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Cortical thinning and neuropsychiatric outcomes in children 
exposed to prenatal adversity: a role for placental CRH?
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Abstract

Exposure to early life adversity may disrupt the development and maturation of neurons and brain 

circuits, which, in turn, underlie neurodevelopment and mental illnesses. During fetal life, 

maternal adversity is conveyed to the developing brain via several molecular signals, including the 

stress hormone corticotropin releasing hormone (CRH). Employing a large well characterized 

prospective cohort, we find that fetal exposure to placental-origin CRH levels predicts structural 

and functional brain outcomes in children. Specifically, elevated placental CRH levels portend 

thinning of selective cortical regions of exposed individuals, with commensurate cognitive and 

emotional deficits. Notably, the relations of placental-origin CRH to cortical thinning and 

childhood symptoms are sex-specific. In view of the established effects of CRH on survival and 

arborization of cortical neurons, these findings position placental CRH as an important mediator of 

the consequences of early-life adversity on neuropsychiatric outcomes.
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Introduction

Exposure to early life adversity disrupts brain development resulting in altered brain 

networks and structure (1–3). These structural changes are associated with functional 

alterations that are often maintained throughout the lifespan, mediated by enduring 

epigenetic modifications of gene expression (2–4). Indeed, enduring alterations of brain 

structure and function at molecular, cellular and circuit levels (5,6) are considered 

fundamental mechanisms of how early-life experiences influence health and disease (1–5). 

In the aggregate, exposures to intrauterine and neonatal insults (7) and consequent altered 

brain anatomy (8,9) and connectivity (10) contribute significantly to the global burden of 

mental illness.

Specifically, early-life exposure to maternal stress and trauma is linked to subsequent 

depression (11–13), posttraumatic stress disorder (PTSD), panic disorder, substance abuse, 

abnormal stress response (13,14) and other serious disorders (2,3,11). Emerging evidence 

suggests that exposure to early-life adversity may be causally related to brain changes 

underlying the risk for psychopathology (7,15,16). Because the fetal period is unmatched by 

any other in growth and development, this stage in the human life span is the most 

vulnerable to both organizing and disrupting maternal signals.

Among the most salient signals shaping the human fetus is the stress hormone, corticotropic-

releasing hormone (CRH). CRH, a 41-amino acid neuropeptide, is normally synthesized 

primarily in the paraventricular nucleus of the hypothalamus and has a major role in 

regulating pituitary-adrenal function and the physiological response to stress (17,18). CRH 

synthesized and released in other brain regions such as hippocampus (19) and cortex (20,21) 

contributes to the sculpting of neuronal dendritic development and maturation via its actions 

on specific receptors that are located on dendritic spines Indeed, nanomolar concentrations 

of CRH can excessively prune dendritic trees of developing rodent cortical neurons (22). 

CRH of brain origin is not detectable in the circulation (23). However, during human 

pregnancy, the CRH gene, located on the long arm of chromosome 8 (24), is expressed in the 

human placenta and amniotic membrane (25,26). Placental CRH (pCRH) is released into the 

maternal and fetal compartments as early as the eighth week of gestation and increases 

exponentially across gestation to regulate fetal maturation (27), metabolic functions (28,29) 

and the timing of birth (30).

Placental CRH expression is responsive to a range of maternal stress signals, including 

increased cortisol, norepinephrine and epinephrine, reduced uterine blood flow, and 

infection (31–33). Thus, placental CRH represents an integrative pathway through which 

diverse prenatal stressors inform the fetus of the state of its environment and shape fetal 

developmental trajectories in preparation for life after birth (34,35). There are several reports 

linking elevated human fetal exposure to pCRH including to decreased fetal startle and 

habituation (27,36), delayed neonatal neuromotor development (37); increased infant fear 

and distress (38); and prodromal markers of increased risk for affective disorders in young 

children (39). Here, we demonstrate the potential consequences of fetal exposure to elevated 

levels of CRH and identify putative mechanisms. Specifically, we find that higher levels of 
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placental CRH are associated with cortical thinning in selective brain regions and with 

decreased cognitive and emotional function in preadolescents.

