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Abstract

We improve upon the power of the statistical arbitrage test in Hogan, Jarrow, Teo, and Warachka

(2004). Our methodology also allows for the evaluation of return anomalies under weaker assumptions.

We then compare strategies based on their convergence rates to arbitrage and identify strategies whose

probability of a loss declines to zero most rapidly. These strategies are preferred by investors with finite

horizons or limited capital. After controlling for market frictions and examining convergence rates to

arbitrage, we find that momentum and value strategies offer the most desirable trading opportunities.

& 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Traditional tests of market efficiency calculate trading profits relative to an assumed
model for risk-adjusted returns, such as the Fama and French (1993) three-factor model.
The statistical significance of the alpha from such a model is then evaluated using the
intercept’s t-statistic. Therefore, this test of market efficiency requires the empirical
specification of risk factors, hence an assumed model of market equilibrium. According to
Fama (1998), this caveat weakens our conclusions regarding market efficiency.
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This paper develops a test of market efficiency that does not require an underlying
equilibrium asset pricing model. Our methodology extends the statistical arbitrage
framework of Hogan, Jarrow, Teo, and Warachka (2004) (henceforth HJTW) that
axiomatically defines the conditions for a statistical arbitrage. To test for statistical
arbitrage, a parametric model is assumed for incremental trading profits and the null
hypothesis of no statistical arbitrage is formulated as a union of sub-hypotheses involving
the model parameters. Thus, statistical arbitrage replaces the joint-hypothesis involving a
model of market equilibrium with another joint-hypothesis involving a parametric
specification for trading profits whose appropriateness can be assessed empirically.
Under the assumption of no statistical arbitrage, the parameters of the statistical model

for trading profits must simultaneously satisfy several restrictions. HJTW test these
restrictions using the Bonferroni inequality. While they reject the null of no statistical
arbitrage for many trading strategies using their simple model of trading profits, they are
unable to reject this null for their more general model of trading profit dynamics. This
paper improves upon HJTW’s test procedure for statistical arbitrage by introducing a
Min-t statistic defined from the parametric restrictions that define the null hypothesis of no
statistical arbitrage. This statistic provides a significant improvement in power over
HJTW’s implementation. Furthermore, we allow trading profit residuals to be non-normal
and serially correlated.
We apply the Min-t test to four classes of trading strategies, namely, momentum

(Jegadeesh and Titman, 1993, 2001), industry momentum (Grinblatt and Moskowitz,
1999), value (Lakonishok, Shleifer, and Vishny, 1994), and liquidity1 (Brennan, Chordia,
and Subrahmanyam, 1998). As we select trading strategies from the prior anomalies
literature, the data-snooping critique may apply. Since the seminal work of Brock,
Lakonishok, and LeBaron (1992), the issue of data-snooping when testing the profitability
of trading rules has attracted considerable research interest. As emphasized by Sullivan,
Timmermann, and White (1999), data-snooping is not limited to a particular researcher’s
efforts but can reflect the aggregate experience of many researchers over time. However,
the anomalies literature typically focuses on the profitability of trading strategies. In
contrast, we examine several parametric restrictions on trading profits. These additional
restrictions (beyond positive profits) partially mitigate the data-snooping critique. Indeed,
our study re-examines four classes of existing trading strategies to determine whether their
profits constitute a statistical arbitrage.
Based on the results of the Min-t test, we find that over 50% of the strategies in each of

the four classes generate a statistical arbitrage. In addition, we compare and contrast
strategies based on their rates of convergence to arbitrage. Specifically, we identify
dominant strategies whose loss probabilities decline to zero most rapidly. This feature of
statistical arbitrage is important to investors with finite horizons or limited capital who are
concerned about incurring intermediate losses. Such investors include mutual fund
managers who typically face the risk of retrenchment after a few years, or even a few
quarters, of poor performance (see, Brown, Harlow, and Starks, 1996; Khorana, 1996;
Shleifer and Vishny, 1997; Chevalier and Ellison, 1999). Stein (2005) argues that open-
ended fund managers ‘‘will stick primarily to short horizon strategies’’ instead of attacking

1According to Brennan, Chordia, and Subrahmanyam (1998), stock trading volume provides incremental

explanatory power on the cross-section of stock returns after adjusting for momentum, size, and book-to-market

effects.
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long run mispricings. We show that such investors will prefer momentum, industry
momentum, and value strategies over liquidity strategies as the last class of strategies
converges relatively slowly to arbitrage.

To obtain further insights into the economic relevance of the strategies, we examine their
sensitivity to the round-trip transaction costs. These costs range from 1.45% to 2.45%,
which correspond to Chan and Lakonishok’s (1997) estimates. Despite these conservative
estimates, most of the statistical arbitrage strategies (except industry momentum) survive
the adjustments for transaction costs. By our estimates, at least $0.64 billion may be
profitably invested in nine of the 16 momentum strategies after transaction costs. Our
findings on momentum dovetail with those of Korajczyk and Sadka (2004) but differ from
those of Lesmond, Schill, and Zhou (2004).2 We also investigate whether the statistical
arbitrage profits are compensation for illiquidity by removing the bottom 50% of stocks
based on past trading volume on a rolling basis and performing the test on the remaining
sample of liquid stocks. Except for the industry momentum strategies, the strategies are
again largely robust to this adjustment for illiquidity. Finally, we find little evidence to
suggest that the activities of market participants have reduced the overall profitability of
these strategies, although important differences exist across strategy classes. Specifically,
the profitability of value and industry momentum strategies has increased over the sample
period, while that of liquidity strategies has waned. Overall, after controlling for market
frictions and examining convergence rates to arbitrage, we conclude that momentum and
value strategies offer the most desirable trading opportunities.

Overall, we contribute to the return anomalies literature by extending the empirical
application of the HJTW framework of statistical arbitrage in four important directions. First,
our Min-t test significantly improves on HJTW’s Bonferroni test. The Bonferroni test is well-
known to be consistent when the null hypothesis involves an intersection of sub-hypotheses, and
thus rejects an incorrect null hypothesis with probability one when the sample size approaches
infinity. However, as the null hypothesis of no statistical arbitrage is defined by a union of
hypotheses, the Bonferroni test is not guaranteed to be consistent and suffers a severe loss of
power in empirical applications. In contrast, the Min-t test detects many more statistical
arbitrage opportunities, even for their general model in which no statistical arbitrage was
detected by HJTW.3 Second, unlike HJTW, our test allows for serial correlation and non-
normality in trading profit dynamics. These properties exert a significant influence on the
convergence rates to arbitrage. Third, our test is based on a modified definition of statistical
arbitrage that avoids penalizing positive profit deviations from their expected values. The
critique of the Sharpe ratio by Bernardo and Ledoit (2000) motivates this modification as they
argue that investors benefit from positive (unexpected) deviations in their strategy’s profitability.
Fourth, HJTW apply their statistical arbitrage test to only two classes of anomalies: momentum
and value. We extend the set of strategies to include liquidity and industry momentum.

The remainder of the paper is as follows. Section 2 reviews the theoretical underpinnings
of statistical arbitrage. The modified definition of statistical arbitrage and the Min-t testing
methodology are proposed in Sections 3 and 4, respectively. Section 5 describes the data
while Section 6 reports the empirical findings. Section 7 concludes.

2One caveat is that, unlike Lesmond, Schill, and Zhou (2004), we do not estimate time-varying transaction costs

as that is beyond the scope of the paper.
3As the HJTW approach involves a joint-hypothesis of trading profits, it is important to have a general trading

profit process with few restrictive assumptions.
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2. Review of statistical arbitrage

A statistical arbitrage opportunity is a zero cost, self-financing trading strategy that has
positive expected cumulative trading profits with a declining time-averaged variance and a
probability of loss that converges to zero.4 The strategies evaluated in our empirical
application are known to have a positive cumulative trading profit. Let {ui}, for i¼1,y, n, be
a sequence of discounted portfolio values generated by a self-financing trading strategy. We
denote uðnÞ ¼

Pn
i ¼ 1 Dui as the trading strategy’s cumulative discounted trading profit, with its

incremental components represented by Dui. The following definition is found in HJTW.

Definition 1. A statistical arbitrage is a zero initial cost, self-financing trading strategy with
cumulative discounted trading profits u(n) such that:

1. u(0)¼0,
2. lim

n-1
EP½uðnÞ�40,

3. lim
n-1

PðuðnÞo0Þ ¼ 0 and

4. lim
n-1

VarP½uðnÞ�
n
¼ 0 if PðuðnÞo0Þ40 8no1.

