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Abstract (289 words) 

Background 

During walking, variability in how movement is coordinated between body segments from stride to stride 

facilitates adaptation to changing environmental or task constraints. Magnitude of this inter-segmental 

coordination variability is reduced in patient populations and may also decrease in response to muscle fatigue.  

Previously, stride-to-stride variability has been quantified with the Vector Coding (VC) method, however recent 

research introduced a new Ellipse Area Method (EAM) to avoid statistical artifacts associated with VC. 

Research question 

Determine changes in trunk-pelvis coordination variability during walking turns in response to fatiguing exercise 

and to compare coordination variability quantified with VC to the EAM method 

Methods  

15 young adults (mean age: 23.7 (±3.2) years) performed 15 trials of a 90-degree walking turn before and after 

fatiguing paraspinal muscle exercise. Angular kinematics of the trunk and pelvis segments in the axial plane were 

quantified using three-dimensional motion capture. Stride to stride variability of axial coordination between the 

trunk and pelvis pre- and post-fatigue was calculated using both VC and EAM methods. Magnitudes of pre- and 

post-fatigue variability for VC and EAM were compared with paired t-tests and relationship between the 

magnitude of variability for the two methods was calculated using Pearson correlation coefficients.  

Results  

Using both analytical approaches, trunk-pelvis coordination variability decreased significantly post-fatiguing 

exercise across the stride cycle and within the stance phase of the turn (p< 0.034 for all comparisons). Average 

magnitudes of variability calculated with VC and EAM were highly correlated. Time series cross correlations pre-

post fatigue ranged from 0.81 to 0.98.   

Significance 

In healthy individuals, magnitude of trunk-pelvis stride-to-stride coordination variability is reduced following 

fatiguing exercise but the temporal distribution of variability across the stride cycle is maintained. This finding is 

robust to the method used to quantify coordination variability.   
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1. Introduction 

During cyclical movements, healthy motor behavior is characterized by variability across movement 

repetitions[1]. In particular, the relationship between the extent or direction of movement occurring in multiple 

degrees of freedom such as body segments varies from repetition to repetition of a cyclical task. This 

relationship can be quantified as inter-segmental coordination. Variability in patterns of inter-segmental 

coordination appears to be an important component of successful task performance. An optimal level of 

coordination variability is associated with skilled, adaptable movement[1].  

There are well defined patterns of coordination between the trunk and the pelvis during steady-state gait. 

Antiphase trunk-pelvis coordination in the axial plane counteracts rotation induced from below by the pelvis and 

swing limb with increasing step length [2–4]. Stride to stride variability in trunk-pelvis coordination is believed to 

facilitate dynamic modulation of coordination patterns, and the magnitude of this axial plane coordination 

variability is reduced in patient populations with impaired neuromuscular control of the trunk-pelvis complex[3]. 

However, it is not clear how neuromuscular control factors and task constraints interact to produce this altered 

coordination behavior. In order to understand the role of coordination variability in healthy and disordered 

movement, it is necessary to first investigate how healthy individuals modulate movement variability in 

response to changing task or neuromuscular constraints.  

One neuromuscular factor that may influence trunk-pelvis coordination variability is trunk muscle fatigue. 

Studies indicate that inter-segmental coordination and coordination variability are modulated in order to 

maintain the successful performance of cyclical tasks following fatiguing exercise[5]. The extent and direction of 

changes in variability post-fatigue appear to be dependent upon the characteristics of the task, and the role of 

the fatigued musculature in the performance of the task[5,6]. During sidestep cutting the magnitude of inter-

joint coordination variability in the lower limbs decreases  following localized fatigue of the hamstring 

musculature[7], and hip-knee coordination variability also decreases during sprinting in response to fatigue[8]. 

In these studies, fatigue was induced in the muscles responsible for propulsion during running gait. However, 

the trunk musculature maintains posture rather than providing propulsion during walking, and to date it is 

unknown how trunk muscle fatigue influences trunk-pelvis coordination variability during gait.  

Gait is frequently perturbed from the steady-state by deviations or reorientations in the line of progression that 

are made to avoid environmental obstacles or to change direction of progression. Walking turns are an ideal gait 

perturbation to investigate coordination variability as the change in body orientation during turning requires a 

modulation of trunk-pelvis coordination to maximize stability. In particular, turns that occur ipsilateral to the 
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stance limb, sometimes termed ipsilateral pivot turns or spin turns, are associated with rapid and complex 

changes in trunk-pelvis coordination[9]. Therefore, the ipsilateral walking turn paradigm may be more helpful to 

elucidate changes in coordination variability in response to fatigue in healthy individuals than analyses of 

steady-state gait.  

