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Abstract

Health interventions using real-time sensing technology are characterized by

intensive longitudinal data, which has the potential to enable nuanced evalua-

tions of individuals’ responses to treatment. Existing analytic tools were not

developed to capitalize on this opportunity as they typically focus on first-order

findings such as changes in the level and/or slope of outcome variables over dif-

ferent intervention phases. This paper introduces an exploratory, Markov-based

empirical transition method that offers a more comprehensive assessment of be-

havioral responses when intensive longitudinal data are available. The procedure

projects a univariate time-series into discrete states and empirically determines

the probability of transitioning from one state to another. State transition

probabilities are summarized separately in phase-specific transition matrices.

Comparing transition matrices illuminates intricate, quantifiable differences in

behavior between intervention phases. Statistical significance is estimated via

bootstrapping techniques. This paper introduces the methodology via three
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case studies from a secondhand smoke reduction trial utilizing real-time air par-

ticle sensors. Analysis enabled the identification of complex phenomena such as

avoidance and escape behavior in response to punitive contingencies for tobacco

use. Additionally, the largest changes in behavior dynamics were associated

with the introduction of behavioral feedback. The Markov approach‘s ability to

elucidate subtle behavioral details has not typically been feasible with standard

methodologies, mainly due to historical limitations associated with infrequent

repeated measures. These results suggest that the evaluation of intervention

effects in data-intensive single-case designs can be enhanced, providing rich in-

formation that can ultimately be used to develop interventions uniquely tailored

to specific individuals.

Keywords: behavioral interventions, longitudinal data, mobile health,

e-health, Markov analysis, secondhand smoke

1. Introduction

Interventions aimed at changing behavior are often implemented on an indi-

vidual level in studies known as single case designs(SCDs) [1]. Within an SCD,

a treatment approach is typically evaluated over time by observing an individual

within two or more distinct phases (intervals of time), both with and without an

active treatment in place. The basic framework includes a baseline phase (A),

comprised of several repeated observations of the dependent variable without

an active treatment. This baseline phase is usually followed by an intervention

phase (B), defined by a discrete point in time where the independent variable

begins to be experimentally manipulated for the duration of the phase, con-

current with continued observations of the dependent variable. The frequency

of observations within SCDs makes them an attractive option for researchers

aiming to observe the precise nuances of how people interact with treatment

protocols [2], specifically those that incorporate highly-individualized shaping

procedures.

Mobile sensing instruments such as fitness trackers, wearable glucose mon-
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itors, and devices within the Internet of Things are beginning to enable be-

havioral responses and the physiological/environmental contexts in which they

occur to be assessed continually, in near real time [3]. The longitudinal data

produced by this technology offers the possibility of deploying behavior inter-

ventions within SCDs that are characterized by an unprecedented amount of

data. Analytic approaches capable of navigating such data-rich longitudinal

studies have not yet been fully developed. For example, in the popular text

Models for Intensive Longitudinal Data [4], nearly all data sets were generated

by ecological momentary assessments (EMAs), diaries, or a reviews of historical

data. Generally, the most intense observation frequencies were associated with

EMAs, which generated data points episodically a few times per day. Simi-

lar data intensity is noted in the text Intensive Longitudinal Methods [5], where

the measurement frequency ranged in duration from 10 through 29 observations.

The data sets used within these texts are representative of the current status

quo, as demonstrated by a meta-analysis of 409 SCDs, which reported that the

average number of observations in the baseline phase was 10.22 [6]. In contrast,

real-time sensors deployed in studies routinely assess data at frequencies on the

order of several times per minute over the course of weeks or months. This

increased data volume should enable the effects of interventions on behavioral

dynamics to be detailed at a much finer resolution, provided that analytic tools

are developed for this purpose.

In addition to increasing the precision of behavioral assessments, techno-

logical advancement has the potential to fundamentally change the nature of

interventions away from static procedures towards just-in-time adaptive behav-

ioral interventions (JITAIs) [7]. JITAIs enable treatments to be provided on an

ongoing basis and to automatically adapt in response to participants’ varying

behaviors, environmental contexts, and past history. In contrast to the his-

toric paradigm, where a small number of study phases demarcate time intervals

of interest, JITAIs do not have well-defined intervention on/off time intervals

and instead are hypothesized as an ongoing interaction between patients and

providers. In static interventions, the delineation between intervention on/off

3



  

phases has resulted in analytic evaluations that are necessarily focused on iden-

tifying global differences between study phases, often by quantifying changes in

level, trend, variability, overlap, and/or immediacy of effect [8, 9, 10, 11, 12].

These analyses were not developed to elucidate the subtleties of behavioral re-

sponses to continuously-adapting interventions, making them insufficient for

evaluating JITAIs.

To fully realize mobile-sensing technology’s potential to increase the resolu-

tion of outcomes, it is necessary to develop analytic techniques that i.) capture

the nuances of individual responses to treatment and ii.) are capable of as-

sessing ongoing interventions that are frequently encountered by participants

throughout the course of a trial. This manuscript describes the development

of a Markov-based, transition matrix methodology that has the potential to

meet these challenges. For a given case, this approach evaluates the interven-

tion by comparing each observation, throughout the entire course of the trial, to

a second observation located within close temporal proximity. The timescales

considered are on the order of seconds, allowing detailed profiles of individual

responses to the intervention to be created. Additionally, because the frequency

of assessment is much higher than in typical behavioral interventions, there are

sufficient observations of the dependent variable to evaluate continual exposure

to intervention stimuli. The proposed analytic approach is non-parametric and

exploratory, characteristics that have been suggested to be valuable for revealing

behavioral dynamics [13].

