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PHYSICAL REVIEW B 87, 205418 (2013)

Physics of unbounded, broadband absorption/gain efficiency in plasmonic nanoparticles

Nasim Mohammadi Estakhri and Andrea Alù*

Department of Electrical and Computer Engineering, 1 University Station C0803, The University of Texas at Austin, Austin, TX 78712, USA
(Received 15 November 2012; published 10 May 2013)

Anomalous resonances in properly shaped plasmonic nanostructures can in principle lead to infinite
absorption/gain efficiencies over broad bandwidths of operation. By developing a closed-form analytical solution
for the fields scattered by conjoined hemicylinders, we outline the fundamental physics behind these phenomena,
associated with broadband adiabatic focusing of surface plasmons at the nanoscale. Over a continuous frequency
range, our proposed composite nanostructure shows finite amount of absorption/amplification even in the limit
of infinitesimally small intrinsic material loss/gain. Detailed physical insights are provided to justify the nature
of this apparent paradox, and its counterintuitive behavior is discussed for potential applications in nonlinear
optics, spasing, sensing, and energy-harvesting devices.

DOI: 10.1103/PhysRevB.87.205418 PACS number(s): 41.20.Jb, 42.25.Bs, 73.20.Mf, 78.67.Bf

I. INTRODUCTION

The growing interest in the optical properties of
nanoparticles1,2 has led to the discovery of many coun-
terintuitive scattering features in plasmonic nanostructures.
Due to their negative real part of permittivity, these parti-
cles support surface plasmon resonances at the nanoscale
that have been proposed for many exciting applications,
including field concentration, sensing, nanolasing, and opti-
cal guiding.3–8 Different configurations have been analyzed
in recent years, from simple nanospheres and core-shell
structures6,7 to more complicated shapes, like crescent-shaped
cylinders.9 If simple structures are known to support strong,
sharp plasmon resonances, more complicated shapes may
provide more complex scattering responses, such as Fano and
electromagnetically-induced transparency resonances,10,11 or
broadband operation.9 Including gain may further boost these
effects and compensate the detrimental effects usually caused
by losses.12,13 Many of the exotic properties of these ge-
ometries, however, often appear to contradict well-established
physical limitations of resonant subwavelength systems,14 and
the underlying physics is often difficultly captured because
of the complex interaction between multiple resonances and
plasmonic effects. On the other hand, a key parameter to
consider in choosing a specific plasmonic geometry is the
fabrication limitations dictated by technological challenges.
Particles with exotic shapes and very fine features, although
showing interesting electromagnetic properties, may be im-
practical to realize from the experimental point of view and to
apply to real-life devices.

As an example that may shed new light into these
phenomena, we analyze here the anomalous electromagnetic
response of a rather simple composite nanoparticle, formed by
two conjoined half-cylinders of arbitrary complex permittivity
ε1 and ε2 relative to the background permittivity, and radius a,
as shown in the inset of Fig. 1. This geometry has been recently
proposed in the special configuration ε1 = −ε2 to form a reso-
nant optical nanocircuit, and previous attempts to analytically
solve its scattering properties using mode-matching analysis,15

integral transformations,16 and coordinate mapping17 have led
to nonphysical solutions and strong numerical instabilities. We
show in the following that these challenges are associated with
remarkably counterintuitive resonant phenomena, which lead

to a continuous frequency range over which distributed plas-
mon resonances may support unbounded values of absorption
or gain efficiency, i.e. finite absorption or gain even in the limit
of infinitesimally small material loss/gain. By extending the
analytical approach originally introduced in Ref. 17 to evaluate
the polarizability of a hemicylinder, we are able to solve the
complete scattering problem associated with this geometry and
derive closed-form expressions for the induced fields inside
and outside this composite particle. This solution provides
valuable physical insights into the complex wave interaction
of this particle over a broad range of frequencies, which may
provide, as we discuss in the following, exciting possibilities
for energy concentration, harvesting, and spasers.18–22

