1992

Fe ii Fluorescence and Anomalous C iv Doublet Intensities in Symbiotic Novae

A. G. Michalitsianos
NASA, Goddard Space Flight Center

Menas Kafatos
Chapman University, kafatos@chapman.edu

S. R. Meier
USN, Research Laboratory

Follow this and additional works at: http://digitalcommons.chapman.edu/scs_articles
Part of the Instrumentation Commons, and the Stars, Interstellar Medium and the Galaxy Commons

Recommended Citation
Fe ii Fluorescence and Anomalous C iv Doublet Intensities in Symbiotic Novae

Comments
This article was originally published in Astrophysical Journal, volume 389, in 1992. DOI: 10.1086/171237

Copyright
IOP Publishing

This article is available at Chapman University Digital Commons: http://digitalcommons.chapman.edu/scs_articles/104
Fe II FLUORESCENCE AND ANOMALOUS C IV DOUBLET INTENSITIES IN SYMBIOTIC NOVAE

A. G. Michalitsianos
NASA/Goddard Space Flight Center, Code 684.1, Laboratory for Astronomy and Solar Physics, Greenbelt, MD 20771

and

M. Kafatos AND S. R. Meier
Department of Physics, George Mason University, Fairfax, VA 22030
Received 1991 July 22; accepted 1991 October 28

ABSTRACT

Symbiotic stars frequently exhibit anomalous C IV λ21548.2, 1550.8 doublet flux ratios, in which the intensity ratio of the blue and red doublet members is below the optically thick limit of unity. Three symbiotic stars (RR Tel, RX Pup, and AG Peg) have been investigated in detail with high-resolution spectra obtained from the International Ultraviolet Explorer (IUE) archives. We have examined the deficit of C IV λ21548.2 emission relative to λ1550.8 in context with the fluorescent pumping of the Fe II multiplet (45.01) λ1548.204 by the C IV λ1548.2 line. In RR Tel the C IV λ1548.2 flux is correlated with the intensities of fluorescent-excited Fe II lines formed by the downward cascades from the y4H1/2 upper level. This suggests that a circumstellar Fe II forming region in RR Tel responds to variations of the C IV line strength, which provides further evidence in support of Fe II fluorescence in UV spectra of symbiotic stars first identified by Johansson. During periods when the C IV I(λ1548.2)/I(λ1550.8) ratio in RX Pup is significantly less than the optically thick limit of unity, we find that the flux deficit of C IV λ1548.2 is approximately equal to the combined flux of the Fe II Bowen-pumped aFe II → y4H1/2 transition. This could explain the anomalous C IV ratios observed in this system and several deep absorption features in the C IV λ21548.2 line profile, when the C IV flux ratio was substantially less than the optically thick limit of unity. Unlike RR Tel and AG Peg in which the velocity centroids of the Fe II Bowen lines correspond to the peak emission of the C IV λ1548.2 line, the Bowen-pumped Fe II lines in RX Pup exhibit a velocity range 0 ≤ vFe II ≤ +80 km s⁻¹. This could reflect the differential motion of individual gas parcels within an orbiting cloud that obscured the Mira and hot ionizing object, consistent with the model proposed by Whitelock et al. to explain the photometric behavior of RX Pup between 1982 and 1983. The cloud would be the source of Fe II fluorescent emission and would explain why the anomalous C IV doublet intensities were observed during a 3 yr period when the V and J photometric bands indicated a decrease in light.

Subject headings: binaries: symbiotic — novae, cataclysmic variables — stars: emission-line, Be — ultraviolet — stars

1. INTRODUCTION

The composite nature of symbiotic spectra at optical and infrared wavelengths is indicated by continuum and molecular TiO and VO absorption, appropriate to an M giant or a Mira variable accompanied by nebular emission from multiply ionized oxygen, nitrogen, neon, sulfur, iron, and Balmer emission. Approximately 25% of the known symbiotic stars (D-types) exhibit silicate emission in the infrared, consistent with a circumstellar dust shell. The majority of these systems (S-types) show stellar continuum between 10 and 20 μm, appropriate to blackbody emission from an M giant nearing its life on the asymptotic giant branch.

In quiescence, symbiotic stars are characterized by strong Balmer recombination emission and high-excitation forbidden line emission which is formed by intense ultraviolet radiation from a hot companion, with 25,000 < T_eff < 10⁵ K (Kenyon & Webbink 1984). A significant contributor to the circumstellar region in which the binary is embedded is the cool stellar wind of the M giant (Nussbaumer 1990), as well as the hot stellar wind from the hot companion.

