling suggests that a much larger population size than is observed empirically is required to maintain the level of genetic variation observed. Second, these analyses indicate that the mutation rates required to produce the observed change in variation exceed empirical limits for microsatellite loci (Mapelli et al. 2012). Although increased mutation rates have been reported following some catastrophic environmental events, these reports appear to be limited to environmental changes involving known mutagens (e.g., radiation from the Chernobyl nuclear disaster; Dubrova et al. 1996; Ellegren et al. 1997). Third, microsatellites are considered putatively neutral (Li et al. 2002), and given the timescales and putatively random mortality caused by the bottleneck it is unlikely that balancing selection plays a major role following the 2011 eruption. Thus, we suggest that genetic drift, mutation, and selection in the microsatellite loci cannot individually account for the post-eruption changes in genetic diversity in *C. sociabilis*. Instead, the increase in microsatellite variation reported here for *C. sociabilis* is most consistent with a scenario of enhanced post-eruption migration and gene flow. Nearby
populations of this species may possess different genetic variants, and migration (and thus gene
flow) from such populations could have contributed to the observed greater post-eruption genetic
diversity in the focal study population. This hypothesis is supported by our demographic
modeling, which indicates that the observed increase in variation was unlikely in the absence of
migration. Increasing simulated migration rates among nearby populations produced a predicted
increase in variation similar to that observed in our empirical data set. Although we do not have
the power to ascertain the precise rate of migration that occurred after the 2011 eruption given
that effective population sizes for the neighboring populations are unknown, our modeling
demonstrates that even small amounts of migration from nearby populations could lead to the
levels of increased genetic diversity in the focal population. As such, our results suggest an
increase in gene flow from other *C. sociabilis* populations following the 2011 eruption. The
ancillary locations sampled (Fig. 1) are all located in close proximity (<1 km) to the focal *C.
sociabilis* population, with no apparent geographic barriers between populations. Our estimates
for the range of migration rates needed to generate the observed post-eruption change in genetic
variation are biologically plausible for *C. sociabilis* (Lacey and Wieczorek 2004), and dispersal
events occurring over 1-2 km have been detected for this species (Lacey pers. comm.). Such
movements are also consistent with patterns of dispersal, migration, and gene flow found in other
tenomyids (Fernández-Stolz et al. 2007; Lopes and de Freitas 2012; Roratto et al. 2015).
Additionally, this hypothesis is also consistent with the increased percentage of unmarked
(potentially immigrant) females captured in the focal study population of *C. sociabilis* during the
breeding season following the eruption (E. A. Lacey pers. obs.). Thus, based on demographic
models and empirical data, post-eruption migration and gene flow among local populations
appear to provide the most logical explanation for the observed increase in microsatellite genetic
diversity in *C. sociabilis*.

Implications for studies of environmental catastrophes.— Our findings suggest that short-term
migration among local populations can play an important role in determining levels of genetic
diversity immediately following catastrophic environmental events. In particular, such migration
may serve to mitigate expected declines in genetic diversity associated with reductions in
effective population size. Increases in local genetic diversity after reductions in population size
have been documented for other species, including montane voles (*Microtus montanus*— Hadly
et al. 2004) and artesian spring snails (*Fonscochlea accepta*— Wilmer et al. 2011); enhanced
migration and gene flow have been suggested as the most likely explanation for these findings.
Thus, while catastrophic environmental events are typically expected to result in population
bottlenecks and reductions in genetic diversity, actual responses to such changes may be more
complex and result in different genetic outcomes. Determining how a given species will respond
to such events is challenging and requires detailed information regarding both the nature and
magnitude of the environmental change as well detailed information regarding the demography of
the organisms in question. As documented here, the 2011 eruption of the Puyehue-Cordón Caulle
complex produced different genetic responses in *C. sociabilis* and *C. haigi*, with post-eruption
microsatellite heterozygosity increasing in the former species but not the latter. Over the past few
thousand years, however, *C. sociabilis* has experienced a decline in genetic variation that is not
evident in *C. haigi* (Chan et al. 2005; Chan and Hadly 2011), thereby underscoring the variable
nature of responses to environmental conditions. These differences in response – both between
species and time periods – raise intriguing questions regarding how interactions among
environmental changes, demography, and existing levels of genetic diversity interact to shape
responses to a given catastrophic event. We expect migration and gene flow to be an important part of this equation and thus opportunities to combine detailed demographic information with genetic data should prove important in understanding and predicting response to environmental change.