The use of the techniques developed herein requires a very high sampling

frequency, meaning it is not appropriate for most current studies. However, in-

tense sampling frequencies are becoming increasingly more common as real-time

sensing technology becomes more ubiquitous in multiple contexts [14]. Health

promotion interventions characterized by streaming technology and intensive

measurement frequency have already begun to be implemented [15, 16, 17]. It is

these types of studies, likely representing an increasing proportion of behavioral

interventions in the future, that the procedures described in this manuscript

were developed to analyze.
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2. Background

2.1. Project Fresh Air

The methodologies in this paper are generalizable to any study with a suf-

ficient number of observations. Project Fresh Air (PFA), a secondhand smoke

(SHS) reduction trial characterized by streaming data and intensive data mea-

surements, was used as a prototype throughout this manuscript (see Ref. [17]

for the full details of this study). This trial aimed to ameliorate SHS exposure

by leveraging punitive contingencies, which are defined as aversive stimuli con-

tingent on a behavior(s) that makes the behavior(s) less likely to be emitted in

the future. Approximately 300 homes were enrolled in this trial, each of which

contained at least one adult who generated SHS (typically via indoor cigarette

smoking) and at least one child under 14 years old living in the home. To mon-

itor indoor air quality, two Dylos DC1700 air particle quality monitors were

installed inside of each home. The monitors were calibrated to detect particles

with sizes ranging from 0.5 to 2.5 microns, which is consistent with SHS as

well as non-tobacco aerosol sources [18]. One monitor was installed in the room

nearest to where most smoking took place and another was placed in the child’s

bedroom; measurements from only the main smoking room monitor are included

in the current analysis. The monitors measured the air particle concentration

every ten seconds. In approximately half of the homes, the air particle monitors

were fitted with devices that were programmed to deliver aversive visual and

auditory feedback (yellow/red lights and tones) when air particle concentrations

exceeded 60 µg
m3 , which previous research indicated was consistent with indoor

cigarette smoking [18]. The intensity of the aversive feedback increased [19] if a

second 120 µg
m3 threshold was breached. For these homes, the trial was stratified

into two phases: 1.) Baseline – a period during which feedback was not active

and 2.) Treatment – the period during which the feedback was activated, repre-

senting an AB logic. Previously, linear mixed-effects analyses demonstrated that

the intervention, on average, significantly reduced particle-related and tobacco-

related outcomes between the Baseline and Treatment phases [17], but did

5



  

not separately examine precise outcomes for individual homes. The aim of the

analyses presented below is to investigate the individualized effect of the first
(
60 µg

m3

)
threshold on a small subset of homes from PFA.

3. Methods

3.1. Markov Chains and Transition Matrices

The methodology underlying this analysis is based on Markov chains. Markov

chains (or processes) are discrete systems that, at any given time, can be char-

acterized as being in a particular state, where the states are mutually exclusive

and exhaustive. They are also memoryless, meaning that the probability distri-

bution of the system’s next state is determined entirely by the current state. If

there are n states, the transition matrix T is an n-by-n structure summarizing

these probabilities over all states. Ti,j , the element of matrix T corresponding

to the ith row and jth column, is the probability that a system in State i at a

given time will be in State j at the next time step. For instance, T1,1 is the

probability that a system in State 1 remains in State 1 at the next time. T1,2

is the probability that a system in State 1 moves to State 2, and so on. One

row for each state is constructed and, by the law of total probability, the sum

of each row must be 1. As an example, consider the matrix

T =

⎛
⎜⎜⎜⎝

0 1 0

0.5 0 0.5

0.5 0.25 0.25

⎞
⎟⎟⎟⎠ .

In this case, when in State 1 at time ti, the system will move to State 2 at

time ti+1 with probability 1. When in State 2 at time ti, the system has a 0.5

probability of moving to State 1 and a 0.5 probability of moving to State 3 at

time ti+1. At time ti, if the system is in State 3, then at time ti+1, the system

will move to State 1 with probability 0.5, to State 2 with probability 0.25, and

remain in State 3 with probability 0.25.

Markov models are extremely dexterous and have been widely applied to

longitudinal data for many purposes including the transition of a system among
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several states [20], the clustering of multivariable time series [21], and to assess

pre/post treatment results [22]. The versatility of Markov modeling allows it to

be used for the present task of assessing an ongoing behavioral intervention.

3.2. Empirical Transition Matrices

The approach detailed herein proceeds by empirically calculating transition

matrices for each phase (A and B) of the intervention. In terms of PFA, for

each home one transition matrix was calculated for both the Baseline phase

and Treatment as follows. Each data point in the air particle time series was

assigned to one of eight states corresponding to the air particle concentration

ranges summarized in Table 1. While these states do not necessarily correspond

to distinct system characteristics, as is often the case with Markov modeling,

this procedure is useful for characterizing system behavior at various levels of

particle generation. States were denoted as Sj for j = 1 . . . 6; S4 represents a

particle concentration that has breached the 60 µg
m3 threshold, thereby activating

the aversive feedback. The selection of the boundaries that delineate the states

must be specifically determined for each study. Section 3.4 details metrics to

aid with this selection and to evaluate the effect that state boundary selection

has on overall results.