The nature of outbursts in symbiotic stars, however, remains controversial. A sudden change in accretion rate onto the hot companion of a main-sequence star can lead to a significant rise in luminosity in time scales of a few weeks, if the M giant envelope expands to fill its Roche lobe. During outbursts the accretion rates can become as large as the Eddington limit in the range ~10⁻⁵ to 10⁻⁶ M⊙ yr⁻¹ (Bath & Pringle 1982). Equally appealing, however, are models that propose a thermonuclear runaway (Kenyon 1988); during quiescence, material deposited on the degenerate surface of a low-mass white dwarf, at rates of ~10⁻⁷ to 10⁻⁸ M⊙ yr⁻¹, leads to thermal instability that results in multiple hydrogen shell flashes (Sion & Starrfield 1986; Sion & Ready 1992). The velocities associated with mass expulsion during outbursts can range between hundreds to several thousand km s⁻¹.

In the wavelength range accessible by the International Ultraviolet Explorer (IUE) (λλ1200–3200), symbiotic spectra are characterized by strong permitted line emission, e.g., N v λλ1238, 1242, C iv λλ1548, 1550, He ii λλ1640, Mg ii λλ2795, 2802, in addition to emission from intersystem lines, e.g., O iv] λλ1397–1407, N iv] λλ1487, O iii] λλ1660, 1666, N iii] λλ1747–1753, Si iii] λλ1883, 1892, and C iii] λλ1907, 1909.

IUE Guest Investigator.
The C IV λ1548.2, 1550.8 emission doublet exhibits particularly interesting behavior unique to symbiotic stars. In a modest number of symbiotic stars that have been observed with IUE, the intensity ratio of C IV \(I(1548.2)/I(1550.8)\) is found less than the optically thick limit of unity during periods when the UV line and continuum emission brightens. During a slow spectroscopic brightening of RX Pup that was observed between 1980 and 1986 (Kafatos, Michalitsianos, & Fahey 1985; Michalitsianos et al. 1988), the intensity ratio of C IV \(I(1548.2)/I(1550.8)\) correlates with the absolute C IV flux, in the sense the ratio decreases (or more anomalously) with increasing C IV line and UV emission. Michalitsianos et al. (1988) suggested this effect may be the result of optical-depth variations associated with \(~500\) to \(800\) km s\(^{-1}\) high-speed wind from the hot star in RX Pup. In this interpretation, the broad P Cygni absorption trough of the λ1550 line diminishes flux at λ1548.4, thus reducing the ratio of the intensities of the doublet below the optically thick limit of unity at maximum UV light. The minimum velocity estimated for the wind (\(~500\) km s\(^{-1}\)) is set by the wavelength spacing of the C IV doublet (2.6 Å), and an upper limit (\(~800\) km s\(^{-1}\)) was estimated by the absence of P Cygni absorption blueward of the C IV λ1548.4 line.

The C IV line profile structure also suggests a low-velocity \((~100\) to \(200\) km s\(^{-1}\)) wind from narrow P Cygni profile structure in RX Pup that truncates emission from the underlying broad C IV profile. The red wings of the C IV lines became very extended during this spectroscopic brightening phase, when the C IV lines were \(+200\) to \(+400\) km s\(^{-1}\) (full basewidth). Several narrow, deep absorption features are evident at the C IV line core and redward of line center in RX Pup. Structure of this character was also observed in a similar system, the R Aqr—central H II region (Michalitsianos et al. 1988). The Wolf-Rayet character of the C IV profiles during enhanced UV emission suggests a broad underlying turbulent region of \(~500\) km s\(^{-1}\) (full basewidth) that occurs when C IV doublet ratios are most anomalous. With a slow decrease in UV line emission, the C IV doublet ratio assumes values close to the theoretical optically thick limit of unity.

Anomalous C IV doublet intensities are observed in a number of other symbiotic stars in addition to RX Pup; these include R Aqr (central region) Michalitsianos et al. (1988), Z And (Cassatella, Fernandez-Castro, & Olivers 1988), AG Peg (Chochol, Komarek, & Vittone 1988), the recurrent nova RS Oph (Shore & Aufenberg 1991), and CH Cyg, from spectra we have examined. In all cases, the C IV λ1548 component appears weaker compared with the λ1550 line during slow outbursts, but never completely disappears. According to Michalitsianos et al. (1988), the wind velocities would be highly constrained because the maximum speed could not greatly exceed 800 km s\(^{-1}\). Otherwise, a deep P Cygni trough would be evident in the violet wing of the C IV λ1548.2 line; this is not observed.