Acknowledgments

We thank K. Solari, S. Redondo, J. Flanders, A. Mychajliw, E. López, and other members of the Hadly lab for helpful comments. H. Fraser, S. Palumbi, U. Ramakrishnan, and N. Rosenberg also provided invaluable feedback. We also thank the Delegacion Tecnica Regional Patagonica de Parques Nacionales Argentinas and Provincia Rio Negro, Argentina for assistance in obtaining permits. This work is funded by NSF RAPID grant DEB-1201541 (EAH, EAL) and a Stanford Center for Computational, Evolutionary, and Human Genomics trainee grant (JLH). JLH is supported by NSF Graduate Research Fellowship and Stanford Graduate Fellowship, MNT was supported by a CONICET Predoctoral Fellowship, and SK received support from the Stanford Vice Provost for Undergraduate Education.

Supplementary data

Supplementary data S1. Haplotypic networks throughout the past 12,000 years for A. 398 base pairs of cytochrome b in C. sociabilis and B. 388 base pairs of cytochrome b in C. haigi. These network maps represent haplotypic change temporally, with the bottom layers reflecting
haplotype networks in the past (from ancient DNA) and the top layers reflecting modern diversity.

Literature cited

30

FUNK, W., E. FORSMAN, M. JOHNSON, T. MULLINS, AND S. HAIG. 2010. Evidence for recent

Figure captions

Figure 1. A. Map of South America showing inset of field sites. B. Inset depicts the close proximity of the range of *C. sociabilis* range (shaded) to the Puyehue-Cordón Caulle volcanic complex. The range of the parapatric congener *C. haigi* is located across the Limay River. The dashed-dotted line shows approximate cone of tephra from the 2011 eruption. Focal and ancillary populations of *C. sociabilis* (circles) and *C. haigi* (squares) are also indicated. Closed shapes indicate focal populations of *C. sociabilis* (closed circle, at Estancia Rincon Grande) and *C. haigi* (closed square, at Estancia San Ramon). Non-focal populations surround the focal populations.
and are represented by open circles (C. sociabilis) and open squares (C. haigi). The localities of paleogenetic samples at Cueva Traful (CT) and Estancia Nahuel Huapi (ENH) are indicated with diamonds.

Figure 2. Haplotype networks for cytochrome b in the focal populations of C. sociabilis (on left; 900 bp) and C. haigi (on right; 600 bp). Each circle represents a unique haplotype, with the size of the circle indicating the relative frequency of that haplotype (number of individuals provided in the center of each circle). Nodes represent the number of base pair differences between haplotypes. The bottom layers (dark gray) for both species depict the haplotype network prior to the 2011 eruption (1993-1998) while the top layers (light gray) depicts the network following the 2011 eruption (2012-2013). Solid lines spanning the 2 layers connect any haplotypes that are found in both time periods. Open circles show “missing” haplotypes; these are haplotypes found at other times but not present in the designated time period.