Methods

All methods, human procedures and protocols were approved by the Institutional Review 

Boards of the Universities of California-Irvine and Los Angeles, and Cedars-Sanai Hospital, 

Los Angeles. Parents and children gave informed (or affirmed) consent for all aspects of the 

protocol.

Participants

Ninety–seven mother/child dyads consented to participate in a longitudinal study of fetal 

exposures to maternal stress hormones on child MRI (see Consort Diagram, Figure S1; 

Tables S1A-1C). Women provided informed consent to provide a blood sample at five 

intervals during gestation; 13.5–16.6 (M=15.3), 17.8–20.5 (M=19.2), 23.7–26.5 (M=24.9), 

29.9–32.3 (M=30.9) and 34.6–38.1 (M=35.9). All women were English-speaking, healthy 

adult (>18 years of age) pregnant women with singleton, intrauterine pregnancies. Subjects 

were excluded if they had (i) multiple births, (ii) tobacco, alcohol, or other drug use in 

pregnancy, (iii) uterine or cervical abnormalities, or (iv) presence of any conditions 

associated with dysregulated neuroendocrine function. Their children (48 boys, 49 girls) 

were enrolled at 6-9 years of age (M=7.3 ± 0.91). All participants provided written informed 

consent after receiving a complete description of the study.

Assessments of pCRH in pregnant women

Gestational age at testing was determined by last menstrual period and was confirmed by 

obstetric ultrasonographic biometry before 20 weeks. Maternal blood samples (20/ml) were 

collected serially at five intervals throughout pregnancy by antecubital venipuncture into 

siliconized ethylenediaminetetraacetic acid (EDTA) (purple top) vacutainers and then 

immediately chilled to 60C. Samples were centrifuged at 2,000 g for 15 minutes, decanted 

into polypropylene tubes prepared with aprotinin (Sigma Chemical, St. Louis, MO; 500 

KIU/ml blood) and stored at −80°C until assayed.

pCRH determination

Following previously reported methods (40), the concentration of total maternal pCRH was 

determined by radio-immunoassay (RIA; Bachem Peninsula Laboratories, San Carlos, CA). 

The CRH assay had less than 0.01% cross-reactivity with ovine CRH, 36% cross-reactivity 

with bovine CRH and non-detectable reactivity with human ACTH. The intra- and inter-

assay coefficient of variance ranged from 5 to 15%, respectively. The minimum detectable 

dose of the assay is 2.04 pg/ml (95% confidence interval; See Supplement for additional 

assay details).

Data reduction for the RIA was conducted with a computer-assisted four-parameter logistics 

program (41). Values exhibiting greater than 25% error (deviation from the standard curve) 

were not included in the analyses. A subset of samples (n = 60) were sent to a clinical 

laboratory (Quest Diagnostics) for further validation. The correlation between the two sets 
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of data was 0.87 (p < .01). Shared variance between 19 and 31 weeks CRH samples was a 

modest 14% (r=0.38). Mother/child dyads were recruited from two separate studies with 

identical prenatal assessments. To ensure comparability between the cohorts for analysis, the 

pCRH values were standardized within the two groups and then combined for statistical 

analysis. (see Supplement for details). As expected, pCRH levels increased geometrically as 

gestation advanced (Figure S4; Table S9).

Assessments in children

All children (ages 87.3 ± 10.9 mo) had a stable neonatal course (Median Apgar = 9, Range 8 

to 10; GA at birth=39.2 ± 1.5 wks) and were without known neonatal illness or congenital, 

chromosomal, or genetic anomalies. Participants had no evidence of neurological 

abnormalities in the newborn period. Children’s structural MRI (sMRI) images were 

assessed for normal anatomical appearance. Seven children with motion artifacts and three 

children with abnormal scans were not included in the final sample (N=97). These ten 

subjects did not differ from subjects providing useable scans (Table S8). At 6-9 years of age, 

no physical conditions were reported by the parents in a structured interview format of the 

MacArthur Health and Behavior Questionnaire (42). The majority (88%) of children were 

right hand dominant (Edinburgh Handedness Inventory) (43).