Alternatively, the anomalous C IV intensities could be explained by strong optical-depth effects in the C IV emitting region that substantially increases self-absorption in the core of strong resonance lines. This interpretation is consistent with the presence of O II λ1641.3 which is found in some symbiotic stars when the C IV doublet ratio is \(~1\). O II λ1641.3 is formed from the same upper level (3s\(^3\)S\(^0\)) as the O I λ1302 line. When the medium is optically thick, substantial selfreabsorption of the zero-volt level of O I λ1302 will occur. The decay from the 3s\(^3\)S\(^0\) upper level will take place through the O II λ1641.3 line (3s\(^3\)S\(^0\) \(\rightarrow\) 2p\(^4\) D transition) first suggested by Hack (1982). O II λ1641.3 emission was identified during a recent outburst in the recurrent nova RS Oph (Shore & Aufenberg 1991). O II λ1641 emission was clearly resolved from He II λ1640 emission in HIRES (high resolution) IUE spectra obtained of RX Pup near maximum UV light during its slow brightening between 1981 and 1986 (Kafatos et al. 1985) which peaked around 1981 June 11; O II λ1641 disappeared entirely in 1985, when the C IV \(I(1548.2)/I(1550.8)\) \(~1.0\).

Another process which is important for explaining the presence of deep broad absorption features, and which can account for a significant fraction of the flux deficit of the C IV λ1548.2 line during slow brightening phases, is the fluorescence pumping of Fe II. Bowen-pumping of the Fe II multiplet (45.01) λ1548.204 that selectively pumps the upper \(\gamma^4H_{1/2}\) level by C IV λ1548.2 was first identified by Johansson (1983) in RR Tel. The C IV λ1548.2 line coincides almost exactly in wavelength with Fe II λ1548.204 \(\{\alpha^4Fe_{1/2}^4H_{1/2}\}\) transition. Fluorescence is indicated by the presence of 10 strong emission lines of Fe II (209, 243, and 282) in RR Tel that correspond to the downward cascades from the \(\gamma^4H_{1/4}\) level (Johansson 1983). Bowen-pumping of the Fe II multiplet (45.01) by C IV λ1548.2 was subsequently also found in AG Peg (Penston & Allen 1985).

We have analyzed the fluxes of the Fe II Bowen-excited lines in RR Tel from the HIRES IUE SWP and LWR/LWP archives which were obtained over a decade of monitoring, in order to determine if the C IV λ1548.2 intensity and the strengths of the fluorescent-excited Fe II lines are correlated. Bowen-pumped excited Fe II multiplets (168, 209, and 282) have been identified in RX Pup. Our analysis includes HIRES spectra of the S-type symbiotic star AG Peg where Fe II Bowen emission was identified by Penston & Allen (1985). AG Peg is in a state of decline following a major outburst that occurred in 1830. The results are as follows.

1. The C IV doublet intensity ratios in RR Tel were not anomalous between 1979 and 1989, and the ratio had typical values consistent within the optically thin region, i.e., \(1 \leq C IV \; I(1548.2)/I(1550.8) \leq 2\), with a mean value \(~1.3\). The intensity of individual Fe II Bowen-excited lines is correlated with the C IV λ1548.2 flux. This suggests the presence of a foreground Fe II region (or shell) in which fluorescent-excited material responds to flux variations of C IV λ1548.2. The velocity centroids of the Fe II Bowen lines correspond to the peak flux of the C IV λ1548.2 line and suggest a circumstellar region that is essentially at rest with respect to the hot ionizing source in this system.

2. In RX Pup the combined fluxes of Fe II Bowen-pumped lines can account for an appreciable fraction of the flux deficit in the C IV λ1548.2 line when the C IV doublet ratio is less than the optically thick limit of unity. The combined fluorescent emission \(\Sigma Fe II\) (Bowen) can equal (or exceed) the deficit of flux needed, such that C IV \(I(1548.2)/I(1550.8) \sim 1\). The Fe II Bowen lines in RX Pup exhibit a velocity range of \(0 \leq v_{Fe II} \leq +80\) km s\(^{-1}\), where several strong Fe II emission lines correspond to deep absorption structure in the C IV λ1548.2 line profile.