There are multiple computational approaches for quantifying inter-segmental coordination variability during 

gait. One of the most commonly used is the vector coding method, which is based upon angle-angle plots of 

relative motion(VC,[10]). However, estimates of coordination variability made using VC may be artificially 

inflated in during time-periods when segmental motion is small. Recently, Stock et al., proposed a novel ellipse 

area method (EAM). EAM provides variability estimates that are robust to the extent of segmental motion as it 

characterizes variability in both direction and amount of relative motion[11]. To date there has been no direct 

comparison utilizing VC and EAM to calculate magnitude of coordination variability during human movement.  

The purpose of this study therefore was a) to measure change in trunk-pelvis coordination variability during 

walking turns in response to fatiguing exercise; and b) to compare coordination variability quantified with VC to 

the novel EAM method. We hypothesized that inter-segmental coordination variability would be reduced in 

healthy individuals following fatigue.  

2. Methods 

2.1 Participants 

Fifteen healthy adults participated (nine females; mean age 23.7 ± 3.2 years; height 170.1 ± 7.7 cm; mass 65.0 

±11.7 kg). Individuals were aged between 18 and 40, with no history of back pain requiring modification of 

activity or medical care, and no current lower limb injury affecting locomotion. The sample size was determined 

by power analysis from our previous work indicating a sample size of 10 would be required to detect altered 

coordination variability with an alpha of 0.05, beta of 0.80 and effect size of 0.9[12]. Thirteen of the participants 

were right-leg dominant.  

2.2 Instrumentation 

Kinematics were quantified using a 10-camera motion capture system (250Hz, Motion Analysis Corporation, 

Rohnert Park, USA). Rigid kinematic models of the pelvis and trunk were defined and tracked using 14mm retro-

reflective markers. A local coordinate system for the pelvis was defined during a static calibration trial using 

markers on the iliac crests and on the L5/S1 disc space and motion was tracked with the same markers[13]. The 
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coordinate system for trunk was defined by a rigid triad of markers over the spinous process of T3 and motion 

was tracked with T3 markers and markers on the acromioclavicular joints and spinous process of C7[9,14] 

2.3 Experimental task 

Participants walked along a 7-meter walkway. On a force plate embedded in the ground in the center of the 

walkway, participants made a 90° turn toward the side of their dominant leg before continuing to walk in the 

new line of progression. Participants initiated the turn with the foot ipsilateral to the turn direction and 

completed the turn by the end of a single stride cycle (Figure 1). Average walking velocity was controlled at 

1.5m/s ± 0.075m/s[9,12]. This is slightly faster than self-selected turning speed in young adults and helps to 

ensure a consistent ipsilateral pivot strategy for the turn[15]. Participants practiced the turning task until they 

were able to consistently achieve the correct foot placement and gait velocity and then 15 turning trials were 

collected. 

2.4 Fatiguing protocol 

The paradigm utilized for fatiguing the paraspinal musculature was the maximal endurance Sorensen test. This 

paradigm has been widely reported and validated elsewhere[16,17]. Participants lay prone on an examination 

table with the lower limbs supported, the anterior superior iliac crests aligned with the edge of the table, and 

the upper trunk unsupported. The pelvis and lower limbs were stabilized to the table using cushioned straps. 

Participants were asked to maintain a horizontal body position with the arms crossed across the chest for as 

long as possible. Standardized verbal encouragement was provided while the hold time was measured with a 

stopwatch. The test was terminated when the participant was no longer able to maintain the horizontal test 

position, or when they voluntarily stopped the test due to fatigue. Assessment of failure to hold the test position 

was standardized by observation of a plumb bob hung around the participant’s neck, with sustained motion of 

more than 1 inch downwards indicating the end of the test[18]. Immediately after completing the fatiguing 

protocol, participants repeated the turning trials exactly as previously described. To determine if muscle pain or 

discomfort might confound the effect of fatigue on coordination variability, participants completed two visual 

analogue scales (VAS) for pain in the paraspinal region. The VAS ranged from 0 (no pain) to 100mm (maximal 

possible pain). The VAS were completed for a) pain experienced during the fatiguing exercise and b) pain 

experienced during the post-fatigue walking turns. EMG data were collected from the lumbar paraspinal 

musculature during the Sorensen test. Further details of the EMG methodology and analysis of EMG median 

frequency indicating muscle fatigue are included in the supplementary materials.  