Structural MRI (sMRI) Acquisition

The sMRI scan was acquired with a 3-T Philips Achieva system. Children were provided 

earplugs and watched a movie while in the scanner to increase compliance and minimize 

movement. A high resolution T1 anatomical scan was acquired in the sagittal plane with 

1mm3 isotropic voxel dimensions. An Inversion-Recovery Spoiled Gradient Recalled 

Acquisition (IR-SPGR) sequence with optimal parameters was applied: repetition rate (TR)= 

11ms, echo time (TE)= 3.3ms, inversion time (TI)= 1100ms, turbo field echo factor (TFE)= 

192, number of slices: 150, no SENSE acceleration, flip angle=180°, shot interval (time 

from inversion pulse to the center of acquisition) = 2200ms. The images were reviewed by 

the MRI operator (who was unaware of any of the study parameters) immediately after the 

scan was completed. If there were visible signs of motion artifacts, the subject was asked to 

stay for an additional scan. If the subject agreed, a second scan was acquired.

Processing of MRI data

Cortical surface reconstruction and volumetric segmentation was performed with the 

FreeSurfer image analysis software suite (http://surfer.nmr.mgh.harvard.edu/). Streamlined 

image processing procedures included; application of intensity normalization prior to 

segmentation to minimize errors in identifying the boundaries (44); removal of non-brain 

tissues (45); and transforming images into the Talairach space. Pial and white matter 

surfaces were located by finding the highest intensity gradient. Surface inflation was applied 

to each individual brain (46) and the inflated brains were registered to a spherical atlas. 

Cortical thickness was the closest distance from the gray matter/white matter surface to the 

pial surface at each vertex on the tessellated surface (47).
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Assessment of percent of cortical areas affected by fetal exposure to pCRH

Smoothing of images was done prior to regression. The command line interface was used for 

FDR corrections and to accommodate more than one nuisance variable. Gestational age at 

birth, birth weight, age of the child at testing, sex and handedness were included as 

covariates. A threshold of p<0.05 was used for all statistical tests and outcomes were 

corrected for multiple comparisons using False Discovery Rate (FDR).

After FDR corrections and spatial normalization, the number of vertices that were 

significantly associated with pCRH was determined in each region of the cortex. The 

number of significant vertices for each area was added and divided by the total number of 

vertices in that area to provide the percentage of the vertices that were significantly 

associated with pCRH concentrations. The same procedure was computed for the number of 

significant vertices in each lobe. For hemispheric and whole brain percentages, the 

procedure was the same except the total number of subcortical vertices was subtracted from 

the total.

Child Behavioral Analyses

We conducted a battery of tests that interrogate several brain regions and circuits, to obtain a 

relatively broad assessment of cognitive and emotional function.

The Child Behavior Checklist (CBCL) (48) is one of the most widely used parental 

interviews for identifying affective and conduct disorder problems in children. Structured 

interviews (rather than a questionnaire) were administered to mothers about the behavior of 

their children. We focused on two inclusive scales; one that assessed Internalizing problems 
(sum of anxious-depressed, withdrawn-depressed, and somatic-complaints scores) and the 

other that evaluated externalizing problems (sums rule-breaking and aggressive behavior 

problem scores). Responses were recorded on a Likert scale ranging from 0 = Not True, to 2 

= Very True or Often True. Scores are summed and standardized scores are computed that 

are age and sex-specific.

Reaction time to incongruent stimuli

The “Flanker” is an executive function task that requires the ability to resolve conflicts when 

competing information is present (49). Participants view five arrows arrayed horizontally on 

a screen and are instructed to press a left or right response button based on the direction of 

the center arrow (target). They are instructed to ignore the surrounding arrows which are 

either congruent (all aligned in the same direction) or incongruent with the center arrow. 