3. In AG Peg the C IV λ1548.2 flux deficit cannot be explained by Fe II fluorescent absorption alone when the C IV doublet ratio anomaly is at an extreme. In this case optical depths associated with a wind from the hot star significantly affect radiative transfer of line and continuum radiation, substantially increasing self-absorption. This is supported by the N V λ1238, 1242 resonance lines, which do not fluorescently excite other ionic species, but do exhibit anomalous doublet intensities similar to the C IV doublet.
2. DATA ANALYSIS

HIRES IUE SWP \(\lambda\lambda 1200-2000\) and LWR/LWP \(\lambda\lambda 2000-3200\) spectra (\(\Delta \lambda \sim 0.1\) \AA\ limiting spectral resolution) from the data archives of the Regional Data Analysis Facility (RDAF) at NASA Goddard Space Flight Center were analyzed using RDAF astronomical IDL application programs. We reprocessed all spectra using the most recent intensity transfer function (ITF) of LWP/LWR spectra. The SWP and LWR/LWP spectra sets for a given epoch were chosen carefully to assure that the SWP spectra with the C\(\text{iv}\) doublet were not saturated, and the exposure times for the LWR/LWP cameras were sufficiently long to detect the Fe II Bowen lines. The wavelengths and absolute lines intensities were obtained using the current ITF IUE extraction software. The wavelength centers are weighted averages from the reprocessed images obtained using the IUE data archives.

Three of the fluorescent-excited lines arising from Fe II multiplets (168) \(\lambda\lambda 2211, 2219, \ 2227\) are located in a low-sensitivity region of the LWR/LWP cameras (2000 \(\AA \leq \lambda \leq 2300\) \AA), and spectra available from the IUE archives were not sufficiently long to detect these lines above background. However, six lines of Fe II multiplets (209), (243), (282) were found, which arise from the downward cascade of the \(y^2H_{1/2}\) level. In Table 1, the IUE camera, sequence numbers, and exposures times are given for spectra used to obtain absolute C\(\text{iv}\) and Bowen Fe II line intensities for RR Tel. In Figure 1, we have plotted the absolute intensities of two Fe II and Bowen C\(\text{iv}\) doublet ratios for these dates (Fig. 2a, and during one epoch (1983 October 20; Fig. 2b).

The C\(\text{iv}\) \(\lambda 1548.2\) emission in RX Pup increased by \(\sim 8\%\) between 1981 June 11 and 1983 October 29, while the C\(\text{iv}\) \(\lambda 1550.8\) line decreased by \(\sim 20\%\) over this same period. The C\(\text{iv}\) doublet ratios for these dates (Fig. 2a, b: top and bottom) were \(\sim 0.6\) and \(\sim 0.8\), respectively. In AG Peg, the C\(\text{iv}\) \(\lambda 1548.2\) increased relative to \(\lambda 1550.8\), as the doublet ratio became more "normal," i.e., of order unity. The C\(\text{iv}\) doublet ratio in AG Peg was \(\sim 0.2\) at maximum UV light when the doublets exhibited velocity-broadened wings (1979 September 15). The ratio \(\sim 1.0\) when the UV flux decreased (1981 January 8) and acquired more optically thin values of \(\sim 1.5\) (1989 October 15); in AG Peg the variation of the doublet ratio exhibits the widest range of the three symbiotic stars investigated.

In Figure 3, the C\(\text{iv}\) line profiles for AG Peg are shown for three dates, respectively. The C\(\text{iv}\) line profiles exhibit considerable emission structure. In particular, several weak emission components are visible blueward and redward of the rest frame of the star, suggesting velocity-shifted C\(\text{iv}\) emitting regions. A number of these components visible around the \(\lambda 1548\) line have corresponding components at \(\lambda 1550\), determined by their appropriate wavelength separation of 2.6 \AA. A.

3. RESULTS AND DISCUSSION

Johansson (1983) provided an explanation for the presence of a number of unidentified lines in the UV spectral atlas of RR Tel (Penston et al. 1983) as fluorescent-excited Fe II emission which is not fluorescent-excited. The Fe II Bowen lines correlate with the C\(\text{iv}\) \(\lambda 1548.2\) intensity, consistent with this

© American Astronomical Society • Provided by the NASA Astrophysics Data System
fluorescence process, which suggests the existence of a low-excitation emitting region where Fe II fluorescent-excited emission responds to flux variations in the C IV emitting region.

We can estimate the nebular parameters for the Fe II absorbing shell. Taking a velocity spread parameter b ~ 40 km s⁻¹ for Fe II emitting material, we have from Spitzer (1978)

\[\tau_{\text{FeII}}(\lambda 1548.2) \approx 1.5 \times 10^{-18} f_{12} L_{\text{FeII}}(a^4F_{9/2}) n_e, \]