Figure 3. Microsatellite variation in A. C. sociabilis and B. C. haigi. Graphs depict observed heterozygosity at 5 identified microsatellite loci before (pre-eruption population: 1993-1998) and after (post-eruption population: 2011-2013) the June 2011 volcanic eruption; locus names are abbreviated using Soc followed by the locus number. ** indicates significance at \(P < 0.01 \) level, Fisher’s exact test

Figure 4. Posterior distributions (in gray) for A. current, post-eruption effective population size and B. mutation rate. Both distributions were generated using an approximate Bayesian computation framework from 1,000,000 simulations run by Bayesian serial coalescent modeling.
In each panel, the dashed line indicates the uniform distribution used as a prior distribution. Four mean summary statistics from the empirical data were used: observed heterozygosity before and after the 2011 eruption and allelic variance before and after the 2011 eruption. Posterior distributions for both N_e and mutation rate display sharp peaks for MLE values, indicating high confidence in these values.

Figure 5. Posterior distributions for migration from the collective, pooled ancillary populations of *C. sociabilis* populations into the focal population of this species, as represented forward in time (all simulations were run backward in time but are presented here as forward in time for clarity). The prior for this migration was set as a uniform distribution from 0 to 1 in all simulations. Migration rate is represented on the x-axis, with the scale from 0 to 1 in each graph (see line on bottom left presenting a representative x-axis). Density is depicted on the y-axis (scale varies) and reflect relative probability. Sharper peaks indicate better fit for each model.
Tables

Table 1. Summary of *C. sociabilis* and *C. haigi* samples analyzed by time period and population; totals include 20 pre-eruption samples from each focal population previously genotyped by Lacey (2001). A. Number of individuals sampled and used in microsatellite and cytochrome b analyses. B. Age distribution of samples included in each population for microsatellite analyses. Samples from ancillary populations were not collected after the eruption due to the difficulty of accessing these sites under post-eruption conditions.

A. Number of individuals sampled

<table>
<thead>
<tr>
<th>Time Period</th>
<th>C. sociabilis populations</th>
<th>C. haigi populations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Focal</td>
<td>Ancillary</td>
</tr>
<tr>
<td>Pre-eruption (1993-1998)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total samples</td>
<td>74</td>
<td>42</td>
</tr>
<tr>
<td>Samples included for microsat analyses</td>
<td>74</td>
<td>42</td>
</tr>
<tr>
<td>Samples included for cyt b analyses</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Post-eruption (2011-2013)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total samples</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>Samples included for microsat analyses</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>Samples included for cyt b analyses</td>
<td>31</td>
<td>0</td>
</tr>
</tbody>
</table>

B. Age distribution of individuals sampled

<table>
<thead>
<tr>
<th>Time Period</th>
<th>C. sociabilis populations</th>
<th>C. haigi populations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Focal</td>
<td>Ancillary</td>
</tr>
<tr>
<td>Pre-eruption (1993-1998)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adults</td>
<td>57</td>
<td>4</td>
</tr>
<tr>
<td>Juveniles</td>
<td>17</td>
<td>38</td>
</tr>
<tr>
<td>Post-eruption (2011-2013)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adults</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Juveniles</td>
<td>26</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 2. Summary of microsatellite variation in the focal population of each study species. Results are shown for Hardy-Weinberg probability tests, \(F_{IS} \) values (Weir and Cockerham estimate), gene diversity, and expected heterozygosity across the 5 microsatellites for A. the pre and post-eruption focal population of *C. sociabilis* and B. the pre- and post-eruption focal population of *C. haigi*.

A. Microsatellite variation in *C. sociabilis*

<table>
<thead>
<tr>
<th>Locus</th>
<th>HWE (p)-value</th>
<th>(F_{IS}) estimates</th>
<th>Gene diversity</th>
<th>Heterozygosity ((H_E))</th>
<th>Allelic richness (# alleles)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pre</td>
<td>post</td>
<td>pre</td>
<td>post</td>
<td>pre</td>
</tr>
<tr>
<td>Sociabilis 1</td>
<td>0.384</td>
<td>0.291</td>
<td>0.100</td>
<td>-0.261</td>
<td>0.150</td>
</tr>
<tr>
<td>Sociabilis 4</td>
<td>0.000</td>
<td>0.234</td>
<td>0.547</td>
<td>-0.429</td>
<td>0.245</td>
</tr>
<tr>
<td>Sociabilis 5</td>
<td>0.660</td>
<td>0.636</td>
<td>0.041</td>
<td>-0.152</td>
<td>0.261</td>
</tr>
<tr>
<td>Sociabilis 6</td>
<td>1.000</td>
<td>0.359</td>
<td>-0.007</td>
<td>-0.246</td>
<td>0.298</td>
</tr>
<tr>
<td>Sociabilis 7</td>
<td>1.000</td>
<td>0.060</td>
<td>0.028</td>
<td>-0.410</td>
<td>0.319</td>
</tr>
</tbody>
</table>