To test for statistical arbitrage, we begin by assuming the following process for
incremental trading profits5:

Dui ¼ miy þ silzi, ð1Þ

where zi are i.i.d. N(0,1) random variables (the assumptions of normality and independence
are subsequently relaxed). The initial quantities z0¼0 and Du0 are both zero by definition.
The parameters s and l determine the volatility of incremental trading profits while the
parameters m and y determine their corresponding expectations. In addition, observe that
the process for incremental trading profits is non-stationary when y or l is nonzero. More
importantly, Eq. (1) does not impose assumptions on investor preferences or utility since
both are irrelevant to the definition of statistical arbitrage, which converges to arbitrage as
n approaches infinity.
Appendix A contains more information on the y and l parameters by detailing the

conversion of cross-sectional returns into trading profits. Over time, a statistical arbitrage
opportunity converges to a riskless asset whose incremental trading profits, and their
volatility, may be reduced as a consequence.
Under the assumption that trading profit innovations are uncorrelated and normally

distributed, we implement two tests of statistical arbitrage. Eq. (1) represents the
unconstrained mean (UM) model, which allows for time-varying expected trading profits.
We also consider a more restrictive constrained mean (CM) model that assumes constant
expected trading profits by setting y equal to zero. Consequently, the CM version of

4A trading strategy that rapidly decreases its exposure to the risky long/short portfolio is inappropriate since the

persistence of the underlying anomaly is not addressed.
5A geometric Brownian motion (lognormal distribution) that prevents negative values is inappropriate for

modeling cumulative or incremental trading profits. Instead, an arithmetic Brownian motion is suitable for the

difference between two portfolios (long minus short) over a D time interval. For a profitable strategy, the

functions iyand il alter this arithmetic process to account for the increasing investment in the risk-free asset over

time. Further justification for this process is found in HJTW.
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statistical arbitrage has incremental trading profits evolving as:

Dui ¼ mþ silzi: ð2Þ

According to HJTW, statistical arbitrage opportunities exist under the UM model when
the following sub-hypotheses hold jointly:

1. H1: m40,
2. H2: lo0,
3. H3: y4maxfl�ð1=2Þ,�1g:

The first sub-hypothesis tests for positive expected profits while the second sub-hypothesis
tests for a declining time-averaged variance. This sub-hypothesis is expected to be satisfied in
our empirical implementation involving existing anomalies that are known to produce
positive trading profits. Nonetheless, the first axiom of a statistical arbitrage opportunity
cannot be ignored. The third sub-hypothesis ensures that any potential decline in expected
trading profits does not prevent convergence to arbitrage. This restriction involves the trend
in expected profits and the trend in volatility. For emphasis, statistical arbitrage requires the
volatility of incremental (not cumulative) trading profits to decline. This property is
consistent with profitable trading strategies placing more accumulated profit in the risk-free
asset over time, as emphasized in Appendix A. Under the CM model, the third sub-
hypothesis is not required for statistical arbitrage; a statistical arbitrage opportunity exists
when the first two sub-hypotheses hold jointly. This special case addresses the loss of
statistical power that occurs when estimating y is unnecessary. Implementing both the UM
and CM models allows us to investigate our methodology’s improvement over the
Bonferroni approach, which cannot examine the UM model due to a loss of power.
Nonetheless, it is important to emphasize that no model selection is conducted before testing
for statistical arbitrage. Instead, testing for statistical arbitrage involves multiple hypotheses.

Given the manner in which portfolios used to test financial anomalies are typically
constructed, autocorrelation may be manifest in their incremental trading profits.6 To
address this issue, we allow the innovations of Eq. (1) to follow an MA(1) process given by:

zi ¼ ei þ fei�1, ð3Þ

where ei are i.i.d. N(0,1) random variables. We label the model with time-varying expected
profits and serially correlated innovations as the unconstrained mean with correlation
(UMC) model. Analogously, we label the model with constant expected profits and serially
correlated innovations as the constrained mean with correlation (CMC) model. The UMC
model is a combination of Eqs. (1) and (3) while the CMC model is a combination of
Eqs. (2) and (3). As proved in HJTW, the presence of an MA(1) process neither alters the
conditions for statistical arbitrage nor increases the number of sub-hypotheses. However,
including the additional parameter f may improve the statistical efficiency of the
remaining parameter estimates and avoid inappropriate standard errors. The probability
of a trading strategy generating a loss after n periods is as follows:

Pr Loss after n periods
� �

¼F
�m
Pn

i ¼ 1 iy

sð1þ fÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i ¼ 1 i2l
p

 !
, ð4Þ

6This property may arise from negative serial correlation in stocks or cross-autocorrelation among stocks.
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where F(U) is the cumulative standard normal distribution function. This probability
converges to zero at a rate that is faster than exponential, as shown in HJTW. This loss
probability finds the dominate strategy within each class of return anomaly. The dominate
strategy is defined as the permutation that converges to arbitrage most rapidly

3. A modified definition of statistical arbitrage

This section proposes a modified definition of statistical arbitrage. This is motivated by
the overly conservative nature of the original statistical arbitrage definition in HJTW,
which penalizes positive trading profit deviations from expected value. The problem stems
from the asymmetry between desirable positive deviations and undesirable negative
deviations, which compromises the ability of variance to properly account for risk. This
shortcoming motivates the use of semi-variance instead of variance in the modified fourth
axiom of the following definition for statistical arbitrage:

Definition 2. A statistical arbitrage is a zero initial cost, self-financing trading strategy with
cumulative discounted trading profits u(n) such that:

1. u(0)¼0,
2. lim

n-1
EP½uðnÞ�40,

3. lim
n-1

P uðnÞo0ð Þ ¼ 0 and

4. lim
n-1

Var½DuðnÞ9DuðnÞo0� ¼ 0

Observe that only the fourth axiom,

lim
n-1

Var½DuðnÞ9DuðnÞo0� ¼ 0, ð5Þ

is altered; the first three axioms are identical to those in Definition 1. Under Definition 2,
investors are only concerned about the variance of a potential ‘‘drawdown’’ in wealth. Provided
the incremental trading profits are non-negative, their variability is not penalized. To facilitate
empirical tests of statistical arbitrage under Definition 2, we turn to the following proposition:

Proposition 1. Under the modified fourth axiom in Eq. (5), a trading strategy generates

statistical arbitrage if incremental trading profits satisfy the following conditions:

1. H1: m40,
2. H2: lo0 or y4l,
3. H3: y4maxfl�ð1=2Þ,�1g.

Appendix B provides the details verifying the y4l condition in addition to H2 in
HJTW. Observe that our proposed modification only applies to the UM and UMC
models, and may detect additional statistical arbitrage opportunities when y40.
Conversely, a negative point estimate for y implies that H2 reverts to the original
hypothesis that lo0. Intuitively, positive y estimates are consistent with right-skewness in
the incremental trading profits. Fig. 1 illustrates the modified fourth axiom by showing the
boundary between no statistical arbitrage and statistical arbitrage under both definitions.
Note that the upper half of the first quadrant (above the 451 line) is classified as a statistical
arbitrage opportunity under the modified, but not under the original definition.

R. Jarrow et al. / Journal of Financial Markets 15 (2012) 47–8052



As a final observation, the probability of a loss in Eq. (4) is unaltered by the modified
fourth axiom. Furthermore, the economic consequences of a statistical arbitrage
opportunity, in terms of its Sharpe ratio and contribution to expected utility, are preserved.
Thus, under Definition 2, statistical arbitrage continues to contradict market efficiency.

4. Improved implementation of statistical arbitrage

In this section, we provide an improved methodology to test for statistical arbitrage.
Although statistical tests may be conducted with either statistical arbitrage or no statistical
arbitrage as the null, the accepted paradigm has market efficiency as the null.

The hypothesis of market inefficiency, namely the existence of statistical arbitrage,
consists of joint restrictions on the parameters underlying the evolution of trading profits.
For the UM model, the following restrictions have to be satisfied simultaneously for a
statistical arbitrage opportunity to exist7:

1. R1: m40,
2. R2: �l40 or y�l40,
3. R3 : y�lþ ð1=2Þ40 and
4. R4: yþ140.

Thus, statistical arbitrage is defined by an intersection of sub-hypotheses. Conversely,
the no statistical arbitrage null hypothesis involves a union of sub-hypotheses (as a
consequence of DeMorgan’s Laws). In particular, the no statistical arbitrage null hypothesis

Fig. 1. Comparing the HJTW and our definition of statistical arbitrage. This figure illustrates the region where

the null of no statistical arbitrage is accepted and the region where it is rejected. This is done for both the HJTW

(Hogan, Jarrow, Teo, and Warachka, 2004) definition and our modified definition of statistical arbitrage. Unlike

the HJTW version of statistical arbitrage, our modified version of statistical arbitrage does not penalize positive

deviations in trading profits from the mean. The parameters y and l denote the rate of change of the expectation

and volatility of the strategy’s incremental profits, respectively.