This task consists of 24 congruent trials and 24 incongruent trials. Each set of arrows is 

presented until the child responds (maximum of 5000 msec) with a 750 msec inter-trial 

interval. Among the scores median reaction time to targets with incongruent distractors 

correlates most highly with other indexes of performance derived from this test (all r’s 

>0.70). (The association between externalizing scores on the CBCL and the median reaction 

time on the flanker test was not significant (r= 0.09, p=.41)
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RESULTS

Elevated CRH levels throughout gestation are associated with cortical thinning

Significant associations between fetal exposure to pCRH averaged across gestation and areas 

of cortical thinning in children were found as illustrated in the pial maps (Figure 1). 

Children exposed to high levels of pCRH throughout fetal life exhibited significant thinning 

in 12% of the whole cortical mantle (Table S2A). The anatomical distribution of the cortical 

thinning associated with CRH exposure involved equally the left (LH, 12%) and right (RH, 

11%) hemispheres (Table S2A). Regional analyses indicated that cortical thinning associated 

with pCRH levels was primarily in the temporal (15%) and the frontal (16%) regions (Table 

1). Figures 1B-D are illustrative scatterplots of the associations between total fetal exposure 

to pCRH across gestation and cortical thinning in the frontal and temporal areas (all 

significant p< 0.01-0.001). The representative scatterplots coupled with Table 1, highlight 

the widespread association between fetal exposures to pCRH and regional cortical thinning, 

which are most notable in temporal and frontal areas. Average concentrations of pCRH 

across gestation or levels at any gestational interval did not associate with increased cortical 
thickness either globally or in any cortical region (Table S2b). Focusing on two gestational 

ages, 19 weeks (early, when pCRH production begins to accelerate) and 31 weeks (late, the 

time strongly associated with preterm birth), we found that maternal levels of pCRH were 

significantly associated with cortical thinning.

CRH levels early in gestation: regional cortical thinning and behavioral outcomes

Fetal exposure to pCRH early in gestation (19 weeks) was associated with significant 

thinning of the frontal poles. The significant association between pCRH and cortical 

thinning was bilateral, but strongest in the right (B=0.14, p<0.001; 78% of the structure) 

compared with the left frontal pole (B=−6.88, p<0.05; 69% of the structure; Table S3). Pial 

maps depict areas of significant thinning linked with fetal pCRH exposure early in gestation 

(Figure 2A) and the scatterplots illustrate the regions of the frontal cortex with the strongest 

association (Figures 2B-D). (Findings were essentially unchanged with log transformed 

pCRH values, Table S5). Nearly identical associations were observed in a smaller subsample 

(N=57) of children exposed to high pCRH levels measured even earlier, at 15 weeks of fetal 

life (Figures S3A-D).

Thinning of the frontal pole has been associated with externalizing behaviors (50) defined as 

actions that direct energy outward and tend to harm others (51). We tested if the effects of 

pCRH exposure on cortical thinning contributed to the development of these behaviors 

(Figure 2E). Our model supported the belief that reduced cortical volume in the frontal pole, 

associated with elevated fetal exposure to concentrations of pCRH at 19 weeks gestation, 

contribute to externalizing symptoms in 6-9 year old children (indirect effect: 0.93; 95% 

BCCI 0.17 to 2.05; p < .05). Neither internalizing problems nor reaction time on the flanker 

task were associated with cortical thinning in this region.

CRH levels in late gestation: regional cortical thinning and cognitive outcomes

Exposure to elevated levels of pCRH later in gestation (31 weeks) was associated with 

cortical thinning in the lateral temporal and paracentral regions (Figure 3A). The effect was 
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localized to the left paracentral region and bilateral in the temporal cortex. Remarkably, 98% 

of the lateral surface of the right temporal pole and 66% of the left temporal pole were 

significantly thinner in children exposed to high levels of pCRH at 31 weeks gestation 

(Table S4). Scatterplots (Figure 3B-D) illustrate these regional associations (and similar 

associations were observed at 25 weeks gestation in a smaller subsample [N=50]).

Structures comprising the temporal cortex subserve numerous cognitive and emotional 

functions. Temporal cortical thinning has been reported in individuals with attentional 

deficits (52), especially in the right temporal pole (53) which is active in tasks requiring 

attention to relevant stimulation (54). We employed a statistical model (55) to test if the 

effects of exposure to pCRH late in prenatal life on cortical thinning contributed to 

impairment of attention in 6-9 year olds. The model (Figure 3E) indicated that the reduced 

right temporal pole volume associated with exposure to pCRH at 31 week gestation may 

partially account for poorer performance on a visual processing and sustained attention test 

(indirect effect: 42.11; 95% BCCI 4.27 to 128.31; p <0.01) (56,57).