II. THEORY AND FORMULATION

A. Geometry and theoretical analysis: Electrostatic solution

We start by solving the scattering problem in the quasistatic
limit, under the assumption a << λ0. An incident monochro-
matic wave with electric field E0 illuminates the nanostructure
under an ejωt time convention, and the permittivities of the
two half-cylinders can take arbitrary complex values, whose
imaginary parts correspond to material loss or gain depending
on their negative or positive sign. Due to symmetries and
linearity, the problem may be split into two orthogonal
excitations with respect to the common diameter of the
structure. By using separation of variables in the 2D bipolar
coordinate system,17 the potential distribution in each material
may be written in integral form as

ϕi(u,v) =
∫ ∞

0
U (u)[Ci1 (λ) cosh (λv) +Ci2 (λ) sinh (λv)] dλ,

(1)

in which the subscript i = 1,2,0 refers to upper, lower,
and outer regions, respectively, λ is the continuous eigen-
value, U (u) is either cos (λu) or sin (λu) for longitudinal
and transverse polarizations, respectively, and −∞ < u < ∞
and −π < v � π are bipolar coordinate variables. The un-
known coefficients Cij (λ) may be found by applying suitable
boundary conditions at the various boundaries to calculate
the general form of potential distribution in all space from
Eq. (1). In Ref. 17, this integral expansion was used to
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determine the electric polarizability α = p/E0 of an isolated
hemicylinder, where p is the induced electric dipole moment,
evaluated using the asymptotic expression of ϕ0 in the
far-field.

In the present case of two conjoined hemicylinders, the
normalized polarizability may be analogously derived for ar-
bitrary relative permittivity values. For longitudinal excitation,
we obtain

αl = π2[−ε2 + ε1(−1 + 6ε2)] + 12(ε1 + ε2)[Li2(ε−) + Li2(ε+)]

1.5π2(ε1 + ε2 + 2ε1ε2)
,

(2)

ε± = − (1 + ε1)(1 + ε2)(ε1 + ε2)

ε2 ±
√

−(ε1 − ε2)2(2 + ε1 + ε2)(ε1 + ε2 + 2ε1ε2) + ε1[1 + ε2(4 + ε1 + ε2)]
,

in which Li2(x) is the polylogarithm function of second order,
and analogously for the transverse excitation

αt = π2[ε1 + ε2 − 6] − 12(ε1 + ε2)[Li2(ε−) + Li2(ε+)]

1.5π2(2 + ε1 + ε2)
.

(3)

B. Absorption/gain paradox

Having derived in closed form the polarizability of this
particle, we may efficiently analyze its extinction properties
as a function of the available design parameters. We start from
the lossless configuration, for which all involved permittivities
are purely real. Figures 1(a) and 1(b) show the calculated
longitudinal polarizability for different values of ε1 and ε2,

assuming lossless materials (real-valued ε). Since so far we
have been working in the quasistatic limit, there is no radiation
loss, and in the limit of no Ohmic absorption, we expect the
absorbed power to be identically zero. This requires that the
polarizability is purely real, as in absence of scattering loss
Pext = −ω/2|E0|2Im[α] = Pabs (Pext and Pabs are extinction
and absorbed powers, respectively). On the contrary, the results
in Fig. 1(b) highlight continuous frequency ranges over which
the polarizability has an imaginary component even in this
lossless limit, consistent with some of the findings in Ref. 17
for a single hemicylinder.

To gain a better understanding of the behavior of the
polarizabilities and their dependency on the permittivity and
excitation, Figs. 1(c) and 1(d) also show the longitudinal and

FIG. 1. (Color online) Normalized complex polarizability of two conjoined half-cylinders for different permittivity values under longitudinal
excitation. (a) Real part of polarizability. (b) Imaginary part. Polarizability of the structure with ε2 = 3 for (c) longitudinal and (d) transverse
excitation. Particle geometry and excitation fields are shown in the inset. Shaded regions highlight the resonant ranges of this geometry, as
defined in Eq. (4).
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transverse polarizabilities of the structure fixing the lower
half at ε2 = 3 and varying ε1; yellow shades highlight the
resonance regions in these plots. Since plasmonic properties
require frequency dispersion, these plots may be also read
as the variation of polarizability versus frequency, once an
appropriate dispersion model for ε1 is assumed, as discussed
in the following section.