7A slight change of notation is adopted to separate H3 into two restrictions to facilitate the exposition of the

proposed test.
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is written as:

1. Rc
1 : mr0 or

2. Rc
2 : �lr0 and y�lr0, or

3. Rc
3 : y�lþ ð1=2Þr0 or

4. Rc
4 : yþ 1r0.

Therefore, the null cannot be rejected provided a single sub-hypothesis Rc
t is satisfied.

Statistically, the no statistical arbitrage null hypothesis presents a challenge as the
Bonferroni procedure applies to an intersection, not union, of sub-hypotheses.8 Appendix C
examines the Bonferroni approach in HJTW and highlights its lack of power as the number
of sub-hypotheses increase. For emphasis, each sub-hypothesis arises from (at least) one of
the statistical arbitrage axioms. Although certain axioms may appear to be redundant or
obvious (such as the constraint on m), our statistical procedure must ensure that all four
axioms are satisfied.
Given the limitations of the Bonferroni approach in testing for statistical arbitrage, this

section proposes a new methodology centered on the Min-t statistic. We adopt Eq. (1) as the
maintained parametric specification of the trading-profit process for testing the four axioms
of statistical arbitrage. We first assume that the trading profit innovations are normally
distributed and serially uncorrelated. The model is estimated using maximum likelihood
estimation (MLE). Robust standard errors are also computed, from which we obtain the t

ratios required for computing the Min-t statistic. The critical values of the Min-t statistic are
estimated using a Monte Carlo procedure to facilitate inferences regarding the null
hypothesis of no statistical arbitrage. We then allow the trading profit innovations to be non-
normal, as well as serially dependent. In this case, there are nuisance parameters in the model
and Monte Carlo estimates of the critical values are not obtainable. To overcome this
problem, we estimate the p-values for the Min-t statistics using a bootstrap procedure.
Although other specifications (e.g., stochastic volatility) besides Eq. (1) are possible,

additional enhancements would complicate the link with the statistical arbitrage axioms.
Overall, there is a tradeoff between the statistical accuracy of any description for trading profits
and the ease at which its specification represents these four axioms. This tradeoff highlights the
dependence of the statistical arbitrage methodology on a parametric process for trading profits.

4.1. Monte Carlo procedure for uncorrelated normal errors

We estimate the parameters of the CM, UM, CMC, and UMC models using maximum
likelihood estimation (MLE).9 Our inference concerning the null hypothesis of no

8See Gourieroux and Monfort (1995), Chapter 19, for an exposition of testing joint hypotheses using the

Bonferroni procedure.
9Phillips and Xu (2006) examine the asymptotic properties of the MLE for an autoregressive process with

heteroscedastic errors g( � )zi, where g( � ) is a deterministic or stochastic function with g( � )40. They prove the

asymptotic normality of the MLE for the autoregressive coefficients and provide a consistent estimator for the

integrated variance of the residuals. Our model has an error process that is nested within the Phillips and Xu

(2006) model, with a deterministic mean. While a consistent estimator of the integrated volatility function
R

g( � )2

can be obtained using the Phillips and Xu (2006, p. 296) method, s cannot be estimated consistently if l is

negative. Furthermore, Xu and Phillips (2008) propose an improved methodology to estimate the autoregressive

coefficients.
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statistical arbitrage is based on the proposed Min-t statistic. In this subsection, we discuss
the case when the errors of the models are independently and normally distributed, so that
the finite-sample critical values of the test statistic can be estimated by Monte Carlo
simulation. In the next subsection, we describe the bootstrap methodology for the
estimation of the p-values when the errors may be serially correlated and non-normally
distributed.

When each Ri is considered separately, the t-statistics tðm̂Þ, tð�l̂Þ, tðŷ�l̂Þ, tðŷ�l̂þ 0:5Þ,
and tðŷþ 1Þ may be used (the hats denote the MLE of the parameters). Since all four
restrictions in Proposition 1 must be simultaneously satisfied to reject the null hypothesis
of no statistical arbitrage, the minimum of their associated t-statistics serves as the
rejection criterion. Thus, we consider the Min-t statistic defined as10:

Min-t¼Minftðm̂Þ,tðŷ�l̂þ 0:5Þ,tðŷþ 1Þ,Max½tð�l̂Þ,tðŷ�l̂Þ�g: ð6Þ

Intuitively, the Min-t statistic evaluates the ‘‘weakest’’ element in the union by focusing
on the sub-hypothesis that is ‘‘closest’’ to being accepted. Thus, the null of no statistical
arbitrage is rejected if Min-t4tc, where the critical value tc depends on the test’s
significance level a. This approach is equivalent to evaluating a Max-t statistic after
reversing each of the inequalities that define the null hypothesis.

Under the statistical arbitrage axioms of Definition 1, the Min-t statistic in Eq. (6) is
simplified to:

Minftðm̂Þ,tðŷ�l̂þ 0:5Þ,tðŷþ 1Þ,tð�l̂Þg: ð7Þ

Therefore, Eqs. (6) and (7) facilitate a direct comparison between the fourth axioms of
Definitions 1 and 2.

For the CM models with y¼0, Eq. (6) becomes:

Min-t¼Minftðm̂Þ,tð�l̂Þg, ð8Þ

regardless of the fourth axiom examined. Indeed, as alluded to in the previous section,
Definitions 1 and 2 have identical implementations in the CM and CMC models.

As the null of no statistical arbitrage is a composite hypothesis rather than a simple
hypothesis, the probability of rejecting the null varies across different parameter values
within the null. However, the probability of rejecting the null cannot exceeda. In other
words, we require:

PrfMin-t4tc9m,l,y,sgra ð9Þ

for all (m,l,y,s) combinations satisfying the null. Thus, two issues have to be addressed.
First, the derivation of the distribution of Min-t requires solving for the distribution of an
order statistic of a multivariate distribution of correlated random variables. Thus, the
theoretical distribution of Min-t is intractable. We propose to overcome this difficulty
using Monte Carlo simulation. Second, to achieve a size-a test as in Eq. (9), we need to
maximize tc over the null’s parameter space.

We first consider the CM model whose two statistical arbitrage sub-hypotheses are R1

and R2. Obviously, tc is maximized when (m,l)¼ (0,0). Furthermore, as the t-statistics are
scale free, we are able to select an arbitrary value of s when estimating tc. We assume
s¼0.01, which approximates its sample MLE estimate in our later empirical study.

10The original sub-hypotheses for Definition 1 may be tested using a special case of Eq. (6).
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To estimate tc, residuals zi are obtained from a normal random number generator to form
the incremental trading profits Dui in Eq. (2) based on assumed model parameters
(m,l,s)¼ (0,0,0.01). The estimated parameters, their individual t-statistics, and the
corresponding Min-t statistic are then computed. This procedure is repeated 5,000 times,
from which tc is estimated as the 100(1�a) percentile of the Min-t statistics.
Note that the distribution of Min-t is a function of the sample size n. As the series of

trading profits used in our empirical study vary from 288 to 414 observations, sample sizes
of 300 and 400 are examined. However, the results for both values of n are similar. Overall,
the critical values of 0.4754, 0.7484, and 1.2694 at the 10%, 5%, and 1% significance levels
are utilized in subsequent tests of the CM model. These critical values correspond to the
largest estimates in the Monte Carlo simulations.
For the UM model, there are five inequality restrictions involving three parameters and

not all the restrictions are necessarily binding. Thus, a model within the null family and
on the boundary of all the inequality restrictions is not available. Nonetheless, as the
t-statistics that comprise the Min-t statistic are monotonic in the underlying restrictions, it
is appropriate to focus on their boundaries. Consequently, m is set to �10�6 while the l and
y parameters are varied along the boundary of the no statistical arbitrage/statistical
arbitrage region, as depicted in Fig. 1.11

To control the probability of the Type I error at the stated nominal level, the maximum
simulated critical values across different parameters are utilized in subsequent UM tests.
These are 0.4034, 0.6004, and 0.9074 at the 10%, 5%, and 1% significance levels,
respectively.12

4.2. Bootstrap procedure for correlated non-normal errors

The previous section assumes the innovations in incremental profits are normally
distributed and serially uncorrelated. However, both assumptions have been shown to be
dubious in empirical finance (e.g., Lo and MacKinlay, 1988; Affleck-Graves and
McDonald, 1989). We now relax these assumptions by allowing the trading profit
innovations to be non-normal and serially correlated. In particular, we assume that the
innovations follow an MA(1) process, as defined in Eq. (3). Thus, there is an unspecified
nuisance parameter f in the model when testing the null hypothesis of no statistical
arbitrage. As the influence of f on the individual components of the Min-t statistic is
unknown, searching for the maximum critical values for the test statistic using the Monte
Carlo method is intractable. To overcome this difficulty, we employ a bootstrap procedure
to estimate the p-values.
Brock, Lakonishok, and LeBaron (1992) introduce the bootstrap technique to the

empirical finance literature to study the profitability of technical trading rules. Since then,
this procedure has been adopted by many authors including Bessembinder and Chan
(1998) and Sullivan, Timmermann, and White (1999). Ruiz and Pascual (2002) provide an
excellent survey of the bootstrap method in empirical finance.