Sex differences

Exploratory analyses suggest significant sex differences in the nature and degree of 

association between pCRH levels and global as well as regional cortical thinning. At both 19 

and 31 weeks gestation, the associations were stronger in girls (Figure S2). The association 

between fetal exposure to pCRH at 19 weeks gestation and cortical thinning involved most 

cortical areas in girls (Figure S2A) but minimal in boys (Figure S2B). The fetal exposure to 

pCRH at 31 weeks affected cortical thinning globally in boys (Figure S2C) but locally in the 

temporal pole in girls (Figure S2D; similar to the findings for the combined sexes).

DISCUSSION

The principal and novel findings in these series of studies are that human fetal exposure to 

pCRH, even at concentrations which are insufficient to initiate labor or early delivery, is 

associated with regional cortical thinning and commensurate cognitive and emotional 

problems in a sex-specific manner in school-age children. Notably, such problems often are 

prodromal events that are associated with eventual neuropsychiatric outcomes.

The human placenta expresses pCRH by the eighth week of gestation and concentrations of 

pCRH increase geometrically as pregnancy advances to regulate the timing and onset of 

labor and delivery (30,58). Indeed, extremely high levels of placental CRH, often a result of 

adverse events during pregnancy, stimulate a cascade of events that result in pre-term labor 

and delivery. Premature birth is a significant contributing factor to impaired neurological and 

psychiatric outcomes. However, pCRH levels also rise in response to a variety of maternal 

stresses, and the novel finding here is the profound consequence of fetal exposure to pCRH 

at levels that are not associated with early delivery, in full-term school-age children. 

Specifically, we identify pronounced thinning in discrete cortical areas with implications for 

emotional and cognitive functions. Pronounced cortical thinning was associated with fetal 

exposure to pCRH across gestation with some evidence of localization in prefrontal and 

temporal poles. Examination of discrete gestational intervals clarified that prefrontal 
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thinning was associated with exposure at early mid-gestation and thinning of the temporal 

pole was associated with exposure later in gestation.

Our findings raise the novel possibility that CRH is causally linked to cortical thinning, 

rather than merely signifying the presence of a harsh, stressful milieu to the developing fetal 

brain. A causal role for CRH in cortical thinning is supported by recent findings in an animal 

model (22). Cortical volume is largely comprised of dendritic trees of cortical neurons 

(22,59) and changes in dendritic arborization can be measured as volume loss in MR 

imaging (60). Our recent experiments demonstrate that exposure of developing cortical 

neurons to physiological levels of CRH results in a dose-dependent reduction and 

impoverishment of dendritic arborization (22). In addition, both exposure to early postnatal 

CRH in vivo (61) and to maternal stress signals (62,63) provokes similarly impoverished 

dendritic trees in the hippocampus. Indeed, exposure to nanomolar levels of CRH has been 

shown to reduce dendritic length and complexity via CRH receptor type 1 (64), which is 

expressed on the dendrites (65,66). Eliminating the actions of endogenous CRH led to 

exuberant dendritic trees both in transgenic mice lacking the CRH receptor and chronic 

exposure of organotypic slice cultures to CRH receptor blockers (64,65). Thus, it appears 

that the role of physiological levels of CRH is to modulate – perhaps in concert with 

glucocorticoids (67,68)– neuronal dendritic development in the perinatal hippocampus and 

neocortex.

The sex differences observed here are intriguing, and consistent with increased prevalence of 

stress-related disorders in women compared to men, tendencies observed also in prepubertal 

children (69). Our novel findings here suggest that sex-specific structural consequences of 

early-life adversity and potentially of CRH may be most apparent in females and are 

consistent with conclusions that females exposed to prenatal stress are more likely than 

males to exhibit increased levels of anxiety, impaired executive function and neurological 

markers associated with these behaviors (69).