The paradoxical result illustrated in Fig. 1, for which a
complex polarizability may be obtained in the static limit
for lossless materials, is mathematically associated with the
range of permittivities for which the arguments of Li2 have
magnitude larger than one. However, the polylogarithm func-
tion LiN (z) = ∑∞

k=1
zk

kN is strictly convergent only for |z| < 1,
requiring that its value should be analytically continued over
the whole complex plane. Two branch cuts are associated with
this range of complex solutions, and complex conjugate values
are admissible solutions of Eqs. (2) and (3). This implies that
our geometry may be able to extract (or produce, depending
on the sign of Im[α]) power even in the case of purely lossless
(or gainless) materials. In Figs. 1(c) and 1(d), we indicate with
solid (dashed) lines the solution with Im[α] < 0 (Im[α] > 0),
corresponding to absorbing (amplifying) nanoparticles.23 We
notice that a similar response has been highlighted in the case
of other plasmonic geometries involving sharp corners.24

III. DISCUSSIONS AND PHYSICAL INSIGHTS

In this section, we discuss the reasons behind the paradox
highlighted in the previous section. We start by looking at

a simple dielectric wedge structure, which models the wave
interaction at the corner region shown to be at the foundation
of this phenomenon. We then present novel closed-form
expressions for the polarizability and potential distribution
in all regions of space, which allow us to discuss the nature
of the induced electric field inside and around the particle.
Finally, we study the absorption properties of the proposed
geometry in the electrodynamic case and investigate how
realistic considerations affect these conclusions.

A. Singularities and the absorption/gain paradox

As shown in the following, the counterintuitive response of
the composite particle under analysis is physically associated
with the singularities induced at the two corners of the struc-
ture, which have so far been assumed as ideal mathematical
edges with zero curvature at the tip. In the corner proximity,
the geometry may be statically modeled as a double dielectric
wedge described by the Laplace equation. Independent of
the polarization of the applied field, eigensolutions may be
supported by the wedge configuration for some specific values
of material permittivities.25 Not surprisingly, the permittivity
range over which Im[α] �= 0 in Fig. 1(b) exactly corresponds
to the quasistatic eigenresonance of a 90◦ double dielectric
wedge. It is possible to show, in fact, that the resonance of a
90◦double wedge arises when

−ε2 − 2 < ε1 < min{−ε2, − 1}, max{−ε2, − 1} < ε1 <
−ε2

1 + 2ε2
for ε2 > 0

−ε2 < ε1 < − ε2

2ε2 + 1
, − ε2 − 2 < ε1 < −1 for − 1/2 < ε2 < 0

(4)
−ε2 < ε1 < ∞, − ∞ < ε1 < − ε2

2ε2 + 1
, − ε2 − 2 < ε1 < −1 for − 1 < ε2 < −1/2

−ε2 − 2 < ε1 < −ε2, − 1 < ε1 < − ε2

2ε2 + 1
for ε2 < −1.

These inequalities provide, in general, two/three separate
continuous resonant windows of unbounded absorption/gain
efficiency, defined as the ratio Im [α] /εi with εi being Im[ε1]
or Im[ε2]. In the permittivity range indicated by Eq. (4), the
corners support continuous eigenmodes that are at the basis of
the anomalous response discussed in the previous section.

From the physical point of view, in this resonant range a
highly oscillatory potential distribution is induced around the
corner of the composite nanoparticle, with strongly enhanced
electric fields. In practice, this behavior is limited by nonlocal
effects and the minimum corner curvature of a realistic
structure. In the special case of a hemicylinder (ε2 = 1)
previously studied in Refs. 15 and 17, divergent or nonphysical
solutions were found in the same range. Under this condition,
the two windows merge into −3 < ε1 < −1/3, separated by
a single point ε1 = −1, corresponding to the special internal
resonance analyzed in Ref. 26.