11Note that the influence of y disappears when m¼0. We also vary the values of m from �0.01 to �0.0001 and

obtain similar results.
12Since Monte Carlo simulation is employed to estimate the critical values of the Min-t statistic in finite

samples, the nonstationarity of the UM model when ya0 bears no consequence on our test procedure.
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We adopt the parametric bootstrap procedure (Berkowitz and Kilian, 2000) to allow for
time dependence in the residuals. The steps we employ for the UMC model are:

1. Estimate the parameters of the UM model with MA(1) errors using QMLE and
calculate the residuals ẑi using the following equation:

ẑi ¼
Dui�m̂iŷ

ŝil̂
ð10Þ

In addition, the Min-t statistic in Eq. (6) is calculated.
2. Sample with replacement blocks of ẑi of random length, where the length of each block

has a geometric distribution, to form a sample of residuals fzn1,. . .,z
n
ng.

3. Generate a bootstrap sample of trading profits Duni from fzn1,. . .,z
n
ng with the parameter

values (m, l, y, s)¼ (�10�6, �0.5, �1, 0.01) so that:13

Duni ¼ miy þ silzni :

4. Calculate the MLE for the data Duni , i¼1, y, n, and hence the Min-t statistic, denoted
Min-t#.

5. Repeat Steps 2–4 a total of 1,000 times. The estimated p-value of the Min-t statistic is
given by the empirical percentage of the bootstrapped Min-t# values that are larger than
Min-t calculated in Step 1.

A similar bootstrap procedure for the CMC model is implemented with (m, l)¼ (0, 0). Our
procedure adheres to the guidelines in Hall and Wilson (1991) and Horowitz (2001). For the
CM and UM models with uncorrelated errors, the bootstrap estimates of the p-values are
also computed using the parametric bootstrap procedure. Thus, they provide robust
estimates of the p-values even when the independent error assumption is mispecified.

Depending on the complexity of the model assumptions, the bootstrap procedure can be
adjusted to improve the robustness of the estimates. Before reporting our results, we now
discuss some possible alternative bootstrap methods that may be adopted. First, we use a
parametric bootstrap method assuming the innovations follow an MA(1) process. Karolyi
and Kho (2004) used a parametric bootstrap method assuming AR(1) errors. If no specific
time series process is assumed for the innovation process, we may use nonparametric
approaches, such as the stationary bootstrap method of Politis and Romano (1994) or the
block bootstrap method of Künsch (1989). However, as pointed out by Karolyi and Kho
(2004), the block bootstrap procedure has problems with unbalanced panel data due to
differences in exit and entry. Second, re-sampling can be performed across stocks to
account for their cross correlation. This is not performed in our study due to our problem’s
increased dimension. Third, to address data-snooping, the reality-check bootstrap method
may be used, as in Sullivan, Timmermann, and White (1999). However, this method
requires the computation of the profit processes over the universe of trading strategies
under consideration. Thus, as we investigate four classes of trading strategies involving
fundamental (accounting) variables, the dimension of the problem renders the use of
reality-check bootstrap computationally very intensive in comparison to the Sullivan,
Timmermann, and White (1999) study that evaluates technical trading strategies.

13Under the null of no statistical arbitrage with normally and serially uncorrelated errors, these parameter

values provide the largest critical value tc in the Monte Carlo simulation.
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Finally, different bootstrap methods may have different rates of convergence to the
unknown true values being estimated, if they converge. A rigorous asymptotic convergence
theory for models with serially correlated errors is beyond the scope of this paper.
However, Xu (2008) proposes the use of a recursive wild bootstrap method for an
autoregressive process with non-stationary variance and proves its asymptotic validity.

5. Data and terminology

Our sample period starts in January 1965 and ends in December 2000.14 Monthly equity
returns data are derived from the Center for Research in Security Prices at the University
of Chicago (CRSP). Our analysis covers all stocks traded on the NYSE, AMEX, and
NASDAQ that are ordinary common shares (CRSP sharecodes 10 and 11), excluding
ADRs, SBIs, certificates, units, REITs, closed-end funds, companies incorporated outside
the U.S., and Americus Trust Components.
The stock characteristics underlying the trading strategies include book-to-market

equity, cash flow-to-price ratio, earnings-to-price ratio, annual sales growth, and monthly
trading volume. To calculate book-to-market equity, book value per share is taken from
the CRSP/Compustat price, dividend, and earnings database. We treat all negative book
values as missing. We take the sum of Compustat data item 123 [income before
extraordinary items (SCF)] and data item 125 [depreciation and amortization (SCF)] as
cash flow. Only data item 123 is used to calculate the cash flow if data item 125 is missing.
To compute earnings, we draw on Compustat data item 58 [earnings per share (basic)
excluding extraordinary items] and to compute sales we utilize Compustat data item 12
[sales(net)]. Share volume is the number of shares traded divided by the number of shares
outstanding. All price and number of outstanding common shares information employed
in the calculation of the ratios are computed at the end of the year.
To ensure that the accounting variables are known beforehand and to accommodate

variation in fiscal year ends among firms, sorting on stock characteristics is performed in July
of year t using the accounting information from year t�1. Hence, following Fama and French
(1993), to construct the book-to-market deciles from July 1 of year t to June 30 of year tþ1,
stocks are sorted into deciles based on their book-to-market equity (BE/ME), where the book
equity is in the fiscal year ending in year t�1 and the market equity is calculated in December
of year t�1. Similarly, to construct the cash flow-to-price deciles from July 1 of year t to June
30 of year tþ1, the stocks are sorted into deciles based on their cash flow-to-price, where cash
flow is in the fiscal year ending in year t�1 and the price is the closing price in December of
year t�1. Earnings-to-price is calculated in a similar fashion. All portfolios are rebalanced
every month as some firms disappear from the sample over the evaluation period.
The momentum strategies we implement follow Jegadeesh and Titman (1993). These

strategies buy the top return decile and short the bottom return decile based on formation
and holding period combinations of 3, 6, 9, and 12 months. The individual value strategies
follow Lakonishok, Shleifer, and Vishny (1994) and buy the top decile and short the
bottom decile of stocks based on book-to-market, cash flow-to-price, or earnings-to-price
ratios of the past year, along with past sales growth over the past three years. These
portfolios are then held for one, three, and five years. The individual liquidity strategies are
based on volume (share volume over number of shares outstanding) and buy the bottom

14We choose the same sample period as HJTW to facilitate an easier comparison with their results.
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trading volume decile and short the top trading volume decile of stocks in the spirit of
Brennan, Chordia, and Subrahmanyam (1998). The industry momentum strategies follow
Grinblatt and Moskowitz (1999). Stocks are first classified into 20 industries based on SIC
Codes.15 The industry momentum strategy buys the top three return industries and shorts
the bottom three return industries as in Grinblatt and Moskowitz (1999). Like the
momentum strategies, the liquidity and industry momentum strategies are based on
formation and holding period combinations of 3, 6, 9, and 12 months. For all strategies,
once the long and short portfolio returns are generated, a self-financing condition is
enforced by investing (borrowing) trading profits (losses) at the risk-free rate. Risk-free
rate data are obtained from Kenneth French’s website.

Given the possible permutations of formation and holding periods, we investigate 16
momentum, 12 volume, 16 liquidity, and 16 industry momentum strategies. We adopt the
notational convention of JTx_y for the momentum strategy, with a formation period of x

months and a holding period of y months. The book-to-market, cash flow-to-price,
earnings-to-price, and sales growth based value portfolios with a holding period of y years
are denoted BMy, CPy, EPy, and SALEy respectively. The formation period for all the
sales growth strategies is three years while that for the other value strategies is one year.
The liquidity and industry momentum portfolios with a formation period of x months and
a holding period of y months are abbreviated VOLx_y and INDx_y, respectively.

6. Empirical results

In this section, we apply the statistical arbitrage methodology developed in this paper to
four broad classes of anomalies: momentum, value, liquidity, and industry momentum. In our
empirical analysis, we implement the four trading profit models introduced in Section 2: the
constrained mean model (CM), the unconstrained mean model (UM), the constrained mean
model with correlation (CMC), and the unconstrained mean model with correlation (UMC).
The UM and UMC models allow for time variation in expected trading profits while the CM
and CMC models assume this expectation is constant. In addition, unlike the CM and UM
models, the CMC and UMC models permit autocorrelation and non-normality in trading
profits. The Schwartz information criterion and the Akaike information criterion determine
the preferred trading profit model and streamline the presentation of our results.