To populate the transition matrix, a lag l was selected, which defines the

time interval at which state transitions are evaluated. si was defined as the

state of the system at time i and si+l was defined as the state of the system l

units later at time i + l. (The last l − 1 observations were eliminated from this

analysis since the system’s state l units later was not observed.) We call the si’s

source states and the si+l’s destination states. A schematic of this process is

depicted in Fig. 1 for a single point where si = S2 and si+l = S3. For each Sj ,

consider all of the si’s such that si = Sj , i.e., all of the observations in Sj . We

then determined si+l, the destination state, for each of these observations. The

raw counts were divided by |Sj |, the total number of observations contained in

state j, to convert them into probabilities describing the transition from each

state into every other state. This information was summarized in an empirical

7



  

State Conc. Range
(

µg
m3

)
# Observations

Home 1 Home 2 Home 3

< S1 < 30 715,806 405,519 809,962

S1 30 – 40 6,881 10,837 2,644

S2 40 – 50 1,790 3,488 589

S3 50 – 60 685 1,509 224

S∗
4 60 – 70 396 868 158

S5 70 – 80 486 544 112

S6 80 – 90 277 276 173

> S6 > 90 654 1,478 1,399

Table 1: Range of particle concentrations for each of the states used in the Markov analysis

along with the number of observations in each state for each of the three homes under consid-

eration (Home 1, Home 2, Home 3). S4 has an asterisk since it represents the first state where

a particle concentration has breached the first threshold and activated aversive feedback.

transition matrix, which described the probability of moving from one state to

another after a lag l has elapsed.

TB was defined as the empirically-determined transition matrix for the Base-

line phase of the intervention when the visual and audio feedback was not yet

activated and TT was defined as the empirically-determined transition matrix

for the Treatment phase once the feedback had been activated. If present, in-

tervention effects should manifest themselves as differences between these two

matrices, which can be summarized by TΔ ≡ TT − TB. TB, TT , and TΔ were

calculated for Home 1, Home 2, and Home 3, three households in the PFA study.

As will be demonstrated in Section 4.1.1, these homes were chosen since they

exemplify different analytic results of interest. In each case, a lag of l = 6 mea-

surements, or one minute, was used. The rationale for this choice of lag will is

discussed in Section 3.4.

8
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Figure 1: Schematic of the mechanism used to populate Markov process transition matrices

based on an air particle time series. Time is shown on the x-axis and particle concentration is

shown on the y-axis. At time ti, the system is in state S2. After a lag of l time units, denoted

by the red double arrow, the system is in S3. This process is performed for every observation

so that the probability of moving from every state to every other state can be summarized.

3.3. Significance of the Differences between TB and TT

It is important to determine whether differences summarized in TΔ matrices

were statistically significant and, therefore, likely reflective of distinctive dynam-

ics in different study phases. Bootstrapped confidence intervals for each element

of TΔ were calculated to make this assessment. This procedure took advantage

of the fact that each row of the transition matrix defines a multinomial dis-

tribution with n categories (each of the n destination states). The probability

of the system moving into a given category (typically called a successful trial

in a multinomial distribution) was given by the empirically-calculated, discrete

distribution summarized in the row. Statistical software can easily generate any

number of values at random from a multinomial distribution. For the multino-

mial distribution defined by the row associated with a given Sj , |Sj | values were

9



  

randomly generated. These random values were then grouped according to the

destination state into which they fell. Dividing the number of elements in each

group by |Sj | turns the randomly-generated values into a randomly-generated

row of a transition matrix. This procedure was repeated B ≡ 10, 000 times for

both the Baseline and Treatment phase matrices and, for each run, the differ-

ence between the distributions was calculated, resulting in B TΔ-like difference

matrices. Each element of the TΔ matrices was considered separately and the

B values were sorted from lowest to highest. The 0.025Bth and 0.975Bth value

define a 95% confidence interval. If the resulting confidence interval did not con-

tain zero, then the change associated with this element in TΔ was considered

significant.

3.4. Selection of Analytic Parameters

Several components of the Markov transition matrix are free parameters

that must be chosen. These include the use of {30,40,...,90} as the boundaries

defining the states, Sj , and the use of a lag, l, of one minute between measure-

ments. The selection of these parameters can be informed by theoretical and/or

empirical criteria. In Appendix Appendix B, methodologies from both of these

perspectives that aided in choosing parameters are detailed. The effect of pa-

rameter selection on overall results is also investigated. It should be noted that

the stratification point between the Baseline and Treatment matrices can also

be considered a parameter. Given the strong rationale for selecting the onset of

the intervention as this boundary, we discuss this choice as a validity check.

3.5. Validity Investigation

The methodologies outlined above reflect the stratification of measurements

based on whether they are in the Baseline or Treatment phase of the study

followed by an analysis of the difference between transition matrices associated

with each phase. As a validity check, this section details analyses that explore

whether this delineation choice leads to larger effects than delineating the data

10



  

by some other criterion. If the largest changes are indeed associated with strat-

ifying by intervention phase, this will increase the evidence for interpreting the

results as a definitive demonstration of the effectiveness of the PFA intervention.

3.5.1. Convergence of the Markov System

Before investigating validity, it is necessary to first determine the number

of measurements required for the system to converge to ‘mean’ dynamics. Our

strategy is to consider increasingly larger subsets of the data and determine

how many observations are required for results to be consistent. For a given

home, this process begins by defining the first time point at which the inter-

vention has been activated, which is designated as the tI
th observation. Those

ti values with i < I are in the Baseline phase and those ti values with i ≥ I

are in the Treatment phase. The empirically-calculated probabilities described

in Section 3.2 will be calculated using all of the measurements in the Baseline

and Treatment phases, but the convergence process seeks to identify a subset of

these observations that yields similar dynamics.