In the ideal lossless limit, there is no way to distinguish
between the two branch cuts, and both conjugate solutions in

Fig. 1 are equally admissible. This implies that the boundary-
value problem is not well defined, as the uniqueness theorem
does not apply to an ideal lossless scenario.27 Small losses are
required to select the correct Riemann sheet and assign proper
meaning to the solutions in Fig. 1. In order to address this
issue, Fig. 2 shows the effect of loss/gain in ε1 on Im [α] for
different values of Re[ε1]. Outside the resonance region, e.g.
Re[ε1] = −6.5 (blue lines in Fig. 2), Im [α] is a well-behaved
continuous odd function of Im[ε1], and it is identically zero for
zero material loss. For values that lie in the continuous resonant
range Eq. (4), Im [α] is still an odd function of Im[ε1], but it has
a discontinuity at Im [ε1] → 0±, associated with the ambiguity
in selecting the correct Riemann sheet in the lossless case. By
introducing an arbitrary amount of loss εi < 0 or gain εi > 0,
we are able to select either the absorptive (Im [α] < 0) or emis-
sive (Im [α] > 0) branch in Fig. 2. This implies that an arbi-
trarily small (but mathematically nonzero) value of loss or gain
in the material can provide finite absorption or emission over
a continuous bandwidth corresponding to Eq. (4), and in this
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continuous range absorption or gain efficiencies are effectively
unbounded. Interestingly, smaller absorption/gain in the ma-
terial can lead to larger overall absorption/gain in the nanopar-
ticle, as the plasmonic effect at the corner is less quenched.

B. Electric potential and field distributions

Power extraction or generation can arise only in regions
where the quadrature component of the potential Im [ϕi] is
nonzero. In the quasistatic lossless limit, we would expect

ϕi to be exactly in phase with the excitation at all points,
but in the resonant range in Eq. (4), analogous to Eq. (2),
we need a nonzero imaginary component to justify power
extraction. Our mathematical formalism allows calculating
in closed form also the imaginary part of the potential
distributions Eq. (1): by applying proper boundary conditions
at all boundaries of the structure, the unknown coefficients
Cij (λ) can be found for arbitrary values of ε1 and ε2,
such as17

C01 (λ) = 2(ε1 − ε2)(ε1 + ε2)

ε2 + ε1 [1 + ε2(4 + ε1 + ε2)] + (1 + ε2)(1 + ε1)(ε1 + ε2)cosh (πλ)
, (5)

for the longitudinal polarization. Similar expressions may be
found for all the other coefficients and for transverse excitation.
Outside the resonant range indicated by Eq. (4), these coeffi-
cients are continuous functions of the eigenvalue λ and may be
integrated over the entire spectrum to evaluate the potential and
field distributions as in Eq. (1) using a conventional numerical
integration technique, i.e. the Euler method.28 In this regime,
the potential and fields will be real-valued at all points in
space, as expected. However, in the resonant range indicated
by Eq. (4), the coefficients Cij (λ) have a simple pole in the
denominator at

λp = 1

π
cosh−1

{
−ε2 + ε1 [1 + ε2(4 + ε1 + ε2)]

(1 + ε2)(1 + ε1)(ε1 + ε2)

}
, (6)

implying that the coefficients, which all share the same
denominator, hold a nonzero residue in this range.29 In
other words, each coefficient contains an integrable imaginary
component at the pole location with Dirac-δ distribution
sustaining the imaginary part of Eqs. (1) and (2). The amplitude
of the δ distribution may be calculated in closed form by

solving the residue problem as follows

C01 (λ)|λp
= πjRes[C01 (λ) ,λp]

= j
2(ε1 − ε2)(ε1 + ε2)

(1 + ε2)(1 + ε1)(ε1 + ε2)sinh(πλp)
δ(λ − λp),

(7)

and a similar result may be derived for all the other coefficients.
Therefore, the potential distribution in Eq. (1) may be
determined everywhere without ambiguity using the Cauchy’s
principal value integration:

Re[ϕi(u,v)] = p.v.

∫ ∞

0
U (u)[Ci1(λ)cosh(λv)

+Ci2(λ)sinh(λv)]dλ

Im[ϕi(u,v)] = U (u)|λp
[Ci1(λp)cosh(λpv)

+Ci2(λp)sinh(λpv)], (8)

leading to a closed-form expression for the imaginary part
of potential and field distribution. As an example in the case
of conjoined hemicylinders and longitudinal excitation, the
imaginary part of the potential distribution in the upper half-
cylinder may be written in closed-form as

Im[ϕ1(u,v)] = 2E0cos(λpu)

(ε1 + 1)(ε2 + 1)(ε1 + ε2)sinh(λpπ )