2.5 Data processing 
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The turn stride cycle was subdivided into stance and swing phases. The beginning and end of the stance phase of 

the turning limb were determined from the onset and offset of vertical ground reaction forces (threshold of 

20N) and the second initial contact of the turning limb was determined from a local minima in the vertical 

trajectory of a triad of markers placed on the heel. 

Kinematic data were low-pass filtered with a zero-lag, cut-off frequency of 10Hz, 4th order Butterworth filter 

[9,12]. Axial plane pelvic and trunk segment rotation were calculated across the turn stride cycle relative to the 

global coordinate system using Cardan angles with a rotation order of XYZ (flexion/extension; 

abduction/adduction; axial rotation)[19]. Trials where marker occlusion occurred were excluded, but for all 

participants there were at least 11 walking turns suitable for analysis for both conditions[20]. The number of 

turns analyzed for pre- and post-fatigue was the same for each participant. Data were then exported to 

MATLAB® for VC and EAM analyses (MathWorks, Natick, USA). 

2.5.1 Vector coding method analyses  

The VC method has been described elsewhere[20] and additional details are provided in the supplementary 

material. Briefly, for each interval in a time series, a coupling angle is calculated. The coupling angle can be 

represented graphically as the angle from the right horizontal of a vector connecting successive data points on 

the trunk-pelvis angle-angle plot (Figure 2a and b). Across multiple trials, the variability of the coupling angle at 

each time interval is quantified as the angular deviation using circular statistics[20]. The average angular 

deviation was calculated across the stride cycle, and for the stance and swing phases. Larger angular deviation 

indicates greater variability. We have previously established the test-retest reliability of this method for 

quantifying trunk-pelvis coordination variability and demonstrated a standard error of measurement of 0.23° 

[9], and therefore a minimal detectable change value of 0.64°.  

2.5.2 Ellipse area method analysis  
 

The EAM approach has also been detailed elsewhere[11] and additional details are provided in the 

supplementary material. Like VC, this method can be visualized as a series of vectors connecting successive data 

points of trunk-pelvis motion across the stride cycle of the turn (Figure 2a and c). The variability of the direction 

and length of these vectors at each time point across multiple trials is quantified as the area of an ellipse 

encompassing the data points from all trials at that time point with 95% probability. The length of the axes of 

the ellipse are calculated from the eigenvalues of the trunk-pelvis excursion covariance matrix, and 95% 

probability is calculated using a Chi-Squared function. The average ellipse area was calculated across the stride 

cycle, and for the stance and swing phases. Larger ellipse area indicates greater variability.  
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2.6 Statistical analyses 

Data were checked for normality of distribution. Paired t-tests were used to compare the magnitude of pre- and 

post-fatigue variability for VC and EAM for the entire stride cycle and for the stance swing phases of the turn. 

Effect sizes (ES) for paired t-tests were calculated. Similarity between the variability time-series before and after 

fatigue for each method was quantified with cross-correlation at zero lag time[21]. The linear relationship 

between the magnitude of variability for the two methods was calculated for the stride cycle and stance/swing 

phases using Pearson correlation coefficients.   

3. Results 

Average duration of hold for the Sorensen test was 107 ± 48s. Participants reported 33.7 ± 23.5mm pain during 

the fatiguing exercise. This reduced to 4.9 ± 7.5mm pain during the walking turns post-fatigue. All participants 

were able to maintain the target walking speed pre- and post-fatigue. Average duration of the turn stride cycle 

was 1.08 ± 0.09s pre-fatigue and 1.05 ± 0.07s post-fatigue. The duration of the stance phase of the turn did not 

differ across conditions (63.60 ± 1.76% of the stride cycle pre-fatigue and 63.07 ± 1.79% post-fatigue exercise, p 

= 0.135).  