The first subset of Baseline phase observations considered consisted of the

10% of all Baseline observations that were temporally closest to tI . Similarly,

the 10% of the Treatment phase observations that were temporally closest to

the onset of the intervention were also selected. This process is illustrated in the

bottom row of Fig. 2. The process described in Section 3.2 was then repeated for

this subset of data by forming the empirical transition matrices TB and TT and

calculating the difference matrix T 10
Δ , where the superscript indicates that 10%

of the Baseline/Intervention data was used. To determine the concordance of

T 10
Δ with T 100

Δ , i.e., the results when using all observations, the Frobenius norm

||T 100
Δ − T 10

Δ ||F was calculated. The Frobenius norm (||.||F ) is the L2 norm of

a vectorized version of the matrix. When performing this calculation, all non-

significant TΔ values were set to zero. To determine the number of observations

required for the system to converge, the process described above was repeated

when considering 20%, 30%,...100% of the observations from each phase’s time

series that were closest to the tI
th observation.

11



  

n=10*

n=9

n=3

n=2

n=1

..

.
..
.

t I

Observations

Phase BL TX

Figure 2: Schematic of the procedure used to evaluate the number of measurements for the

Markov analysis to converge. The dashed line tI indicates the onset of the intervention

characterized by the availability of aversive monitor feedback. For n = 1, TB was formed

using only a small subset of the data adjacent and just prior to tI . This is denoted by the

small orange rectangle on the lowest row. The small blue rectangle on the lowest row illustrates

the small subset of data just after tI that was used to construct TT . For n = 2, the amount

of data used to populate the transition matrices was expanded by 10% of the total number

of measurements in each phase. This process continued until n = 10, when all of the data

in each phase of the intervention were used to construct the transition matrices, which is the

case that is illustrated in Fig. 4.

3.5.2. Optimal Boundary between TB and TT

Once the number of measurements required for the dynamics to converge has

been established, a validity check that considers the effect of alternate bound-

aries between the TB and TT matrices can proceed. Define mB and mT , respec-

tively, as the number of measurements required for convergence in the Baseline

and Treatment phases. An iterative procedure was implemented where the num-

ber of observations used to form the matrices TB and TT was held constant at

mB and mT over all iterations, while the boundary defining the two matrices

varied. For the first iteration, the transition matrix TB was generated from the

1st through the mth
B observations in the study and TT was generated from the

(mB + 1)th through the (mB + mT )th observations. This process is illustrated

in the bottom row of Fig. 3. The associated TΔ matrix summarizing the dif-

ference between these two transition matrices was then calculated. In a sliding

12



  

window-type procedure, the observation indices were then shifted by some value

δ such that a new TB and TT were defined. (See the second from bottom row

of Fig. 3.) TΔ was again calculated for these two matrices. This procedure

was repeated (observations were shifted by δ) as long as there were a sufficient

number of observations to accommodate shifting the data window. δ was chosen

such that after five shifts, the boundary between TB and TT exactly matched

tI , the boundary between the Baseline and Treatment phases.

n=N

n=N−1

n=5

n=2

n=1

..

.
..
.

..

.
..
.

t I

Observations

Phase BL TX

Figure 3: Schematic of the procedure used to evaluate optimal boundary between the Baseline

and Treatment transition matrices. For the first iteration, the 1st through (mB + mT )th

observations were used, with a boundary at mB . For each subsequent iteration, the window

of observations considered is shifted by δ, which is chosen so that at the fifth iteration, the

boundary between the two phases aligns with tI . For each iteration, transition matrices were

empirically calculated and TΔ, the difference between these matrices, was also determined. n

is the iteration number.

4. Results

4.1. Empirical Transition Matrices

Figure 4 illustrates the empirical transition matrices calculated for Homes

1 through 3. The first and second column of panels depict TB and TT , respec-

tively, while the third column of panels depicts TΔ. Only significant changes

(as determined via the methodology described in Section 3.3) with an effect size

(i.e. difference between matrix probabilities) greater in absolute value than 0.05
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are denoted in the TΔ matrices; these probabilities are outlined in blue. Gen-

erally speaking, the transition matrices have the largest probabilities along the

diagonal, meaning that the source state si and the destination state si+l are the

same. In other words, one minute after any given measurement, the air particle

concentration is most likely to have not changed by an amount large enough for

it to have transitioned into different state. For Home 1 and Home 2, the inter-

vention had the effect of increasing the probabilities in the subdiagonal entries,

which represent, on average, a decrease in particle concentrations after l time

units have elapsed. These increased subdiagonal values came at the expense of

decreasing probabilities on the diagonal and superdiagonal. This result can be

seen by examining the transition matrices TB and TT themselves or by observ-

ing the sign and location of significant differences highlighted in TΔ. For these

homes, the intervention had the effect of creating downward pressure on states,

where, once a state had been reached, air particle concentrations were more

likely to decrease in the Treatment phase compared to the Baseline phase. In

Home 3, there was no systematic pattern and only four of the source-destination

pairs in TΔ were significant.

4.1.1. Behavioral Interpretation of Results

From the standpoint of behavior science, detailed conclusions about the

dynamics of a household can be extracted from the transition matrices. The

treatment included lights and tones emanating from the monitor once air par-

ticle concentrations exceeded a threshold. This behavior-stimulus association

is an example of an aversive/punishing contingency. By definition, an aver-

sive/punishing contingency occurs when the presentation of a stimulus made

contingent on a specific behavior results in a reduction of the behavior that led

to the generation of the stimulus. This reduction can occur in two ways, escape

behavior or avoidance behavior. In the escape paradigm, an individual performs

behaviors to immediately alleviate the aversive stimulus associated with its ac-

tion. For example, in PFA, once the aversive alarm has sounded, an individual

may respond by extinguishing a cigarette or by moving outside in order reduce
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the air particle concentration triggering the sound. Avoidance behavior, on the

other hand, is when an individual has discriminated the condition(s) that led

to the aversive stimulus and avoids the behavior or environment altogether. In

PFA, after several instances of being exposed to aversive monitor feedback as a

result of particle-generating behavior, an individual may move outdoors before

or just after lighting a cigarette so that particle concentrations do not trigger

the monitor’s feedback.