{[
−(ε1 − 1)(ε2 + 1)(ε1 + ε2)coth(λpπ/2) + (ε1 − ε2)2

sinh(λpπ )

]

× sinh[λp(π − ν)] + 2(ε2 − ε1)
sinh[λp(π/2 − ν)]

sinh(λpπ/2)

}
, (9)

We recall that this component of the potential is responsible for absorption/gain and can therefore provide interesting insights
into the apparent paradox outlined in the previous section. Analogous expressions may be derived for the potential distribution at
every point in space. It is quite remarkable that, in this geometry, we are able to derive in closed form the imaginary component of
the potential distribution everywhere in space. Similarly, we can write the imaginary part of the polarizabilities given by Eqs. (2)
and (3) in a simple closed form using direct integration of the singularity in the integrand:

Im[αl] = 8λpsign

[
(ε1 + ε2)

ε1 + ε2 + 2

]
(ε1 + ε2) (ε1ε2 − 1) coth(λpπ/2)sinh(λpπ ) − (ε1 − ε2)2

(ε1 + 1) (ε2 + 1) (ε1 + ε2) sinh2(λpπ )
(10)

Im[αt ] = 8λpsign

[
(ε1 + ε2)

ε1 + ε2 + 2

]
(ε1 + ε2) (ε1ε2 − 1) cosh(λpπ ) + ε1ε2 (ε1 + ε2 − 2) + ε2

2 + ε2
1 − ε1 − ε2

(ε1 + 1) (ε2 + 1) (ε1 + ε2) sinh2(λpπ )
,

205418-4
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FIG. 2. (Color online) Imaginary part of polarizability versus
Im[ε1] for different values of Re[ε1] and ε2 = 3 for (a) longitudinal
and (b) transverse illumination. Particle geometry and excitation
fields are shown in the inset.

which allows calculating Pext = −ω/2 |E0|2 Im [α] = Pabs in
closed form. These expressions are consistent with Eqs. (2) and
(3) and are clearly valid only in the resonant range given by
Eq. (4) and zero elsewhere. The sign term in this last equation
ensures the proper choice of the branch cut in the lossless
limit. By adding an infinitesimally small amount of loss/gain,
the solution will automatically collapse to the correct branch,
consistent with Fig. 2.

Figures 3(a) and 3(b), as an example, show the real and
imaginary parts of the potential distribution for a hemicylinder
(ε2 = 1) with ε1 = −1.1 and longitudinal excitation. The
imaginary part is calculated using our closed-form expres-
sions, whereas the real part is obtained by numerical inte-
gration of Eq. (1). The imaginary component of the potential
essentially represents an eigenmode of the structure, in quadra-
ture with the impinging field and supported by plasmonic reso-
nances at the two corners, with an amplitude linked to the value
of excitation. This distribution, integrated over the nanoparticle
volume, effectively sustains the extracted/generated power.
Our analytical solution ensures that, in the corner proximity,
the potential varies in the form ρν , in which ν is purely
imaginary inside the resonance region, forming a highly
oscillatory distribution analogous to Figs. 3(a) and 3(b) around
these points. It should be noted that, in the ideal lossless limit,
this distribution is not square-integrable, as it leads to a finite
value of extracted/generated power for εi → 0.30 This finding,
consistent with the unbounded energy density found near sharp
corners in other geometries,31 explains the reason behind the
nonuniqueness of our solution in the lossless limit. Figures 3(c)
and 3(d) show the corresponding field distributions in the same
structure, calculated analytically as E = −∇ϕ. Plasmonic
oscillations around the corners [Figs. 3(a) and 3(b)] result in
enhanced fields, which may become infinite at the edge point
in the lossless case for an ideal corner.

+4 -2 

(c) (d) 

(b) (a) 

+2-4

FIG. 3. (Color online) (a) Real part and (b) imaginary part of the
potential distribution for a half-cylinder with permittivity ε1 = −1.1
under longitudinal excitation, normalized to the impinging potential
amplitude; (c) real and (d) imaginary parts of the field distribution in
the particle.