where the f-value from Kurucz (1981), f₁₂ ~ 5.83 × 10⁻⁵. Here "1" refers to the lower level a^4F_{9/2} and "2" to the upper level y^4H_{11/2}. In equation (1) we assumed cosmic abundances for iron. Assuming \(\tau_{\text{FeII}}(\lambda 1548.2) \geq 1 \), we find \(L_{\text{FeII}}(a^4F_{9/2}) \sim 1.1 \times 10^{22} \text{ cm}^{-2} \). The number of Fe II ions in the a^4F_{9/2} state is difficult to estimate because of the multitude of transitions involving Fe II. However, an upper limit can be found from the Boltzmann formula, if only transitions between the ground state term a^D and the excited state a^F are considered; that is, \(N_{\text{FeII}}(a^4F_{9/2}) \sim 0.25 \). Taking the other low-lying levels into consideration, we expect that \(N_{\text{FeII}}(a^4F_{9/2}) \ll 1 \). If \(T_e \sim 10^4 \text{ K} \), then we find \(L_{\text{Ne}} \geq 4.4 \times 10^{22} \text{ cm}^{-2} \). On the other hand, if \(T_e = 10^5 \text{ K} \), then \(L_{\text{Ne}} \geq 5.5 \times 10^{23} \text{ cm}^{-2} \). Typically, \(n_e \sim 10^{10} \text{ cm}^{-3} \) for RX Pup (Kafatos et al. 1985), which yields for \(T_e = 10^5 \text{ K} \), which is a lower size limit of the Fe II shell of ~4.4 × 10^{12} cm. This size is typical of radii associated with evolved M giants, which in the case of RR Tel is a 389^a period Mira. The size and densities suggest that Fe II emission occurs in the extended atmosphere or circumstellar shell.

However, in RX Pup and AG Peg the relationship between C IV λ1548.2 emission and the strength of fluorescent-excited Fe II lines is quite different compared with RR Tel. In Figure 4, we have plotted the C IV λ1548.2 line profile and the Fe II Bowen-pumped lines of RX Pup in velocity space (relative to the laboratory rest wavelength) against absolute intensity, when the C IV doublet ratio was \(I(\lambda 1548.2)/I(\lambda 1550.8) \approx 0.6 \) on 1981 June 11; the systemic velocity of the system is \(+11 \text{ km s}^{-1} \) (Wallerstein 1986). The Fe II Bowen-pumped lines \(a^4F_{9/2} \rightarrow y^4H_{11/2} \) exhibit a velocity range \(0 \leq v_{\text{FeII}} \leq +80 \text{ km s}^{-1} \), where the individual multiplet components are labeled: (b) Fe II λ2436.2 and (c) λ2771.1 correspond to a deep

Table 2

Fe II Fluorescence Lines in RX Pup

<table>
<thead>
<tr>
<th>Ion</th>
<th>(\lambda \text{(lab)}) (Å)</th>
<th>(\log gf^a)</th>
<th>(\lambda(\text{UE})) (Å)</th>
<th>Absolute Flux(^b)</th>
<th>(V_{\text{FeII}}) (km s⁻¹)</th>
<th>(\lambda(\text{UE})) (Å)</th>
<th>Absolute Flux(^b)</th>
<th>(V_{\text{FeII}}) (km s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe II multiplet (168)</td>
<td>2211.0</td>
<td>-1.58</td>
<td>2211.2</td>
<td>3.6(^b)</td>
<td>+ 5</td>
<td>2227.9</td>
<td>0.8(^b)</td>
<td>+ 10</td>
</tr>
<tr>
<td>Fe II multiplet (168)</td>
<td>2219.8</td>
<td>-0.53</td>
<td>2220.0</td>
<td>7.2</td>
<td>+ 8</td>
<td>2243.6</td>
<td>7.4(^b)</td>
<td>- 37</td>
</tr>
<tr>
<td>Fe II multiplet (168)</td>
<td>2227.3</td>
<td>-1.44</td>
<td>2236.2</td>
<td>10.5</td>
<td>- 20</td>
<td>2436.0</td>
<td>11.8</td>
<td>- 41</td>
</tr>
<tr>
<td>Fe II multiplet (209)</td>
<td>2436.2</td>
<td>-0.85</td>
<td>2458.8</td>
<td>13.4(^b)</td>
<td>- 15</td>
<td>2459.1</td>
<td>6.2</td>
<td>- 36</td>
</tr>
<tr>
<td>Fe II multiplet (209)</td>
<td>2481.0</td>
<td>-0.68</td>
<td>2491.0</td>
<td>12.6</td>
<td>- 7</td>
<td>2480.8</td>
<td>10.3(^b)</td>
<td>- 19</td>
</tr>
<tr>
<td>Fe II multiplet (209)</td>
<td>2492.3</td>
<td>-0.74</td>
<td>2492.3</td>
<td>12.2</td>
<td>- 11</td>
<td>2492.3</td>
<td>6.9</td>
<td>- 10</td>
</tr>
<tr>
<td>Fe II multiplet (209)</td>
<td>2771.1</td>
<td>-1.64</td>
<td>2771.1</td>
<td>13.1</td>
<td>- 14</td>
<td>2771.0</td>
<td>5.0</td>
<td>- 21</td>
</tr>
</tbody>
</table>

\(^a \) C IV (λ1548.2)/C IV (λ1550.8) \sim 0.6, C IV (λ1548.2) = 409.0 \times 10^{-13} \text{ ergs cm}^{-2} \text{ s}^{-1}.