The TΔ matrices appear to indicate that Home 1 exhibited escape behavior

while Home 2 exhibited avoidance behavior. For Home 1, the reduction in

the value of the diagonal probabilities and associated increase in subdiagonal

probabilities only occurred for states S4 through S6, precisely those states that

triggered the monitor feedback. That is, household members in Home 1 appear

to be seeking relief from the aversive stimuli, once it has been activated. In

Home 2, though, the effect was present along diagonal and subdiagonal entries

for all states, including those prior to the activation of feedback. This can be

interpreted inferentially as the household adjusting their behavior in order to

avoid triggering the alarm rather than reacting to the alarm once it has become

engaged.

4.2. Validity Investigation

The results of the convergence analysis described in Section 3.5.1 are shown

in Fig. 5 for each of the three homes under consideration. In these figures,

convergence is represented by the asymptoting of ||T 100
Δ − T n

Δ||F values; the

dip for n = 100 is expected as there is an exact match between matrices. For

Home 1, the results converged for all n ≥ 70, which corresponds to using 125,864

measurements in the Baseline phase and 382,635 measurements in the Treatment

Phase. For Homes 2 and 3, the system begins to converge at n = 40 and n = 60,

respectively. For consistency and in an effort to be conservative, we consider

each of these systems to have converged when using 70% of the data. Table 2

summarizes the number of measurements required to converge for each home.

For the three homes under consideration, Fig. 6 illustrates ||TΔ||F for the
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Variable Definition Home 1 Home 2 Home 3

N # observations total 726,428 424,519 815,260

tI
Baseline/Treatment Phase

Boundary
179,807 251,462 330,650

mB # obs. for Baseline convergence 125,864 176,022 231,453

mT

# obs. for Treatment conver-

gence
382,635 121,141 339,228

δ Shift size for validity check 13,486 18,860 24,799

Table 2: Variable definitions for validity analysis and values for representative homes. See

text for details.

various stratification points between the two transition matrices, as detailed in

Section 3.5.2. Larger norms indicate a greater difference between TB and TT

and, therefore, a greater difference between the dynamics summarized by the

matrices. tI , the boundary between the Baseline and Treatment phases, is de-

noted as iteration 0 and all other windows are reported in terms of their iteration

offset from tI . For Home 2, the maximum of the norm is exactly at tI , while

for Home 1, the maximum occurs when the breakpoint is slightly offset from

tI . For Home 3, the pattern was slightly different and the norm was relatively

low until it spiked when the breakpoint was offset by two iterations past tI . In

these cases, the norms are larger for stratification points that, generally speak-

ing, most closely align with the breakpoint between the Baseline and Treatment

phases. This indicates that stratifying by the intervention phase led to larger

difference in dynamics than alternate boundaries, demonstrating the influence

of the PFA intervention in affecting household dynamics and adding validity to

the behavioral findings.

While the Frobenius norm provides a measure of the total action of a ma-

trix, it yields no information about the structure of the values within a matrix.

It is possible for two matrices to have the same norm and completely different

structures. (As a trivial example, the identity matrix and a matrix of the same
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dimensions with 1’s on the anti-diagonal and 0’s elsewhere have the same norm,

but, at most, one element in common.) For the above sliding-window analysis,

it only makes sense to compare the norms of transition matrices across differ-

ent boundaries if the structure of the underlying matrices are similar. The TΔ

matrices that have been discussed thus far have been characterized by negative

values on the diagonal, positive values on the sub-diagonal, and negative values

on the superdiagonal. Therefore, to assess the structure of the matrices cal-

culated during the iterative, sliding-window procedure, the mean subdiagonal,

diagonal, and superdiagonal values were recorded for each of the boundary iter-

ations. These results are shown in the bottom panels of Fig. 6. For Home 2, the

characteristic signs for the 3 interior diagonals are present across all boundaries.

For Home 1, the expected structure of a negative diagonal and positive super-

diagonal does not emerge until the boundary between the two matrices aligns

with tI . This is additional evidence that the intervention was critical in chang-

ing the dynamics of the home in a manner that is face valid. The results for

Home 3 do not follow the same pattern. Its largest norm occurs at an offset of

2; however the expected pattern does not emerge until offsets of 3 and 4 from tI .

This is likely a function of the ineffectiveness of the intervention for this home.

Overall, this analysis provides more validity to the conclusions concerning the

importance of the PFA intervention in generating behavioral responses.

5. Discussion

This paper describes an exploratory Markov procedure that empirically eval-

uated the individualized effects of repeated exposure to an intervention with a

level of detail not possible with standard methodologies. While in the traditional

paradigm differences in the level, slope, or variation of a dependent variable are

often used to arrive at a binary determination of whether an intervention was

efficacious or not, this methodology offers the ability to identify more nuanced,

informative effects. In other words, whereas traditional methodologies focus on

“if” an intervention affects behavior, the empirical Markov methodology pro-
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vides a more detailed assessment of the nature of the behavior responses to an

intervention. Our example resulted in outcome measures that can be inferred

to correspond to avoidance and escape behaviors, a characterization that likely

would have been missed by other methodologies. It is probable that different

behavioral phenomena will be observed when applying the empirical Markov

procedure to other studies. For all cases, though, the precise level of detail

offered by this approach provides an opportunity to assess interventions in a

manner that is much more consistent with established behavioral theory. This

could ultimately lead to more effective, tailored behavioral interventions.