Inspecting the imaginary part of the potential distribution
in Fig. 3(b), we indeed notice strong plasmonic oscillations
around the nanoparticle corners. The variation of potential
along the particle diameter is plotted in Fig. 4(a), highlighting
that the surface plasmon supported by the metal-dielectric
interface is adiabatically focused towards the corners, with
a finer and finer spatial variation as the corner is approached.
This effect, supported over the whole resonant range indicated
by Eq. (4), produces broadband, largely enhanced electric
fields, and it sustains absorption/amplification even for in-
finitesimally small values of material loss/gain. Essentially, the
surface plasmon is adiabatically focused towards the corner,
as if it were traveling to infinity (inset of Fig. 4), explaining
the reason why negligible losses (gain) are sufficient to sustain
large absorption (amplification). Different from conventional
adiabatic focusing of surface plasmons, in this geometry, this
effect is achieved at the nanoscale.

Figure 4(b) shows the potential variation along the common
diameter of the particle for a different example (ε1 = −2,ε2 =
1). The different behavior between ε1 = −1.1 and ε1 = −2
can be interestingly explained considering the wedge solution.
For values of ε1 near −1, the frequency of spatial oscillations
is much larger compared to ε1 = −2, resulting in oscillations
extended farther from the corners. For these situations, the
field enhancement may be extended more broadly all over the
particle, with interesting possibilities to more effectively en-
hance optical nonlinearities. These distributed resonances and
adiabatic focusing have direct analogies with the resonant dis-
tribution highlighted in Refs. 9, 32, and 33 for crescent-shaped

205418-5



NASIM MOHAMMADI ESTAKHRI AND ANDREA ALÙ PHYSICAL REVIEW B 87, 205418 (2013)

FIG. 4. (Color online) (a) Real (blue) and imaginary (red) parts
of the normalized potential distribution for a half-cylinder with
ε1 = −1.1 under longitudinal excitation along the x axis. (b) Same
distributions when ε1 = −2. Closer views of the calculated potential
around the corner points are shown in inset.

and touching plasmonic cylinders, but it is obtained here in an
arguably simpler geometry over a flat surface and controllable
frequency bands.

C. Radiation losses and absorption cross-section

The previous analysis highlights that the apparent paradox
of unbounded absorption/gain efficiencies in the proposed
nanoparticle is related to two relevant assumptions: ideal
singularities in the nanoparticle geometry (perfect corners)
and quasistatic solution. In the following, we relax both these
assumptions and analyze how these effects may be translated
into realistic geometries and setups. In the long-wavelength
limit, as long as the dipolar contribution dominates the
scattering response, the quasistatic solution can be easily
extended to the dynamic regime to include effects of radiation
and retardation.34 The dynamic Mie dipolar coefficient C1 is
related to the static polarizabilities given by Eqs. (2) and (3) via
C1 = (−1 + j8x−2

0 α−1/π )−1, x0 = k0a, which includes now
radiation losses. This procedure is consistent with the fact that,
in the long-wavelength limit, the second-order correction to the
polarizability response is due to dipolar radiation, taken into
account by the additional imaginary term.

Figure 5 shows the absorption cross-section normalized to
the physical width of the particle for composite cylinders with
2a = 40 nm, compared to the case of a homogeneous cylinder
of same size. In this case, in order to include also frequency
dispersion and realistic material absorption, the upper half-
cylinder is chosen to be silver with εr = ε∞ − ω2

p/ω(ω − j�),
ε∞ = 5, ωp = 2π × 2175 THz, and � = 2π × 4.35 THz.35

We compare the case of a silver hemicylinder (ε2 = 1) and
the case ε2 = 3, which have different resonant bands following
Eq. (4). The results confirm that absorption/gain may be largely
enhanced over a continuous and controllable frequency band,
significantly broadening the range and level of absorption/gain
compared to a full circular rod of the same material. For

FIG. 5. (Color online) Normalized absorption cross-section for
(a) longitudinal and (b) transverse excitation of a composite nanopar-
ticle with upper half-cylinder made of silver and different values of
ε2. The full cylinder case is also shown for comparison.

a half-cylinder, the absorption is drastically enhanced in
the frequency bands corresponding to the resonance region
(−3 < ε1 < −1 and −1 < ε1 < −1/3) and is negligible at
other frequencies. We observe that this particle shows a
lower amount of absorption around the frequency for which
ε1 = −1, at which we actually have the highest absorption in
the full cylinder case, consistent with the previous analysis.
Quite counterintuitively, this absorption band does not rely on
material losses and in fact is larger in the limit of zero losses,
as discussed in Fig. 2. Another example of this phenomenon,
although much more limited in bandwidth, is evident in
transition metamaterials.36 Compared to a full cylinder of the
same material, the absorption is drastically enhanced and its
bandwidth significantly broadened. Since we can control the
resonance range with ε2 following Eq. (4), the structure can be
designed to show high absorption efficiencies in two separate
bands over the desired frequency ranges.

