Spring 5-14-2015

Effect of Phytosanitary Irradiation on the Quality of Chandler Pummelo (Citrus maxima (Burm.) Merr.)

Akanksha Jain
Chapman University, jain118@mail.chapman.edu

J.J. Ornelas-Paz
Chapman University, paz@chapman.edu

Karina Rodriguez
Chapman University, rodi332@mail.chapman.edu

Anuradha Prakash
Chapman University, prakash@chapman.edu

Follow this and additional works at: http://digitalcommons.chapman.edu/cusrd_abstracts

Part of the Food Chemistry Commons, Food Processing Commons, and the Other Food Science Commons

Recommended Citation
http://digitalcommons.chapman.edu/cusrd_abstracts/173

This Poster is brought to you for free and open access by the Office of Undergraduate Research and Creative Activity at Chapman University Digital Commons. It has been accepted for inclusion in Student Research Day Abstracts and Posters by an authorized administrator of Chapman University Digital Commons. For more information, please contact laughtin@chapman.edu.
Effect of phytosanitary irradiation on the quality of Chandler Pummelo
(Citrus maxima (Burm.) Merr.)

Jain, A. Paz, J. Rodríguez. Prakash, A.
Food Science and Nutrition Program, Schmid College of Science and Technology, Chapman University, Orange, CA

Abstract
Gamma irradiation is increasingly being considered as an alternative to chemical phytosanitary treatments, such as methyl bromide. In this study, the chemical and physiological effect of low-dose gamma irradiation on the post-harvest quality of Chandler Pummeleos (Citrus maxima (Burm.) Merr.), an emerging crop of interest in the U.S, was evaluated. Chandler pummelos from a local grower in California were irradiated at target doses of 150 Gy and 1000 Gy. Irradiated and untreated pummelos were stored at 12°C for 3 weeks and at 20°C for the 4th week to reflect temperature conditions during three weeks of sea shipment and an additional week of retail under ambient conditions. Color, titratable acidity, total sugars, juice content, weight loss and concentrations of organic acids were not different for the irradiated fruit in comparison to the untreated pummelos. irradiation reduced hardness of the pummelo peel and firmness of the flesh. The external appearance of pummelos was negatively impacted by higher irradiation dose, longer storage time and higher temperatures as pitting and mold growth were evident on pummelos treated at 1000 Gy and following storage at 20°C. The results suggest that Chandler pummelo quality is compromised at 20°C and 1000 Gy treatment but irradiation with 150 Gy can serve as a potential phytosanitary treatment for Chandler pummelos.

Introduction
Pummelos (Citrus maxima or Citrus grandis) are popular in Asia for their desirable taste, flavor and juicy texture. Pummelo is one of the largest citrus fruits and is becoming commercially important in the U.S due to emerging consumer interest. USDA-APHIS is considering importing Pummeleos from China. However, a phytosanitary treatment is needed to destroy insect pests such as moths, thrips, fruit flies, etc.

Approved phytosanitary treatments include chemical control (fumigation), irradiation, cold and hot treatments (McDonald and others 2013), of which Methyl bromide (MeBr) fumigation is most commonly used in the U.S. However, due to its harmful effects on the ozone layer MeBr has been banned under the 1987 Montreal protocol and continuous efforts are being made to phase out MeBr completely (EPA 2014). Methyl Bromide Technical Options Committee under The United Environmental Programme has recognized irradiation as one of the potential phytosanitary alternatives to MeBr fumigation (Paul and others 2004).

Previous studies performed by Bustos and Mindeta (1988), Miller and others (2000) and Nagai and Møy (1985), on gamma irradiation of citrus fruits such as Navel oranges, Valencia oranges and Grapefruit suggest that the effect of irradiation on a fruit differs based on the type of cultivar used, dose levels of gamma irradiation used, age/maturity of the fruit, time of harvesting of the fruit, and post-treatment storage conditions of fruit such as temperature. Although research has been conducted on other citrus fruits, no studies highlighting the effect of low-dose gamma irradiation on post harvest quality of Pummeleos has been documented. Therefore, the objective of the research was to observe the effects of low-dose gamma irradiation (150 Gy and 1000 Gy) on the post harvest quality of Chandler pummelos during storage at 12°C for 3 weeks and at 20°C for the 4th week to simulate 3 weeks of shipment from Asian countries and one week of storage at retail.

Experimental Design

Key Findings
Gamma irradiation at 1000 Gy negatively impacted the quality of Chandler pummelos. However, pummelos irradiated at 150 Gy can maintain almost similar quality as untreated pummelos when stored at appropriate storage conditions and thus can serve as a potential phytosanitary treatment for Chandler pummelos.

Acknowledgement
The Authors are thankful to United States Department of Agriculture for providing funds for the research.

References