3.1 Change in trunk-pelvis coordination, quantified with vector coding 

The time series of VC coordination variability averaged across the group for the stride cycle of the turn pre- and 

post-fatigue is shown in Figure 3a. VC coordination variability decreased significantly post-fatiguing exercise 

across the stride cycle and separately for both the stance phase and the swing phase of the turn (Figure 4a, 

Table 1). For all individuals there was a high cross-correlation between the pre- and post-fatigue time series 

(median correlation coefficient 0.93, range 0.90 – 0.99, Figure 4c).  

3.2 Change in trunk-pelvis coordination, quantified with ellipse area method  

The time series of EAM coordination variability averaged across the group for the stride cycle of the turn pre- 

and post-fatigue is shown in Figure 3b. EAM coordination variability decreased significantly post-fatigue across 

the stride cycle and for the stance phase but did not change significantly during the swing phase of the turn 

(Figure 4b, Table 1). For all individuals there was a high cross-correlation between the pre- and post-fatigue time 

series (median 0.92, range 0.81 – 0.98, Figure 4c). 

3.3  Relationship between VC and EAM analyses 
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There was a significant linear correlation between the average magnitude of variability measured with VC and 

EAM during the stride cycle and stance phase pre-fatigue, and between VC and EAM results for the stride cycle, 

stance and swing phases post-fatigue (Table 2). 

4. Discussion 

This study demonstrates that fatigue influences trunk/pelvis coordination variability during walking turns. This 

study is also one of the first to explore coordination variability using two different non-linear variability analyses. 

We demonstrate that use of VC or EAM to quantify variability does not influence the findings for average 

magnitude of variability across the stride cycle. However, there are some differences in the temporal 

distribution of variability. 

During walking at moderate to fast speeds, trunk-pelvis axial plane inter-segmental coordination is 

predominantly antiphase[2,3]. For walking turns this antiphase inter-segmental coordination is modulated  to 

realign the body in the new line of progression and then rapidly transition back to the steady-state cycle[9]. 

From stride to stride, variability in the pattern of inter-segmental coordination may provide a mechanism to 

compensate for movement errors due to neuromuscular noise and stride to stride perturbations that occur even 

during steady-state walking. Decreased trunk-pelvis coordination variability is evident in individuals with 

impaired neuromuscular control of the trunk, including patients with Parkinson’s Disease and with persistent 

low back pain[3,22,23]. Conversely, increased inter-segmental coordination variability may be reflective of 

unskilled or unanticipated movement[1,22]. It is not clear how large a change in coordination variability is 

biomechanically or clinically significant. In these healthy participants successful task performance, quantified as 

walking velocity and duration of the stride cycle, was maintained post-fatigue despite decreased variability. 

However, it is important to note that the change in VC variability associated with fatigue in this study far 

exceeded the minimal detectable change value calculated from our previous reliability study[9]. 

The time-series comparisons in this study demonstrate that although magnitude of variability decreases in 

response to fatigue, the temporal structure of variability associated with the task is retained. To our knowledge, 

this is the first report of altered coordination variability during walking or turning in response to paraspinal 

muscle fatigue. In this study we did not determine the mechanism underlying fatigue-induced changes in 

kinematics. However, muscle fatigue is associated with impaired proprioceptive and cutaneous sensory function 

as well as altered peripheral muscle performance[25]. Previous research investigating the influence of fatigue on 

neuromuscular control of the trunk demonstrated that localized muscle fatigue results in central reorganization 

of neuromuscular strategies[26]. This reorganization encompasses both fatigued and non-fatigued muscles and 
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is characterized in part by increases in co-contraction[27]. Greater co-contraction within the dorsal and ventral 

trunk musculature may be a strategy to increase trunk-pelvis stiffness and minimize the effect of force 

fluctuations in fatigued muscles[28]. The compensatory trunk-pelvis stiffness also appears to modulate patterns 

of axial coordination between the segments[29] and greater trunk-pelvis stiffness has been reported in patients 

with reduced coordination variability[30].   