B. Microsatellite variation in *C. haigi*

<table>
<thead>
<tr>
<th>Locus</th>
<th>HWE (p)-value</th>
<th>(F_{IS}) estimates</th>
<th>Gene diversity</th>
<th>Heterozygosity ((H_E))</th>
<th>Allelic richness (# alleles)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pre</td>
<td>post</td>
<td>pre</td>
<td>post</td>
<td>pre</td>
</tr>
<tr>
<td>Sociabilis 1</td>
<td>0.337</td>
<td>0.436</td>
<td>0.017</td>
<td>0.020</td>
<td>0.821</td>
</tr>
<tr>
<td>Sociabilis 4</td>
<td>0.495</td>
<td>0.820</td>
<td>-0.016</td>
<td>0.033</td>
<td>0.627</td>
</tr>
<tr>
<td>Sociabilis 5</td>
<td>0.402</td>
<td>0.805</td>
<td>0.070</td>
<td>-0.044</td>
<td>0.723</td>
</tr>
<tr>
<td>Sociabilis 6</td>
<td>0.476</td>
<td>0.013</td>
<td>-0.015</td>
<td>0.078</td>
<td>0.752</td>
</tr>
<tr>
<td>Sociabilis 7</td>
<td>0.581</td>
<td>0.779</td>
<td>0.068</td>
<td>-0.062</td>
<td>0.855</td>
</tr>
</tbody>
</table>
Table 3. Tests for population bottlenecks in *C. sociabilis* and *C. haigi*. Comparisons of observed *M*-ratios to critical values of *M* for A. the post-2011 eruption focal population of *C. sociabilis* and B. the post-2011 eruption focal population of *C. haigi*. Critical *M*-values were computed with a range of values of θ ($4N_e \mu$) ranging from 1.2 to 12, which factors in an effective population size of 300 and a range of μ from 10^{-3} to 10^{-4}. An asterisk (*) indicates significance at the $P < 0.05$ level because critical *M* values represent the point where 95% of *M*-ratios at equilibrium will be above that critical value. A dash (-) represents non-significant values. Critical *M* values are not repeated after the first row since they are the same for each locus, given identical number of samples, loci, and parameters in the model.

<table>
<thead>
<tr>
<th>Locus</th>
<th>M-ratio</th>
<th>$\theta=1.2$</th>
<th>$\theta=5$</th>
<th>$\theta=10$</th>
<th>$\theta=12$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. C. sociabilis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sociabilis 1</td>
<td>0.286</td>
<td>0.717*</td>
<td>0.660*</td>
<td>0.639*</td>
<td>0.637*</td>
</tr>
<tr>
<td>Sociabilis 4</td>
<td>0.500</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Sociabilis 5</td>
<td>0.222</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Sociabilis 6</td>
<td>0.250</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Sociabilis 7</td>
<td>0.333</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>B. C. haigi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sociabilis 1</td>
<td>1.000</td>
<td>0.713</td>
<td>0.634</td>
<td>0.599</td>
<td>0.583</td>
</tr>
<tr>
<td>Sociabilis 4</td>
<td>1.000</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Sociabilis 5</td>
<td>0.538</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Sociabilis 6</td>
<td>0.727</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Sociabilis 7</td>
<td>0.750</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>