For emphasis, our objective is not to find the parametric specification for each trading
strategy that produces normally distributed error terms. Instead, obtaining reliable
p-values for our joint-hypothesis is important. When estimating the critical values for the
CM model, we operate on the boundary of the alternative hypothesis. This approach
maximizes the critical value across different alternatives to ensure a size-a test. Likewise, in
the bootstrap simulations, we also operate on the boundary.

In addition to testing anomaly-based trading strategies for statistical arbitrage, we
leverage on our methodology’s ability to explore their economic relevance. Concretely, we
compute the convergence rates of the loss probabilities to zero and compare them across
strategies. These probabilities are particularly relevant for investors like mutual fund and

15The 20 industries are mining, food, apparel, paper, chemical, petroleum, construction, primary metals, fabricated

metals, machinery, electrical equipment, transport equipment, manufacturing, railroads, other transportation, utilities,

department stores, retail, financial, and others. We refer the interested reader to Grinblatt and Moskowitz (1999) for

further details.
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hedge fund managers who have short (e.g., quarterly) evaluation horizons. We also test
whether the statistical arbitrage profits are sensitive to transaction costs and market
frictions, to removing the least liquid stocks, and to the sample period.

6.1. Basic empirical results

First, we make the assumption that the trading profit increments are normally
distributed and serially uncorrelated, and test the CM and UM models. Table 1 displays
the results from the CM and UM tests of statistical arbitrage. The statistical significance of
the Min-t statistics (relative to critical values obtained from Monte Carlo simulations
described in Section 4.1) indicates that for the CM model, 41 of the 60 strategies generate
statistical arbitrage opportunities at the 5% level of significance. For the more general UM
model, 30 of the 60 strategies generate statistical arbitrage opportunities at this significance
level. Hence, at least half of the strategies under each trading profit model generate
statistical arbitrage.
The results in Table 1 also indicate that the various anomaly classes differ markedly in

their sensitivity to the trading profit model. Sales growth and volume strategies
consistently test for statistical arbitrage under both models. In contrast, more industry
momentum-based strategies test for statistical arbitrage under the UM model than under
the CM model. The reverse holds for the momentum-based strategies. Of the 16
momentum strategies, 15 test for statistical arbitrage at the 5% level under the CM model
while only one strategy tests for statistical arbitrage at the 5% level under the UM model.
This disparity motives our later use of model specification tests.
We note that the statistical arbitrage test results for the value strategies illustrate the

greater statistical power of our Min-t test approach vis �a vis the HJTW Bonferroni test
approach. Unlike the HJTW Bonferroni test, which cannot detect any UM statistical
arbitrage opportunities amongst the value strategies, the Min-t test detects six UM
statistical arbitrage opportunities within the same set of strategies. Indeed, without our
procedure’s enhanced statistical power, more complex trading profit formulations (e.g., the
CMC and UMC models) cannot be reliably examined.
As discussed in Section 4.1, the critical Min-t values in Table 1 are estimated from a

large scale Monte Carlo experiment, since the errors are normally distributed and
uncorrelated in the CM and UM models. To check these assumptions, we test the residuals
for normality and serial correlation using the Jacque-Bera test and the Q-statistic. The test
statistics reveal that departures from normality and serial independence are detected at the
5% level of significance for many strategies. Hence, to test the robustness of the results
with respect to the assumption of normality and to cross-validate the bootstrap
methodology developed in Section 4.2 for the CMC and UMC models, we apply the
methodology to the CM and UM models by constraining the autocorrelation coefficient f
to zero. With minor exceptions, the resulting bootstrapped p-value estimates for the CM
and UM models reported in Table 1 agree with those from the Monte Carlo procedure
(which assumes f¼0 as well as normality). This reassuring result demonstrates convergence
of the bootstrap procedure, and the robustness of the Min-t statistic with respect to the
assumption of normality.
Next, we relax the assumption that the trading profit innovations are normally

distributed and serially uncorrelated, and examine the CMC and UMC models. The
statistical arbitrage results for the CMC model are reported in Table 2. In the interest of
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Table 1

Tests of statistical arbitrage with CM (constrained mean) and UM (unconstrained mean) models.

Min-t statistics and bootstrapped p-values from tests of statistical arbitrage are presented for all four classes of

trading strategies and for the UM and CMmodels. The sample period is from Jan 1965–Dec 2000. The UMmodel

allows for time-varying expected trading profits. The CM model constrains expected trading profits to a constant.

The JT portfolios are Jegadeesh and Titman (1993) stock momentum portfolios. The BM, CP, EP, and SALE

portfolios are Lakonishok, Shleifer, and Vishny (1994) value portfolios based on book-to-market equity, cash

flow-to-price, earnings-to-price, and sales growth, respectively. The VOL portfolios are liquidity-based portfolios.

The IND portfolios are Grinblatt and Moskowitz (1999) industry momentum portfolios. JTx_y denotes a stock

momentum portfolio with a formation period of x months and an evaluation period of y months. The VOLx_y

and INDx_y portfolios are defined analogously. BMy, CPy, EPy, and SALEy denote value portfolios with an

evaluation period of y years. The Min-t statistics are defined in Eqs. (6) and (8) for the UM and CM models

respectively. Asterisks in parentheses denote statistical significance associated with bootstrapped p-values while

those without parentheses denote statistical significance generated from Monte Carlo simulation. nsignificant at

the 10% level; nnsignificant at the 5% level; nnnsignificant at the 1% level.

Portfolio Sample size CM model UM model

Min-t bstrap p-value Min-t bstrap p-value

Panel A: Momentum strategies

JT3_3 398 �1.128 0.608 �0.439 0.468

JT3_6 398 2.294nnn 0.001 (nnn) 0.099 0.261

JT3_9 398 3.803nnn 0.000 (nnn) 0.119 0.231

JT3_12 398 2.508nnn 0.000 (nnn) 0.348 0.087 (n)

JT6_3 398 1.760nnn 0.005 (nnn) 0.796nn 0.021 (nn)

JT6_6 398 4.162nnn 0.000 (nnn) 0.119 0.245

JT6_9 398 3.049nnn 0.000 (nnn) 0.367 0.095 (n)

JT6_12 398 1.928nnn 0.000 (nnn) 0.375 0.078 (n)

JT9_3 398 3.153nnn 0.000 (nnn) 0.025 0.309

JT9_6 398 3.207nnn 0.000 (nnn) 0.371 0.091 (n)

JT9_9 398 2.239nnn 0.000 (nnn) 0.430n 0.061 (n)

JT9_12 398 1.491nnn 0.000 (nnn) 0.445n 0.042 (nn)

JT12_3 398 2.924nnn 0.000 (nnn) 0.323 0.098 (n)

JT12_6 398 2.344nnn 0.000 (nnn) 0.405n 0.062 (n)

JT12_9 398 1.700nnn 0.000 (nnn) 0.485n 0.029 (nn)

JT12_12 398 1.167nn 0.006 (nnn) 0.404n 0.021 (nn)

Panel B: Value strategies

BM1 414 0.110 0.158 1.005nnn 0.001 (nnn)

BM3 372 0.233 0.169 0.993nnn 0.009 (nnn)

BM5 324 1.293nnn 0.025 (nn) 1.157nnn 0.010 (nnn)

CP1 414 �0.266 0.466 �0.637 0.629

CP3 372 0.827nn 0.075 (n) 0.451n 0.095 (n)

CP5 324 1.016nn 0.020 (nn) 0.371 0.128

EP1 414 �5.320 0.995 �0.662 0.866

EP3 372 �1.413 0.701 �0.140 0.439

EP5 324 �0.191 0.285 �1.371 0.761

SALE1 378 1.336nnn 0.007 (nnn) 1.198nnn 0.004 (nnn)

SALE3 336 1.530nnn 0.010 (nnn) 1.362nnn 0.003 (nnn)

SALE5 288 2.627nnn 0.001 (nnn) 1.073nnn 0.003 (nnn)
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brevity, we do not report the results for the UMC model16 but note that the l, s and f
estimates are very similar across both models. A comparison of the statistical arbitrage
results in Tables 1 and 2 reveals a strong congruence between the results for the CM model
and those for the CMC model. Strategies that test positively for statistical arbitrage under
the CM model usually do so for the CMC model as well. A similar relationship exists

Table 1 (continued )

Portfolio Sample size CM model UM model

Min-t bstrap p-value Min-t bstrap p-value

Panel C: Volume strategies

VOL3_3 398 0.897nn 0.082 (n) 0.896nn 0.019 (nn)

VOL3_6 398 0.881nn 0.070 (n) 0.882nn 0.025 (nn)

VOL3_9 398 0.973nn 0.074 (n) 0.977nnn 0.019 (nn)

VOL3_12 398 1.121nn 0.050 (nn) 1.126nnn 0.003 (nnn)

VOL6_3 398 0.974nn 0.050 (nn) 0.980nnn 0.023 (nn)