\(^b \) Flux in units of \(10^{-13} \text{ ergs cm}^{-2} \text{ s}^{-1} \).

\(^c \) Weak feature.

\(^d \) Emission feature is broad.

Table 3

Fe II Fluorescence Lines in AG Pegasi

Ion	\(\lambda \text{(lab)} \) (Å)	\(\log gf^a \)	\(\lambda(\text{UE}) \) (Å)	Absolute Flux\(^b \)	\(V_{\text{FeII}} \) (km s⁻¹)			
Fe II multiplet (168)	2211.0	-1.58	2211.2	3.6\(^b \)	+ 5	2227.4	5.5	+ 0
Fe II multiplet (168)	2219.8	-0.53	2220.0	7.2	+ 8	2243.6	7.4\(^b \)	- 37
Fe II multiplet (209)	2436.2	-0.85	2458.8	13.4\(^b \)	- 15	2459.1	11.8	- 41
Fe II multiplet (209)	2481.0	-0.68	2491.0	12.6	- 7	2480.8	6.2	- 36
Fe II multiplet (209)	2492.3	-0.74	2492.3	12.2	- 11	2492.3	9.8	- 37
Fe II multiplet (209)	2771.1	-1.64	2771.1	13.1	- 14	2771.0	5.0	- 21

\(^a \) C IV (λ1548.2)/C IV (λ1550.8) \sim 0.2, C IV (λ1548.2) = 409.0 \times 10^{-13} \text{ ergs cm}^{-2} \text{ s}^{-1}.

\(^b \) Flux in units of \(10^{-13} \text{ ergs cm}^{-2} \text{ s}^{-1} \).

\(^c \) Weak feature.

\(^d \) Emission feature is broad.
The velocity range exhibited by the Fe II Bowen lines in RX Pup relative to interstellar lines is 80 km s\(^{-1}\). The decline in photometric brightness occurred during our IUE observations of 1981 June 11. The C\(\text{iv}\) doublet ratio gradually increased to values of order unity by 1984 (cf. Kafatos et al. 1985). This provides evidence that the anomalous C\(\text{iv}\) doublet ratio is associated with this obscuration event. The velocity range 0 \(\leq v_{\text{rad}} \leq 80\) km s\(^{-1}\) found here may reflect the differential motion of gas parcels within the obscuring cloud that have mainly positive radial velocity components with respect to the line of sight.

The relative intensities of the individual Bowen multiplets in RX Pup do not correspond to the predicted intensities based on the multiplet oscillator strengths. This could result from the C\(\text{iv}\) absorption feature centered at \(\sim 25\) km s\(^{-1}\). Fe II (\(d\) \(\lambda\)2481.7 and (\(a\) \(\lambda\)2227.3 coincide with a broad C\(\text{iv}\) absorption feature at \(\sim 80\) km s\(^{-1}\). The deep absorption structures evident in the C\(\text{iv}\) \(\lambda\)1548.2 line are not seen in the \(\lambda\)1550.7 line (Fig. 2).

The velocity exhibited by the Fe II Bowen lines in RX Pup is not found in RR Tel (Fig. 5), where the velocity centroids of the Bowen Fe II line multiplets (209), (243), and (282) coincide with the peak flux in C\(\text{iv}\) \(\lambda\)1548.2, at \(-47\) km s\(^{-1}\) (rest is with respect to the laboratory rest wavelength). The radial velocity of RR Tel relative to interstellar lines is \(\sim 114\) km s\(^{-1}\), and a systematic difference between absorption and emission lines \(V_{\text{em}} - V_{\text{obs}} = \sim 80 \pm 7\) km s\(^{-1}\) was found by Penston et al. (1983). Similarly, the velocity centroids of Fe II Bowen lines in AG Peg \(\sim 10\) km s\(^{-1}\) of the peak emission of C\(\text{iv}\); this is close to the radial velocity of the system, where \(V_{\text{rad}} \sim 16\) km s\(^{-1}\). Thus, the kinematic structure of the fluorescent Fe II forming region in RX Pup is distinct compared with RR Tel and AG Peg. It is interesting to note that the period over which the C\(\text{iv}\) \(I(\lambda\text{1548})/I(\lambda\text{1550})\) was less than unity in RX Pup coincided with a decrease in brightness in both \(V\) and \(J\) photometric bands found by Whitelock et al. (1984). Our IUE observations of 1981 June 11 were obtained at the start of the decline in photometric brightness in \(J\) and \(V\). Whitelock et al. (1984) found that \(V = 10.7\) in 1982 and \(V = 11.0\) in 1983, at the Mira phase \(\phi = 0.55\). They attribute this decrease in \(V\) to an obscuration of the 580\(^{\circ}\) period Mira in RX Pup by a dust cloud in orbit in the system.