In summary, our findings uncover a novel and unexpected result of prenatal elevation of 

pCRH: reduction in cortical volume in typically developing children, perhaps related to 

stunting of normal neuronal growth, and consequent commensurate subtle but significant 

emotional and cognitive impairments. The behavioral assessments were not a priori designed 

for assessing the unexpected cortical thinning observed in the temporal lobes, and this 

limitation should be addressed in future studies. Even when CRH levels are not sufficient to 

trigger premature birth and children are born at term, fetuses exposed to increased levels of 

pCRH carry less-well developed cortical neurons, apparent from extensive yet selective 

areas of cortical thinning. The cortical thinning is biologically significant because it is 

associated with both cognitive and emotional deficits.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Pial maps (A) illustrating statistically significant areas of cortical thinning associated with 

average prenatal levels of pCRH measured throughout gestation. Representative scatterplots 

(B) r=0.37; (C) r=0.36; (D) r=0.26, all significant (p< 0.01-0.001), revealing the associations 

between placental corticotropin releasing hormone (CRH) and cortical thinning in specific 

cortical regions
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FIGURE 2. 
Pial maps (A) illustrating statistically significant areas of cortical thinning associated with 

prenatal levels of pCRH at 19 weeks gestation. Representative scatterplots (B [r=.33, p=.

005] C [r=.25, p=.04], D [r=.40, p=.001]) of the significant associations between pCRH and 

cortical thinning in cortical subregions. Model (E) of the indirect significant association 

among prenatal concentrations of pCRH, child cortical thinning in the frontal pole and child 

internalizing behavior. The values correponding to each path in the model are 

unstandardized regression coefficients. The indirect effect was estimated with bootstrapping 

(1000 samples with replacement).
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FIGURE 3. 
Pial maps (A) from FreeSurfer illustrating statistically significant areas of cortical thinning 

associated with prenatal levels of pCRH at 31 weeks gestation. Representative scatterplots 

(B [r=.29, p=.01] C [r=.37, p=.001], D [r=.48, p=.001]) of the significant associations 

between pCRH and cortical thinning in cortical subregions. Model (E) of the indirect 

association among prenatal concentrations of pCRH, child cortical thinning in the right 

temporal pole and child reaction time to a behavioral challenge. The values correponding to 

each path in the model are unstandardized regression coefficients. The indirect effect was 

estimated with bootstrapping (1000 samples with replacement).
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Table 1

Percentage of structures of the frontal and temporal lobes that are thinner in children exposed to placental 

CRH averaged across gestation. The results are presented for the left and right hemisphere.

AVERAGE ACROSS GESTATION

LH Medial Surface Frontal Percent of Structure RH Medial Surface Frontal Percent of Structure

Orbital Frontal 11 Orbital Frontal 19

Paracentral 43 Paracentral 14

LH Lateral Surface Frontal Percent of Structure RH Lateral Surface Frontal Percent of Structure

Superior Frontal 13 Superior Frontal 44

Rostral Middle Frontal 12 Rostral Middle Frontal 14

Frontal Pole 41 Frontal Pole 33

Pars Triangularis 16 Pars Triangularis 21

Parsorbitalis 6 Parsorbitalis 5

Lateral Orbital Frontal 15 Lateral Orbital Frontal 25

Parsopercularis 9 Parsopercularis 22

Caudal Middle Frontal 4 Caudal Middle Frontal 23

Precentral 18 Precentral 20

Insula 11 Insula 8

LH Lateral Surface Temporal Percent of Structure RH Lateral Surface Temporal Percent of Structure

Superior Temporal 39 Superior Temporal 12

Transverse Temporal 0 Transverse Temporal 0

Middle Temporal 22 Middle Temporal 24

Post Sup Temp sulcus 16 Post Sup Temp sulcus 0

Inferior Temporal 3 Inferior Temporal 12

Fusiform 7 Fusiform 2

Parahippocampal 11 Parahippocampal 0

Entorhinal 31 Entorhinal 0

Temporal Pole 4 Temporal Pole 70
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