VOL6_6 398 1.027nn 0.060 (n) 1.034nnn 0.005 (nnn)

VOL6_9 398 1.109nn 0.050 (nn) 1.120nnn 0.003 (nnn)

VOL6_12 398 1.245nn 0.041 (nn) 1.234nnn 0.004 (nnn)

VOL9_3 398 1.035nn 0.050 (nn) 0.414n 0.047 (nn)

VOL9_6 398 1.098nn 0.041 (nn) 1.094nnn 0.003 (nnn)

VOL9_9 398 1.219nn 0.035 (nn) 0.870nn 0.025 (nn)

VOL9_12 398 1.347nnn 0.038 (nn) 1.244nnn 0.006 (nnn)

VOL12_3 398 1.166nn 0.039 (nn) 1.174nnn 0.005 (nnn)

VOL12_6 398 1.214nn 0.034 (nn) 0.960nnn 0.010 (nnn)

VOL12_9 398 1.331nnn 0.029 (nn) 1.141nnn 0.003 (nnn)

VOL12_12 398 1.455nnn 0.024 (nn) 1.362nnn 0.000 (nnn)

Panel D: Industry momentum strategies

IND3_3 398 0.791nn 0.042 (nn) 0.808nn 0.018 (nn)

IND3_6 398 0.829nn 0.058 (n) 0.836nn 0.042 (nn)

IND3_9 398 1.174nn 0.009 (nnn) 0.934nn 0.021 (nn)

IND3_12 398 �0.065 0.221 0.852nn 0.027 (nn)

IND6_3 398 0.350 0.126 0.353 0.135

IND6_6 398 0.366 0.143 0.715nn 0.047 (nn)

IND6_9 398 �0.899 0.496 0.692nn 0.040 (nn)

IND6_12 398 �0.823 0.459 0.426n 0.093 (n)

IND9_3 398 1.870nnn 0.003 (nnn) 0.626nn 0.054 (n)

IND9_6 398 �0.321 0.315 0.556nn 0.065 (n)

IND9_9 398 �0.793 0.487 0.392 0.103

IND9_12 398 �0.561 0.367 0.269 0.164

IND12_3 398 �0.596 0.441 0.440n 0.100 (n)

IND12_6 398 �0.728 0.451 0.055 0.227

IND12_9 398 �0.518 0.378 �0.174 0.262

IND12_12 398 0.152 0.192 �0.091 0.281

16These results are available from the authors upon request.
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Table 2

Tests of statistical arbitrage with CMC (constrained mean with correlation) model.

Results from tests of statistical arbitrage are presented for all four classes of trading strategies and for the CMC

model. The sample period is from Jan 1965–Dec 2000. The CMC model features correlated trading profit

innovations that follow an MA(1) process and constant expected trading profits as in Eqs. (2) and (3). The JT

portfolios are Jegadeesh and Titman (1993) stock momentum portfolios. The BM, CP, EP, and SALE portfolios

are Lakonishok, Shleifer, and Vishny (1994) value portfolios based on book-to-market equity, cash flow-to-price,

earnings-to-price, and sales growth, respectively. The VOL portfolios are liquidity-based portfolios. The IND

portfolios are Grinblatt and Moskowitz (1999) industry momentum portfolios. JTx_y denotes a stock momentum

portfolio with a formation period of x months and an evaluation period of y months. The VOLx_y and INDx_y

portfolios are defined analogously. BMy, CPy, EPy, and SALEy denote value portfolios with an evaluation period

of y years. The Min-t statistic is defined in Eq. (8). nsignificant at the 10% level; nnsignificant at the 5% level;
nnnsignificant at the 1% level.

Portfolio Parameters (t-statistics) Min-t p-value

Mean profit m Std dev s Growth rate of std dev l Auto-correlation f

Panel A: Momentum strategies

JT3_3 �0.002 (�1.11) 0.086 (3.51) �0.183 (�3.59) 0.022 (0.41) �1.107 0.635

JT3_6 0.003 (2.37) 0.085 (3.50) �0.208 (�3.96) �0.031 (�0.50) 2.374 0.000 (nnn)

JT3_9 0.005 (4.16) 0.070 (3.65) �0.191 (�3.83) �0.043 (�0.64) 3.831 0.000 (nnn)

JT3_12 0.006 (5.32) 0.045 (3.84) �0.122 (�2.53) �0.066 (�0.81) 2.534 0.000 (nnn)

JT6_3 0.004 (1.81) 0.125 (3.49) �0.220 (�4.21) �0.026 (�0.45) 1.811 0.006 (nnn)

JT6_6 0.008 (4.37) 0.108 (3.66) �0.209 (�4.19) �0.043 (�0.68) 4.190 0.000 (nnn)

JT6_9 0.009 (5.59) 0.073 (3.86) �0.147 (�3.07) �0.053 (�0.71) 3.073 0.000 (nnn)

JT6_12 0.008 (5.04) 0.055 (3.56) �0.101 (�1.96) �0.069 (�0.80) 1.961 0.000 (nnn)

JT9_3 0.007 (3.30) 0.125 (3.63) �0.203 (�4.11) �0.040 (�0.63) 3.298 0.000 (nnn)

JT9_6 0.010 (5.20) 0.090 (3.87) �0.153 (�3.22) �0.053 (�0.71) 3.221 0.000 (nnn)

JT9_9 0.009 (4.95) 0.071 (3.59) �0.116 (�2.27) �0.067 (�0.78) 2.270 0.000 (nnn)

JT9_12 0.007 (4.09) 0.057 (3.35) �0.084 (�1.54) �0.074 (�0.78) 1.540 0.002 (nnn)

JT12_3 0.009 (4.12) 0.097 (3.71) �0.144 (�2.93) �0.060 (�0.74) 2.928 0.000 (nnn)

JT12_6 0.009 (4.35) 0.084 (3.49) �0.124 (�2.37) �0.069 (�0.79) 2.373 0.000 (nnn)

JT12_9 0.008 (3.82) 0.069 (3.37) �0.095 (�1.75) �0.071 (�0.76) 1.750 0.001 (nnn)

JT12_12 0.006 (2.95) 0.058 (3.14) �0.070 (�1.22) �0.074 (�0.77) 1.221 0.004 (nnn)

Panel B: Value strategies

BM1 0.015 (5.51) 0.052 (2.78) �0.004 (�0.06) 0.094 (1.41) 0.055 0.181

BM3 0.012 (5.38) 0.040 (2.70) �0.017 (-0.23) 0.139 (2.38) 0.234 0.143

BM5 0.011 (5.36) 0.043 (3.55) �0.069 (�1.23) 0.194 (3.06) 1.227 0.023 (nn)

CP1 �0.001 (�0.25) 0.209 (3.74) �0.200 (�3.40) 0.189 (2.33) �0.251 0.396

CP3 0.002 (0.77) 0.111 (3.55) �0.168 (�2.40) 0.077 (1.52) 0.768 0.100 (n)

CP5 0.002 (0.96) 0.125 (3.13) �0.233 (�2.73) 0.080 (1.33) 0.956 0.068 (n)

EP1 �0.000 (�0.06) 0.013 (4.23) 0.291 (5.00) 0.205 (3.03) �4.998 0.989

EP3 �0.001 (�0.19) 0.024 (2.76) 0.116 (1.36) 0.118 (2.09) �1.359 0.673

EP5 �0.001 (�0.19) 0.044 (3.17) �0.047 (�0.63) 0.173 (2.60) �0.155 0.297

SALE1 0.009 (5.23) 0.050 (2.57) �0.092 (�1.30) 0.066 (0.92) 1.301 0.009 (nnn)

SALE3 0.006 (3.94) 0.046 (2.44) �0.127 (�1.60) 0.103 (1.47) 1.598 0.000 (nnn)

SALE5 0.005 (3.20) 0.049 (3.43) �0.169 (�2.85) 0.148 (2.36) 2.846 0.000 (nnn)

Panel C: Volume strategies

VOL3_3 0.005 (1.68) 0.065 (5.07) �0.040 (�1.03) 0.111 (2.00) 1.025 0.050 (nn)

VOL3_6 0.006 (2.00) 0.063 (5.12) �0.039 (�1.01) 0.115 (2.09) 1.010 0.048 (nn)
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between the UM and the UMC results. Overall, non-normality and serial correlation in
trading profit innovations do not alter our earlier conclusions regarding statistical
arbitrage.
Table 3 reports the number of statistical arbitrage opportunities, identified using the

bootstrap, for each strategy class and trading profit model. As noted earlier, the value and
volume strategies display the greatest consistency in generating statistical arbitrage across
trading profit models. The industry-based strategies generate statistical arbitrage more
often when expected profits are allowed to be time-varying, while momentum strategies
generate statistical arbitrage more frequently when they are assumed to be constant. More
importantly, regardless of the assumed trading profit model, at least 50% of the trading
strategies yield statistical arbitrage at the 5% level of significance. Therefore, Table 3