For each case considered herein, the results required over 100,000 obser-

vations per phase to converge. In general, this methodology requires a large

volume of repeated measures for a single individual with the actual number be-

ing dependent on the variance of the observed data. Such intensive longitudinal

data have not been the norm in behavioral interventions thus far. This trend

is changing and soon more studies will have the requisite data measurement

intensity [7, 23]. Wearable devices such as the activity trackers, smart watches,

and a myriad of similar technologies enable a large number of physiological

variables to be assessed continuously in near real-time. Big data from smart

homes, networked cars, and the Internet of Things, which uploads data from

sensors on physical devices (thermostats, washers/dryers, etc.) to networks, al-

low for the measurement of additional behaviors and even the context in which

they occur [3]. Real-time data generated by such devices enables a more com-

prehensive assessment of individuals than has ever been possible. The current

trend of quantified self tracking, where individuals record certain aspects of

their daily life with great precision, will only add to this ability [24]. As this

technology becomes more ubiquitous, there will be a greater number of oppor-

tunities to provide the type of personalized, data-intensive health interventions

that are amenable to methods such as this empirical Markov approach [25].

This process has already begun to take hold in studies concerning, for example,

physical activity [26], dietary intake [27], cigarette smoking cessation [28], and

drug abuse [29]. It has been suggested that current analytic approaches are
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not compatible with the intensive data streams generated by these studies and,

therefore, new methodologies are needed [30]. The empirical Markov model

described herein has the potential to help fill this methodological gap.

A preponderance of data-centric studies in conjunction with analytic method-

ologies that are capable of elucidating detailed accounts of behavior (such as the

empirical Markov methodology) might have the effect of increasing the preva-

lence of studies implementing SCDs as opposed to traditional between-subject

designs. In such studies, an intervention effect may be sufficiently strong as

to leave little doubt as to the efficacy of a treatment, especially if replicated

in multiple individuals. This development would have the effect of moving the

evaluation of treatment away from the descriptions of “average”change in be-

havior, which may conceal important functional relations, towards inductive

assessments of individual level outcomes [2]. This development is likely to lead

to more easily interpretable results that can better inform treatment decisions.

Furthermore, analytic results from our methodology can also be used to inform

the design and implementation of clinical trials aiming to gain a clearer picture

of the variance in patient responses to treatment.

Limitations in this approach are now outlined. Our methodology does not

allow for the inclusion of time-variant predictor and/or mediator variables. As

with all intensive longitudinal studies, procedures for the management of miss-

ing/corrupt data must be developed. Furthermore, this analysis was intended

for demonstration purposes and was only performed for three homes. There-

fore, the generalizability of the results to other homes has not yet been demon-

strated, but will be explored in future work. Applying the empirical Markov

methodology to different types of behavior should also be addressed in the fu-

ture. With a large number of SCDs, it might be possible to assess high-level

predictor/mediator variables. A key step in this process is the development of

succinct metric to summarize the TΔ matrices as opposed to the ad-hoc descrip-

tions of behavior that were used here. Possibilities under consideration are a

principal components decomposition of the matrix as well as pattern recognition

approaches. Such a metric can be used to aggregate results in a way that would
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allow the overall intervention efficacy to be assessed with greater precision at

the individual level of behavior.

6. Software and Data Availability

In accordance with the Peer Reviewers’ Openness Initiative, software scripts

used for implementing our analysis, along with the necessary data, has been

made publicly available. An R package called MarkovSCD was written explicitly

to implement our methodology and is hosted on GitHub. An example script

demonstrating how to load the package and use it to produce the figures and ta-

bles within this manuscript is provided in Appendix A. All data included within

the R package is in a de-identified format that complies with the Institutional

Review Board that oversaw the trial.
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Appendix A. Example Implementation of R Package

Prior to running this script, please check the MarkovSCD package

documentation for updates.

#Install package from Github

library(devtools)

install_github("vancebee/MarkovSCD")

library(MarkovSCD)

#Load Baseline and Treatment Phase data for one home

BL = HM2$MassAve[HM2$Phase == "BL"]

TX = HM2$MassAve[HM2$Phase == "TX"]

#Define state boundaries

sb = seq(30,90,10)

#Calculate empirical transition matrices

A = transmat(tseries = BL,statebounds = sb,lag = 6)

B = transmat(tseries = TX,statebounds = sb,lag = 6)
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#Mirror left two columns, center row of Fig. 2

A$prob; B$prob

#Calculate delta matrix

dd = deltatrans(A,B)

#Mirror right column,center row of Fig. 2

dd$prettydelta

#Calcualte the mean first passage times for Home 2 BL

#shown in Table 2

mm = mfpt(A$prob,4)

#Calculate level change function

data = HM2$MassAve[HM2$MassAve>30 & HM2$MassAve<90]

lc = levelcross(tseries = data,npts = 20, lag=1)

#Plot 10sec level-change function from right panel of Fig. 3

plot(lc$evalpts,lc$lvlcrs,type = "o")

#Evaluate different lags

le = lageval(tseries = TX,statebounds = sb,+

lagrange = c(1,2,seq(3,60,3)))

#Plot State 3 time series in center panel of Fig. 4

plot(le$lagrange,le$diagbylag[[3]],type = "o")

#Prepare range of state boundaries for sensitivity analysis

sbrng = list()

w = c(5,10,20)

for(ii in 1:length(w)){

sbrng[[ii]] = seq(30,90,w[ii])

}

#Perform sensitivity analysis
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ss = sensitivity(tseries1 = BL,tseries2 = TX,stbdyrange = sbrng,+

lagrange = c(3,6, 30, 60, 180))