Our study demonstrates that average magnitude of coordination variability was reduced following fatiguing 

exercise and that this finding was independent of the method used to quantify variability. In addition, 

magnitudes of variability measured with VC and EAM were highly correlated. To date only one other study has 

directly compared results from VC and EAM analyses[11]. Stock et al. noted some similarity between the VC and 

EAM variability time-series of hip/knee sagittal plane variability during running in a single participant. We found 

that VC coordination variability was greatest at the end of stance and during the swing phase of the walking 

turn, whereas EAM variability peaked during stance phase. These differences are likely due to the sensitivity of 

VC to vector length, as previously reported[11], as well as fundamental differences between the two methods in 

the way that variability that is quantified. EAM measures variability in both the orientation and excursion of 

relative motion between segments whereas VC solely quantifies variability in orientation. The amplitude of axial 

plane excursion for the trunk and pelvis, and therefore the vector lengths at each time point, are greater during 

the stance phase of walking turns than the swing phase[9], resulting in the potential for greater variability during 

stance phase when measured with EAM. In contrast variability quantified with VC is greatest when smaller 

amplitude of motion at each time point is accompanied by high stride-to-stride variability in segmental 

orientation, for example around deflection points during the stride cycle when the direction of axial rotation 

changes[3].  

Our findings suggest that it may be prudent to utilize more than one method to characterize inter-segmental 

coordination variability during walking.  Method selection should be considered carefully from the perspective 

of motion excursion and whether the research hypothesis involves magnitude of variability during sub-phases 

within the gait cycle or the temporal distribution of variability. If the research hypotheses include pattern of 

coordination as well as coordination variability, then the VC method has the advantage of providing clinically 

interpretable inter-segmental coordination patterns from segmental position data.  

There were some limitations to the study. As with all research utilizing voluntary fatiguing protocols, the 

duration of the Sorensen test, and therefore the extent of fatigue, is to some extent dependent upon participant 

motivation. However, the Sorensen protocol has been widely used and validated and average hold time in this 

study is consistent with that reported in healthy individuals elsewhere[16].  
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Conclusion 

In healthy individuals, magnitude of trunk-pelvis stride-to-stride coordination variability decreases following 

fatiguing exercise while the temporal distribution of variability across the stride cycle is maintained. This may 

reflect a strategy to reduce degrees of freedom in response to fatigue-induced motor and sensory impairments.  

This finding is not affected by the method used to quantify coordination variability.   
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FIGURE LEGENDS 

Figure 1. Stride cycle of a ipsilateral walking turn to the right. The stride cycle begins with initial contact of the 

right foot. Ninety-degree re-orientation is completed within the stance phase of the right foot. The area for the 

turn is outlined by cones to constrain the turning angle. 

Figure 2. Simplified representation of the vector coding method (VC) and ellipse area method (EAM) for 

quantifying variability of trunk-pelvis coordination across multiple trials of a walking turn. a) Exemplar data 

showing an angle-angle plot of axial plane motion relative to the laboratory coordinate system for the trunk and 

pelvis during three walking turn trials. b) VC method. The pattern of coordination is quantified with the coupling 

angle of the vector connecting successive time points. Coupling angle for each of three exemplar time intervals 

during a single trial shown (φA, φB, φC). Coordination variability at each time interval is the angular deviation of 

each coupling angle across multiple trials. c) EAM method. The coordination variability across multiple trials for 

each of three exemplar time intervals (A, B, C) is the area of the ellipse encompassing the change in position 

during that time interval in each trial. 

Figure 3. Ensemble-averaged time series of coordination variability across the stride cycle of the walking turn 

quantified by a) the vector coding method, and b) the ellipse area method. Stride cycle time normalized to 

100%. Error bars indicate standard error of the mean. 

Figure 4. Change in magnitude of variability from pre- to post-fatigue for each individual quantified with a) 

vector coding, and b) ellipse area method. Figure 4c. Individual cross correlation coefficients between the 

variability time series quantified pre- and post-fatigue with vector coding (VC), and ellipse area method (EAM). 
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Table 1. Average magnitude (± standard deviation) of coordination variability quantified with vector coding (VC) 

and ellipse area method (EAM) and effect sizes (ES) for pre-post comparisons. 

 Pre Post p ES 

Stride cycle VC, °  15.78 ± 5.17 13.55 ± 4.08 0.016 0.78 

Stance phase VC, ° 10.56 ± 4.51 8.35 ± 2.93 0.022 0.70 

Swing phase VC, ° 24.96 ± 7.39 22.52 ± 7.29 0.033 0.60 

Stride cycle EAM, °2 0.10 ± 0.05 0.09 ± 0.03 0.034 0.79 

Stance phase EAM, °2 0.12 ± 0.06 0.10 ± 0.04 0.027 0.73 

Swing phase EAM, °2 0.07 ± 0.03 0.06 ± 0.01 0.222 0.33 
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