Table 2 (continued )

Portfolio Parameters (t-statistics) Min-t p-value

Mean profit m Std dev s Growth rate of std dev l Auto-correlation f

VOL3_9 0.006 (2.14) 0.063 (4.98) �0.043 (�1.09) 0.123 (2.27) 1.094 0.039 (nn)

VOL3_12 0.006 (2.23) 0.064 (4.87) �0.049 (�1.23) 0.130 (2.41) 1.230 0.032 (nn)

VOL6_3 0.006 (2.07) 0.067 (5.14) �0.043 (�1.11) 0.112 (2.04) 1.112 0.035 (nn)

VOL6_6 0.007 (2.26) 0.066 (4.98) �0.045 (�1.15) 0.118 (2.16) 1.149 0.030 (nn)

VOL6_9 0.007 (2.30) 0.067 (4.81) �0.050 (�1.22) 0.127 (2.36) 1.223 0.034 (nn)

VOL6_12 0.007 (2.30) 0.067 (4.73) �0.056 (�1.35) 0.133 (2.47) 1.349 0.024 (nn)

VOL9_3 0.007 (2.19) 0.068 (4.89) �0.046 (�1.14) 0.110 (2.03) 1.136 0.046 (nn)

VOL9_6 0.007 (2.28) 0.068 (4.76) �0.049 (�1.19) 0.121 (2.24) 1.193 0.037 (nn)

VOL9_9 0.007 (2.28) 0.069 (4.66) �0.054 (�1.30) 0.129 (2.41) 1.303 0.023 (nn)

VOL9_12 0.007 (2.31) 0.069 (4.64) �0.060 (�1.43) 0.134 (2.47) 1.426 0.009 (nnn)

VOL12_3 0.007 (2.24) 0.070 (4.79) �0.051 (�1.26) 0.121 (2.24) 1.126 0.034 (nn)

VOL12_6 0.007 (2.25) 0.069 (4.70) �0.053 (�1.28) 0.125 (2.31) 1.283 0.027 (nn)

VOL12_9 0.007 (2.27) 0.070 (4.65) �0.058 (�1.40) 0.130 (2.40) 1.398 0.024 (nn)

VOL12_12 0.007 (2.29) 0.070 (4.63) �0.064 (�1.52) 0.135 (2.46) 1.522 0.008 (nnn)

Panel D: Industry momentum strategies

IND3_3 0.008 (4.41) 0.040 (3.74) �0.049 (�0.97) 0.121 (2.19) 0.975 0.034 (nn)

IND3_6 0.006 (3.66) 0.036 (3.62) �0.058 (�1.11) 0.187 (3.50) 1.114 0.018 (nn)

IND3_9 0.006 (4.35) 0.032 (4.10) �0.063 (�1.31) 0.211 (3.89) 1.313 0.010 (nnn)

IND3_12 0.006 (4.43) 0.023 (3.90) �0.012 (�0.23) 0.223 (3.79) 0.233 0.130

IND6_3 0.008 (3.66) 0.042 (4.17) �0.031 (�0.67) 0.175 (3.34) 0.672 0.071 (n)

IND6_6 0.008 (3.94) 0.036 (4.51) �0.023 (�0.53) 0.217 (4.44) 0.531 0.094 (n)

IND6_9 0.008 (4.14) 0.026 (4.09) 0.025 (0.51) 0.267 (5.14) �0.514 0.408

IND6_12 0.006 (3.37) 0.025 (3.45) 0.026 (0.46) 0.256 (4.53) �0.457 0.388

IND9_3 0.009 (3.86) 0.054 (4.46) �0.080 (�1.87) 0.233 (4.76) 1.874 0.000 (nnn)

IND9_6 0.009 (3.84) 0.033 (4.54) 0.010 (0.23) 0.259 (5.23) �0.255 0.296

IND9_9 0.007 (3.39) 0.028 (3.72) 0.033 (0.63) 0.253 (4.84) �0.629 0.405

IND9_12 0.005 (2.53) 0.029 (3.84) 0.018 (0.36) 0.239 (4.38) �0.356 0.335

IND12_3 0.010 (4.15) 0.036 (4.03) 0.010 (0.19) 0.261 (5.11) �0.193 0.285

IND12_6 0.008 (3.49) 0.032 (3.81) 0.021 (0.41) 0.251 (4.91) �0.409 0.358

IND12_9 0.006 (2.74) 0.033 (4.18) 0.010 (0.22) 0.252 (4.85) �0.220 0.293

IND12_12 0.004 (1.90) 0.036 (4.00) �0.020 (�0.43) 0.234 (4.49) 0.429 0.094 (n)
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summarizes the improved power of our Min-t statistic when testing for statistical arbitrage.
The number of statistical arbitrage opportunities cannot be attributed to the procedure’s
Type I error (even if the strategies are not independent).

The statistical arbitrage results are even stronger when we confine our attention to the
trading profit models chosen by the Akaike Information Criterion (AIC) and the Schwartz
Information Criterion (SC). The two leftmost columns in Table 4 report the preferred
trading profit model for each trading strategy chosen using the AIC and the SC,

Table 3

Summary of statistical arbitrage opportunities.

The number of statistical arbitrage opportunities is reported for each strategy class and trading profit model.

The sample period is from Jan 1965–Dec 2000. The trading profit models include CM (constrained mean), UM

(unconstrained mean), CMC (constrained mean with correlation), and UMC (unconstrained mean with

correlation). The UM and UMC models allow for time-varying expected trading profits. The CMC and UMC

models allow for correlated trading profit increments that follow an MA(1) process as in Eq. (3). The classes of

strategies include stock momentum, stock value, stock liquidity, and industry momentum. The stock momentum

strategies buy the top decile and short the bottom decile of stocks based on past returns as in Jegadeesh and

Titman (1993). The stock value strategies buy the top and short the bottom decile of stocks based on book-to-

market, cash flow-to-price, and earnings-to-price, as in Lakonishok, Shleifer, and Vishny (1994). They also buy

the bottom and short the top decile of stocks based on past sales growth. The stock liquidity strategies buy the

bottom and short the top decile of stocks based on trading volume, in the spirit of Brennan, Chordia, and

Subrahmanyam (1998). The industry momentum strategies buy the top three industries and short the bottom

three industries based on past returns as in Grinblatt and Moskowitz (1999).

Class of trading strategy Portfolios tested Trading profit model

CM UM CMC UMC

Panel A: Statistical arbitrage opportunities at the 10% level of significance

Stock momentum (Jegadeesh and Titman, 1993) 16 15 11 15 10

Stock value (Lakonishok, Shleifer, and Vishny, 1994) 12 6 7 6 7

Stock liquidity (Brennan, Chordia, and Subrahmanyam, 1998) 16 16 16 16 15

Industry momentum (Grinblatt and Moskowitz, 1999) 16 4 10 7 11

Total 60 41 44 44 43

Panel B: Statistical arbitrage opportunities at the 5% level of significance

Stock momentum (Jegadeesh and Titman, 1993) 16 15 4 15 5

Stock value (Lakonishok, Shleifer, and Vishny, 1994) 12 5 6 4 6

Stock liquidity (Brennan, Chordia, and Subrahmanyam, 1998) 16 12 16 16 15

Industry momentum (Grinblatt and Moskowitz, 1999) 16 3 6 4 5

Total 60 35 32 39 31

Panel C: Statistical arbitrage opportunities, using the Bonferroni approach of HJTW, at the 10% level of significance

Stock momentum (Jegadeesh and Titman, 1993) 16 5 0 13 0

Stock value (Lakonishok, Shleifer, and Vishny, 1994) 12 1 0 1 0

Stock liquidity (Brennan, Chordia, and Subrahmanyam, 1998) 16 0 0 0 0

Industry momentum (Grinblatt and Moskowitz, 1999) 16 1 0 1 0

Total 60 7 0 15 0

Panel D: Statistical arbitrage opportunities, using the Bonferroni approach of HJTW, at the 5% level of significance

Stock momentum (Jegadeesh and Titman, 1993) 16 3 0 11 0

Stock value (Lakonishok, Shleifer, and Vishny, 1994) 12 1 0 1 0

Stock liquidity (Brennan, Chordia, and Subrahmanyam, 1998) 16 0 0 0 0

Industry momentum (Grinblatt and Moskowitz, 1999) 16 0 0 0 0

Total 60 4 0 12 0
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Table 4

Comparing loss probabilities across strategies.