#Reproduce matrices in Fig. 6

ss$deltamats

#Determine when dynamics have converged

cv = dynamicsconv(tseries1 = BL, tseries2 = TX, nitvl = 10,+

statebounds = sb ,lag = 6)

#Reproduce center panel of Fig. 8

plot(cv$normdiff)

#Define convergence windows to search for optimal boundary between matrices

il1 = cv$ilength1[7]

il2 = cv$ilength2[7]

#Perform the vailidity check

vv = validitycheck(tseries1 = BL, tseries2 = TX, ilength1 = il1,+

ilength2 = il2, statebounds = sb ,lag = 6)

#Reproduce center column of top row of Fig.10

plot(vv$norm,type="o")

#Reproduce center column of bottom row of Fig.10

matplot(1:ncol(vv$diagconfig),t(vv$diagconfig),type = "l")

Appendix B. Selection of Analytic Parameters

Appendix B.1. State Boundaries

There are two components that must be taken into account when deciding

on state boundaries, 1.) the range of values to be considered and 2.) the dis-

cretization of this range. For PFA, theoretical considerations can be used when

selecting the first component. The focus of the trial is particle generating behav-

ior which, by definition, result in elevated air particle concentrations. Our expe-
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rience with the study data indicate that low-level measurements <∼ 30 µg
m3 are

likely associated with background particle concentrations rather than particle-

generating events. Therefore, they can be safely ignored by setting 30 µg
m3 as the

minimum of values to be considered. Our analysis focuses on the lower, 60 µg
m3

aversive feedback threshold. To avoid confounding from the activation and/or

anticipation of the upper, 120 µg
m3 threshold, the maximum value considered was

selected as the midpoint between the lower and upper feedback, 90 µg
m3 .

Once the range of values to be encompassed by the states was selected, a the-

oretical rationale was not available to determine how to stratify the states within

this range; therefore, a graphical tool was used. An empirical level-crossing

function, �̂(x), can be used to estimate a longitudinal time series’ invariant

function, and therefore the presence and number of stable equilibria, which are

associated with distinct dynamics [31]. �̂(x) is defined as the proportion of all

observations where consecutive measurements cross x. It was calculated by con-

sidering equally-spaced x values between 30 and 90 and counting the number

of instances in which consecutive measurements crossed these values, and then

dividing by the total number of measurements. This process was repeated while

counting whether lagged measurements separated by 1, 5, and 10 min crossed x.

The results are illustrated in Fig. B.7 for Homes 1 and 2. When interpreting a

level-crossing function, the focus is on identifying multiple modalities, which is

indicative of regions with distinct dynamics. When present, boundaries should

be selected to avoid mixing these regions. This was not the case for the PFA

data, where �̂(x) was monotonically decreasing for lags of 10 sec and 1 min and

was unimodal for lags of 5 min and 10 min. The mode for the larger lags likely

reflects a greater probability of air particle levels returning to baseline after some

time has passed. In either case, the PFA level-change function does not offer

insight into the specific delineation of states. However, the results indicate that

choosing parsimonious state boundaries that are evenly-spacing between 30 and

90 µg
m3 does not present undue complications from mixing dynamical regions.
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Appendix B.2. Evaluation of Lag

The values along the diagonal of the transition matrices provide a metric

by which to gauge the optimal value for the lag l. For smaller values of l, the

probabilities on the diagonal are expected to be larger. Taken to the extreme, if

l was chosen to be one measurement (10 sec for PFA), the system will be highly

autocorrelated since there has likely been an insufficient amount of time for air

particle concentrations to change; therefore, changes to a new state will be rare.

As a result, transitions between states could be drowned out by a large number of

source-destination observations remaining in the same class. With larger values

of l, the effect of the autocorrelation will decrease and for sufficiently large values

there will be an essentially random relationship between the concentration at ti

and ti+l. These two time points would be separated by such a long period as

to not capture the same particle-generating dynamics (i.e. causal independent

variables). The relationship would instead reflect an overall distribution of the

different states. The choice of l must strike a balance between the extremes of

the maximally autocorrelated and the overall distribution scenarios.

Figure B.8 illustrates the values of each diagonal element of TT for lags

ranging from 1 to 60 measurements (10 sec to 10 min). TT was used for this

calculation since this phase was associated with the greatest number of obser-

vations. The smallest variations occurred for S1 and S2, since these states were

most likely to be associated with background measurements that have little

variance. In each home, for S3 through S6, beginning at a lag of approximately

30 sec, the diagonal probability value was relatively small (< 0.5 in most cases)

compared with the probabilities for the l = 10 sec case (> 0.9 in most cases).

This indicates that the degree of autocorrelation between source and destination

observations was reduced to the point that there were substantial numbers of

transitions among states, possibly enabling patterns to emerge. Lags less than

l ≈ 5 min for Home 1 and l ≈ 3 min for Homes 2 and 3 were was also higher

than the horizontal asymptote, which represents the mean, global distribution

of probabilities associated with large lags. This is indicative of a meaningful

correlation between source and destination states and the capturing of more
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than just the overall distribution of the states. The results outlined in Fig. B.8

indicate that a lag between l ≈ 0.5 and l ≈ 5 min will likely allow meaningful

household dynamics to be observed. We concluded that l = 1 min best balanced

the competing interests of the asymptotic and pure autocorrelation scenarios, so

it was selected for all subsequent analyses. Other researchers reviewing Fig. B.8,

though, could plausibly justify an alternative selection of l. The effects that dif-

fering choices for l have on outcome analyses was explored in the sensitivity

analysis discussed below.