In order to gain further insight into the effect of mate-
rial and radiation losses on the resonance behavior of the
structure, we also separately study these effects in a gold-
dielectric configuration. We consider conjoined half-cylinders
with diameter 2a = 40 nm, in which now the upper half is
made of gold following a Drude model with ε∞ = 1.53,
ωp = 2π × 2069 THz, and � = 2π × 17.64 THz based on
experimental measurement data.35 Again, three configurations
are studied separately: ε2 = 1, ε2 = 3, and a full gold cylinder
for comparison. Figure 6 shows the normalized absorption
cross-section versus frequency for three different scenarios:

205418-6
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FIG. 6. (Color online) Normalized absorption cross-section for different configurations: the upper half-cylinder is gold, while the lower
part is either ε2 = 1 (blue curves) or ε2 = 3 (red curves). A full cylinder composed of gold (black curves) is also included for comparison.
(a) Longitudinal excitation. (b) Transverse polarization. (c) Normalized absorption cross-section for transverse excitation under the quasistatic
approximation; (d) same as (b), but neglecting gold losses.

in the first two panels, we consider both realistic losses and
retardation effects for different polarization of the impinging
wave. Panel (c) shows the absorption for transverse excitation
neglecting retardation but including realistic losses. Panel (d)
on the other hand includes the retardation effect but assumes
� = 0 (lossless gold).

Compared to silver (Fig. 5), gold provides slightly lower
absorption due to damping of the plasmonic resonance near the
corners in the presence of a larger material and radiation losses.
This can be explained also inspecting Fig. 6(d), in which we
totally neglect material loss. In general, with conventional low-
loss plasmonic materials (e.g. silver and gold), the focusing
effect still dominates the absorption features of these particles.
The effect of retardation can be observed in Fig. 6(c). By
including scattering loss, as expected, the absorption cross-
section is broadened and dampened. It is interesting that, in
the case of a single full cylinder, scattering loss affects the
total absorption much more drastically than in the composite
configurations.

D. Realistic configurations

In order to demonstrate the realistic applicability of the
proposed structure, we analyze now the effect of finite
curvature at the corners. As discussed in Ref. 31, when a
mathematical edge is replaced by one with nonzero curvature,
the continuous eigenresonance range is necessarily converted
into a set of discrete resonance frequencies, which ensures

that Chu’s fundamental limit is satisfied.14 The amount of
realizable absorption will depend on how adiabatically surface
plasmon resonances may be focused and absorbed before
the edge is terminated. We used full-wave simulations to
study this effect for different curvature values. Absorption
cross-section of a blunted hemicylinder with permittivity
ε1 = −0.529 − jεi and 2a = 40 nm is compared in Fig. 7
to an ideal geometry with the same parameters. The full
cylinder case is also shown for comparison. We notice that
the absorption phenomenon is pretty robust for finite values

FIG. 7. (Color online) Normalized absorption cross-section ver-
sus material loss for a hemicylinder with ε1 = −0.529 − jεi com-
pared to full-wave simulations for 1- and 2-nm curvature radii. The
full cylinder is also shown for comparison.
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FIG. 8. (Color online) Amplitude of the electric field distribution
for (a) an ideal silver half-cylinder with ε1 = −0.529 − 0.026j ,
calculated with our analytical formulation, and (b) a blunted con-
figuration at the corresponding frequency. (c) Power flow inside and
outside the geometry under monochromatic plane wave excitation for
the blunted configuration.

of material loss, and the edge bluntness effectively sets the
lower level of |εi | for which large absorption/gain may be
achieved. In other words, when considering corners with finite
curvature, absorption/gain efficiencies are inherently bounded
and fundamentally limited by how sharp (relative to the radius
of the particle), the corner may be made. Similar results are
found in the case of the singular geometry simulated with
finite-integration methods (blue curve), as a finite curvature is
automatically introduced by numerical meshing. Our results
show that significantly large and broadband absorption/gain
effects may be achieved with realistic nanoparticle geometries.