Based upon additional \(J\) photometry data obtained of RX Pup kindly provided by P. A. Whitelock, the decrease in the \(J\) brightness appears to have started in 1981 June and persisted for \(\sim 3\) yr. The decline in photometric brightness occurred during our IUE observations of 1981 June 11. The C\(\text{iv}\) doublet ratio gradually increased to values of order unity by 1984 (cf. Kafatos et al. 1985). This provides evidence that the anomalous C\(\text{iv}\) doublet ratio is associated with this obscuration event. The velocity range \(0 \leq v_{\text{rad}} \leq 80\) km s\(^{-1}\) found here may reflect the differential motion of gas parcels within the obscuring cloud that have mainly positive radial velocity components with respect to the line of sight.

The relative intensities of the individual Bowen multiplets in RX Pup do not correspond to the predicted intensities based on the multiplet oscillator strengths. This could result from the
complex kinematics of the Fe II emitting foreground cloud. We assume that the pumped Fe II multiplet (45.01) λ1548.204 probably has a width comparable to that of the downward cascade transitions, which for Fe II λ2436.2 is ~40 km s⁻¹ (FWHM); the width of the C IV λ1548.2 line is nearly 6 times larger. The absolute strength of the Fe II fluorescent lines will be largely determined by the relative velocity of the Fe II gas parcels with respect to C IV emitting region. Parcels with speeds in excess of ≥ ±125 km s⁻¹ will be Doppler-shifted outside of the C IV emission profile, substantially decreasing the pumping efficiency.

The extent to which fluorescent pumping of Fe II effectively scatters C IV λ1548.2 radiation into the iron spectrum is reflected by the combined strength of the downward cascades of Bowen multiplets. In Table 2 observed absolute fluxes of the Bowen-pumped Fe II lines are shown for RX Pup. If we take the C IV flux ratio for 1981 June 11, when the C IV λ(1548.2)/I(1550.8) ~ 0.6, the total flux in the Fe II Bowen lines can be compared to C IV λ1548.2 emission. Assuming circumstellar and interstellar absorption is negligible, the total flux of the fluorescent-excited Fe II lines is Σ[I(Fe II Bowen)] ~ 10⁻¹³ ergs cm⁻² s⁻¹. Adding this value the total flux to the C IV λ1548.2 intensity, we find

\[
\frac{\Sigma[I(\text{Fe II Bowen})] + C IV I(\lambda 1548.2)}{C IV I(\lambda 1550.8)} \sim 1.2 ,
\]

which is a lower limit. This suggests that a substantial fraction of C IV λ1548.2 flux can be absorbed by this process.

Equation (2) does not include the effects of differential extinction. If the absorption is largely circumstellar as might be the case for D-types such as RR Tel and RX Pup, correcting the C IV line intensities arising from this effect is complicated because the form of the circumstellar reddening law appropriate is not well known. Whitelock (1988) finds that variations in the IR light curve of systems such as RX Pup may be the result of spontaneous large-scale mass transfer from the Mira onto the secondary, and that the reddening in objects such as RX Pup and R Aqr may be time-dependent and caused by eclipses of an obscuring cloud associated with the hot companion. As such, circumstellar reddening and dust emission in the IR can have a strong influence in the observed colors of Miras in symbiotic systems (Whitelock 1988).

As a first-order approximation, we can adopt the Savage & Mathis (1979) galactic extinction law for correcting differential reddening in RX Pup. We find that

\[
\frac{\Sigma[I(\text{Fe II Bowen})] + C IV I(\lambda 1548.2)}{C IV I(\lambda 1550.8)} \sim 1.0 ,
\]

which is ~20% of the value obtained from equation (2). Thus, fluorescent pumping of Fe II by C IV λ1548.2 can explain an appreciable fraction of the flux deficit in the blue doublet member when the C IV flux ratio is smaller than the optically thick limit of unity.