Appendix B.3. Sensitivity Analysis

The previous two sections outlined ambiguity in selecting the state bound-

ary delineation and lag for the transition matrix methodology. The level-change

analysis did not yield an instinctive choice for state boundaries, although it

did indicate that equispaced states were non-problematic. The diagonal lag

analysis provided evidence to select a lag of l = 1 min, but alternative in-

terpretations of the optimal lag were reasonable. To address this uncertainty

in parameter selection, a sensitivity analysis was conducted to investigate the

effects of different combinations of state boundaries and lag. The results of

this analysis are summarized in Figs. B.9 and B.10 for Homes 1 and 2, re-

spectively. Lags of 0.5, 1, 5, 10, and 40 min were considered and are illus-

trated as the rows (from top to bottom) in these figures. The columns rep-

resent three different stratifications of particle ranges to serve as state bound-

aries. From left to right, they are: {30,50,70,90}, {30,40,50,60,70,80,90}, and

{30,35,40,45,50,55,60,65,70,75,80,85,90}. Below, these cases are referred to by

specifying the width of each state, i.e., ν = 20, 10, and 5, respectively.

For each lag-stratification combination, Figs. B.9 and B.10 illustrate the TΔ

matrix resulting from the analysis described in the previous section. The ma-

trix in the second column of the second row corresponds to a lag of 1 min and

ν = 10; these are the parameters used throughout the manuscript. For Home 1,

the aversive behavior pattern, characterized by significant negative (red) values

on the diagonal and significant positive (green) values on the subdiagonal only
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for states greater than 60 µg
m3 , is present for many lag-state boundary combi-

nations. The same is true of the avoidance behavior pattern in Home 2. For

both homes, the use of a greater number of states (ν = 5) reveals the same

patterns. However, the findings are somewhat obfuscated as the inclusion of

additional states results in smaller transition values and more transitions being

considered non-significant. When using only three states (ν = 20), the results

are too blunt and avoidance and escape behaviors within the two homes cannot

be differentiated.

In Figs. B.9 and B.10, the first three rows correspond with reasonable lags, as

described in the previous section. The results are qualitatively consistent, albeit

with larger lags being associated with a greater number of significant transition

cells and a shifting of cells with significant values towards destination states

associated with attenuated concentrations. This is likely because the larger lags

are beginning to approach global differences between the two phases, which will

be seen most in lower concentrations, since they represent the largest proportion

of observations. For l = 10 min the avoidance/escape patterns largely remain

intact, with the shift mentioned above being more pronounced. For l = 40 min,

as expected, the patterns are no longer visible.

The results of this sensitivity analysis indicate that the aversive/avoidance

results outlined in the previous section are robust over reasonable choices for

modeling parameters. But there is no guarantee that this will be true for other

studies. While the parameterization described above is specific to the PFA

study, the tools used within this section provide an outline for inferring param-

eter values. The diagonal lag methodology summarized in Fig. B.8 provided a

reasonable basis for selecting the lag. While the optimal lag value was not able

to be absolutely determined, the sensitivity analysis indicated that any reason-

able interpretation of Fig. B.8 yields a lag that would lead to consistent results.

When determining the state boundaries, the level crossing function can be used

to assess critical features of the data, such as the presence of stable equilibria

that need to be accounted for during stratification. Even if the multiple equilib-

ria are not found, as was the case with PFA, the level crossing function provides
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a motivation for using parsimonious, equispaced states. The sensitivity analy-

sis indicates that there should be a proclivity for using more, rather than less,

states. This ensure that nuanced patterns can be observed. This inclination

must be balanced by a need to retain the ability to easily interpret results.
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Figure 4: Transition matrices for three homes in PFA. The rows of each matrix represent the

source states and the columns represent the destination states. The value of Ti,j represents the

empirically-calculated probability of the system being in State Sj when it was in Si l units

earlier. The left column of the figure contains baseline transition matrices TB , the center

column contains treatment transition matrices TT , and the right column contains TΔ, the

difference between these two matrices. The rows of panels correspond, from top to bottom,

to Home 1, Home 2, and Home 3. For TΔ, only those values determined to be statistically

significant with an effect greater than |0.05| are shown. These cells are highlighted in blue.
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Figure 5: ||T ∗
Δ − T n

Δ||
F

for n = 1 . . . 10 for the three representative homes. In the two left-

most cases, note the convergence to the results associated with the full amount of data as

larger and larger subsets of data are used. Results were normalized by the largest value to

make a visual comparison more tractable.
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Figure 6: The top panel illustrates ||TΔ||F , which summarizes the difference between the

two transition matrices that are being compared for various boundaries separating the data.

The x-axis represents the number of shifts away from tI , the boundary between intervention

phases. The bottom panel illustrates the mean subdiagonal, diagonal, and superdiagonal

values for each of the boundaries under consideration.
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Figure B.7: Empirical level change function �̂(x) for various lags for Homes 1 and 2.
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Figure B.8: The value of the diagonal element corresponding to each of the 6 states for values

of l ranging from 10 sec–10 min for Homes 1, 2, and 3, from left to right. The vertical dashed

line represents a lag of 1 min.
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Figure B.9: TΔ matrices for the sensitivity analysis performed on Home 1. The rows represent,

from top to bottom, lags of 0.5 min, 1 min, 5 min, 10 min, and 40 min, respectively. The

columns, from left to right, represent states with width ν of 20, 10, and 5.
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Figure B.10: Results of the sensitivity analysis performed on Home 2. See Fig. B.9 for an

explanation.
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• Intensive longitudinal data leads to more precise behavioral interventions 
• Avoidance and escape behavior were generated in response to an aversive stimulus 
• Providing real-time feedback led to the largest changes in behavior dynamics 
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