Our full-wave simulations confirm the robustness of this
phenomenon on the corner curvature and edge bluntness,
consistent with previous results for other types of plasmonic
resonances.37 For sharper edges, the number of quantized
resonances increases, and the overall effect gets closer to
the ideal solution.38 Figures 8(a) and 8(b) show the field
distribution for a silver half-cylinder having an ideal corner
using our analytical solution in the quasistatic limit versus a
blunted structure with 2a = 40 nm and radius of curvature
r = 2 nm using full-wave simulations at f = 925 THz for
longitudinal excitation. Figure 8(c) also shows the power flow
in the blunted structure. Interestingly, even with a relatively
large edge curvature, and including scattering losses and
dynamic effects, highly oscillatory fields are still induced
around the corners, and field enhancement is pretty comparable
with the ideal case. The small asymmetry in the distribution
is due to the direction of the impinging wave, but since the
particle is small compared to wavelength, this effect is almost
negligible. Power flow is plotted in a log100 scale, implying
large power concentration inside the particle, responsible
for large absorption efficiencies. In other words, under the
resonance condition, power is strongly concentrated inside the

particle, giving rise to very large absorption regardless of the
small amount of material loss.

E. Potential applications

The distributed resonances and anomalous behavior of
the proposed composite nanoparticle may have many excit-
ing applications, including enhanced energy harvesting and
spasers12,18 based on materials with limited absorption/gain
coefficients and an arguably simple configuration from the
fabrication point of view. These resonances may be broadband
and with a bandwidth and enhancement level controllable
by geometry and design. In this sense, we notice that the
bandwidth of enhancement is effectively controlled by the
corner geometry, and sharper corners can support eigenmodes
over even broader continuous bandwidths. We are currently
exploring related geometries, such as cylindrical and spherical
caps, for which anomalous, broadband enhancement of ab-
sorption and gain may be achieved over even larger frequency
ranges, based on similar principles. Adiabatic plasmonic
focusing at the corners may also be used for other exciting
applications such as enhanced optical nonlinear effects, e.g.
switching and nanomemories.11 The field enhancement may
be tailored to be extended all over the particle volume or be
confined only around the corners, with exciting implications
for these applications (Fig. 4). The rapid and sharp variation of
absorption versus frequency observed in Figs. 5 and 6 can also
be used for sensing,39 with sharp line widths that are compa-
rable to the ones associated with Fano phenomena.10 Finally,
these effects may have a great interest in boosting the usually
low values of gain coefficients in natural optical materials,
of great interest for loss compensation in metamaterials and
plasmonics,13,40–42 as well as for efficient spasers.12,18,19,43

IV. CONCLUSIONS

We have analyzed here the scattering boundary-value
problem of two conjoined subwavelength half-cylinders and
analyzed its drastically enhanced absorption properties. We
have shown that, in the ideal case of perfect corners, this geom-
etry may provide broadband light absorption or amplification
in the limit of negligible material loss or gain, respectively.
This absorption paradox has been shown to be associated
with the singularities in the geometry and the adiabatic
focusing of broadband surface plasmons supported at the
corners. A closed-form solution was derived for the scattering
and absorption properties of the composite nanostructure,
and simple conditions on the material permittivities have
been derived to control the position of the absorption band.
Energy harvesting, sensing, broadband lasing, and boosting of
nonlinearities have been discussed as potential applications of
this nanodevice, also in relation to its robustness to realistic
level of losses/gain in plasmonic materials and finite curvature
of the proposed geometry.
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A. Alù, Phys. Rev. Lett. 108, 263905 (2012).

12N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov,
Nature Photon. 2, 351 (2008).

13M. I. Stockman, Phys. Rev. Lett. 106, 156802 (2011).
14L. J. Chu, J. Appl. Phys. 19, 1163 (1948).
15H. Kettunen, H. Wallen, and A. Sihvola, J. Electrost. 67, 890

(2009).
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