However, in AG Peg the flux deficit of C IV λ1548.2 cannot be explained by fluorescent pumping of Fe II alone. When the C IV I(1548.2)/I(1550.8) ~ 0.2 (Table 3, 1979 September 15), the combined Fe II Bowen flux constitutes only 17% of the C IV λ1548.2 flux, and fluorescent pumping of Fe II multiplet (45.01) cannot explain the total flux deficit of C IV λ1548.2 entirely. Moreover, the N V λλ1238, 1242 doublet (Fig. 6) also shows anomalous doublet line intensities and is very similar to the C IV doublet in this system. The N V λλ1238, 1242 doublet is not known to fluorescently excite other atomic species. We suspect, therefore, that the anomalous doublet intensities evident in both C IV and N V are the result of strong optical-depth effects associated with wind. The region containing the optically thick wind is enclosed by a circumstellar material that is nearly at rest with respect to the UV ionizing source, based upon the velocity centroids of the Fe II Bowen lines relative to the peak flux of the C IV λ1548.2 line profile.

The onset of an optically thick wind in AG Peg could result following episodes of enhanced mass transfer from the M star (or Mira) onto the hot compact secondary. At luminosities near the Eddington limit, a critical phase can be achieved when the pressure due to accretion balances the luminosity of the accretion boundary region around the compact star. This could explain the formation of a wind emanating from the hot...
secondary that has appreciable column densities. Based upon the temporal variations observed in the UV line intensities in RX Pup (Kafatos et al. 1985), the optically thick region expands and cools on time scales of ~1 yr, enabling EUV radiation to escape.

4. SUMMARY AND CONCLUSIONS

We have examined the variation of absolute intensities of Bowen-excited Fe II emission in three symbiotic stars: RR Tel, RX Pup, and AG Peg. Emission lines corresponding to the Fe II \(\alpha^2F_{g2^-} - \gamma^7H_{11/2} \) transition are pumped by C IV 1548.2 due to a coincidence in wavelength with Fe II 1548.02 multiplet (45.01). In RX Pup the combined flux from Fe II multiplets formed by the downward cascade from the \(\gamma^7H_{11/2} \) level is sufficient to explain the flux deficit of C IV 1548.2 relative to \(\lambda 1550.8 \) and explain the anomalous doublet C IV intensities observed in this system.

In RR Tel where the C IV doublet ratio is not less than unity, we find that the flux of the Fe II Bowen-excited lines correlate with the intensity of the C IV 1548.2, which pumps the Fe II \(\alpha^2F_{g2^-} - \gamma^7H_{11/2} \) transition. Moreover, the Fe II Bowen lines coincide with the velocity centroid of the C IV 1548.2 line profile. This argues for a low-excitation circumstellar Fe II emitting region that is essentially at rest with respect to the high-excitation C IV emitting source in this system. This provides further evidence in support of Fe II fluorescent pumping by C IV 1548.2, first identified by Johansson (1983) in RR Tel.

The Fe II Bowen-pumped lines in AG Peg coincide closely to the velocity centroid of the C IV 1548.2 line similar to RR Tel. This suggests a circumstellar low-excitation region that is essentially near the rest frame of the central UV source. However, unlike RR Tel, the absolute intensities of the Bowen-pumped lines are anticorrelated with the absolute C IV flux. Optical depth variations in an optically thick wind may affect the ionization state of the circumstellar region, causing Fe II emission to decrease as the flux of C IV increases. Moreover, the combined absolute intensities of the Fe Bowen-pumped lines cannot explain the flux deficit of C IV 1548.2 relative to C IV 1550.8 when the doublet ratio is most extreme.

In RR Pup the combined flux of Fe II (Bowen) of the fluorescent-excited Fe II lines can explain the deficit of flux of the C IV 1548.2 line relative to C IV 1550.8 line. Several deep absorption features prominent in the C IV 1548.2 line coincide in velocity with two of the Fe II Bowen-pumped lines. This explains the more complex line profile structure exhibited by C IV 1548 compared with 1550.8. In contrast with RR Tel and AG Peg, the Fe II Bowen-pumped lines in RX Pup exhibit a velocity range of 0 \(\leq v_{FeII} \leq 80 \) km s\(^{-1}\) with respect to the velocity centroid of C IV 1548.2. The velocity range over which the Bowen-pumped lines are found may indicate differential motions within an obscuring cloud of dust which Whitelock et al. (1984) proposed had decreased light from the Mira in J and V photometric bands in RX Pup. We find that the C IV doublet was significantly less than the optically thick limit during the occultation period which lasted ~3 yr.

REFERENCES

Nussbaumer, H. 1990, in Proc. IUE Conf., Evolution in Astrophysics (ESA SP-310), 87

© American Astronomical Society • Provided by the NASA Astrophysics Data System
Spitzer, L. 1978, Physical Processes in the Interstellar Medium (NY: Wiley)