The number of months till loss probability falls below 5% and 1% are reported for all strategies that test positively for statistical arbitrage at the 5% level. The

sample period is from Jan 1965–Dec 2000. The JT portfolios are Jegadeesh and Titman (1993) stock momentum portfolios. The BM, CP, EP, and SALE portfolios are

Lakonishok, Shleifer, and Vishny (1994) value portfolios based on book-to-market equity, cash flow-to-price, earnings-to-price, and sales growth, respectively. The

VOL portfolios are liquidity-based portfolios. The IND portfolios are Grinblatt and Moskowitz (1999) industry momentum portfolios. JTx_y denotes a stock

momentum portfolio with a formation period of x months and an evaluation period of y months. The VOLx_y and INDx_y portfolios are defined analogously. BMy,

CPy, EPy, and SALEy denote value portfolios with an evaluation period of y years. For each strategy, we report the most appropriate model for describing the

incremental trading profit dynamics, according to the Akaike information criterion (AIC) and the Schwartz information criterion (SC). The four trading profit models

are CM, UM, CMC, and UMC. The UM and UMC models allow for time-varying expected trading profits. The CMC and UMC models allow for correlated trading

profit increments that follow an MA(1) process as in Eq. (3).

Portfolio Preferred model (AIC) Preferred model (SC) Months till loss probability o5% Months till loss probabilityo1%

CM UM CMC UMC CM UM CMC UMC

Panel A: Momentum strategies

JT3_3 CM CM – – – – – – – –

JT3_6 CM CM 286 – 273 – 468 – 447 –

JT3_9 CM CM 123 – 116 – 205 – 192 –

JT3_12 CM CM 73 – 64 – 128 – 112 –

JT6_3 CM CM 423 117 408 117 688 278 663 278

JT6_6 CM CM 122 – 113 – 200 – 185 –

JT6_9 CM CM 71 – 65 – 121 – 112 –

JT6_12 CM CM 74 – 66 – 132 – 117 –

JT9_3 CM CM 177 – 158 – 292 – 276 –

JT9_6 CM CM 81 – 73 – 138 – 125 –

JT9_9 CM CM 79 – 71 113 139 – 124 173

JT9_12 CM CM 100 129 86 115 182 211 156 188

JT12_3 CM CM 112 – 102 – 193 – 175 –

JT12_6 CM CM 99 – 88 – 173 – 154 –

JT12_9 CM CM 114 135 101 121 204 226 180 202

JT12_12 CM CM 170 190 149 167 313 325 273 286
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Panel B: Value strategies

BM1 CMC CM – 60 – 69 – 101 – 116

BM3 CMC CMC – 53 – 63 – 88 – 106

BM5 CMC CMC 31 43 41 55 58 73 76 93

CP1 CMC CMC – – – – – – – –

CP3 CMC CM – – – – – – – –

CP5 CMC CM 703 – – – 1137 – – –

EP1 CMC CMC – – – – – – – –

EP3 CMC CMC – – – – – – – –

EP5 CMC CMC – – – – – – – –

SALE1 CM CM 50 49 55 55 90 89 99 99

SALE3 CMC CM 78 40 92 49 137 85 160 106

SALE5 CMC CMC 97 42 119 55 165 97 201 128

Panel C: Liquidity based strategies

VOL3_3 CMC CM – 317 385 388 – 584 731 711

VOL3_6 CMC CM – 232 279 282 – 432 530 522

VOL3_9 CMC CM – 202 249 252 – 375 470 465

VOL3_12 CMC CMC 185 187 230 234 350 347 432 428

VOL6_3 CMC CM 213 217 265 264 405 407 502 493

VOL6_6 CMC CM – 183 224 227 – 342 422 422

VOL6_9 CMC CMC 174 178 221 222 328 334 415 410

VOL6_12 CMC CMC 174 176 222 225 326 328 414 414

VOL9_3 CMC CM 193 61 239 236 366 115 451 440

VOL9_6 CMC CM 177 182 223 224 334 342 418 416

VOL9_9 CMC CMC 178 177 225 223 333 330 421 412

VOL9_12 CMC CMC 173 176 219 222 322 325 408 407

VOL12_3 CMC CM 184 187 231 229 346 348 433 424

VOL12_6 CMC CMC 183 184 231 231 344 344 432 427

VOL12_9 CMC CMC 179 184 226 – 334 341 420 –

VOL12_12 CMC CMC 179 176 222 228 332 326 410 418
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Table 4 (continued )

Portfolio Preferred model (AIC) Preferred model (SC) Months till loss probability o5% Months till loss probabilityo1%

CM UM CMC UMC CM UM CMC UMC

Panel D: Industry momentum strategies

IND3_3 CMC CM 52 48 66 63 99 93 123 120

IND3_6 CMC CMC – 68 95 98 – 130 177 180

IND3_9 CMC CMC 52 81 73 108 97 134 134 175

IND3_12 CMC CMC – 68 – 93 – 116 – 155

IND6_3 CMC CMC – – – 90 – – – 171

IND6_6 CMC CMC – 85 – – – 142 – –

IND6_9 CMC CMC – 86 – – – 138 – –

IND6_12 CMC CMC – – – – – – – –

IND9_3 CMC CMC 68 109 93 – 125 171 168 –

IND9_6 CMC CMC – – – – – – – –

IND9_9 CMC CMC – – – – – – – –

IND9_12 CMC CMC – – – – – – – –

IND12_3 CMC CMC – – – – – – – –

IND12_6 CMC CMC – – – – – – – –

IND12_9 CMC CMC – – – – – – – –

IND12_12 CMC CMC – – – – – – – –
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respectively. A few observations are noteworthy. First, the preferred models chosen by the
AIC and SC usually coincide. Second, when differences exist, preference should be given to
the SC given the AIC’s lack of consistency. Third, only the CM and CMC models are
chosen. This is consistent with the lack of significance for y, which captures the rate of
change in expected profits, in the UM and UMC models across all trading strategies.
Fourth, for momentum-based strategies, the CM model is always preferred, while for
industry momentum-based strategies, the CMC is usually the most appropriate specification.
The last observation reinforces the statistically insignificant (significant) autocorrelation
estimates, f, for stock (industry) momentum strategies in Table 2.17

When we restrict the trading profit model for each trading strategy to the model chosen
using the SC, the number of statistical arbitrage opportunities at the 5% level is 15, 5, 12,
and 4 for momentum, value, volume, and industry momentum strategies, respectively. This
implies that 60% of the trading strategies yield statistical arbitrage under the preferred
model specification.

As a final note, for the strategies that we implement, the trading profits are not sufficiently
right-skewed for the modified fourth axiom in Definition 2 to be consequential. When we
compare the statistical arbitrage test results under Definition 1 [using the test statistic in
Eq. (8)] to those under Definition 2, we find that the conclusions are the same for the SC
preferred model for all strategies. Only for the UMC model do we find a few strategies that
test positive for statistical arbitrage at the 10% level under Definition 2 but not under
Definition 1. Recall that the test statistics are equivalent under the CM and CMC models
as y¼0.

6.2. Economic relevance of statistical arbitrage opportunities

Our previous results have shown that over 50% of the simple anomaly-based trading
strategies generate statistical arbitrage opportunities. However, in itself, this may not be of
much relevance to investors if the trading profits are compensation for risk that has not been
considered, if their profits take too long to materialize, if the strategies are not exploitable
given market frictions and transaction costs, if the trading profits are compensation for
liquidity, or if arbitrageurs are likely to reduce these profits going forward. In this section, we
explore the economic significance of the anomaly-based trading profits along these lines.

6.2.1. Relevance to short horizon investors

Another concern is that the anomaly-based trading strategies may not be relevant to many
investors if the profits take too long to materialize. Such investors include institutional fund
managers who typically face the risk of retrenchment after a few years, or even a few
quarters, of poor performance (see Brown, Harlow, and Starks, 1996; Khorana, 1996;
Shleifer and Vishny, 1997; Chevalier and Ellison, 1999). Stein (2005) argues that, as a
consequence, open-ended fund managers ‘‘will stick primarily to short horizon strategies’’
that pay off quickly instead of attacking long run mispricings in the market.

17The negative f estimates for stock momentum in Table 2 may stem from negative serial correlation in stock

returns over monthly horizons. In particular, the stocks held in the long and short portfolios remain in these

respective portfolios over several months, which could induce negative serial correlation in their returns. Karolyi

and Kho (2004) also find evidence of negative serial correlation in stock momentum returns.
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By leveraging on the statistical arbitrage framework and computing the probability of loss
for each trading strategy, as in Eq. (4), one can gain a unique perspective on the issue.
Table 4 reports for each strategy that test for statistical arbitrage at the 5% level, the number
of months before the probability of loss declines below 5% and 1%. The results reveal
systematic differences in the rates of decline in loss probability across strategy classes. The
volume-based strategies require on average 214 months before the probability of loss
declines below 5%. In contrast, momentum, value, and industry momentum-based strategies
require on average18 only 140, 72, and 78 months, respectively, before the probability of loss
declines below 5%. Some of these strategies are immensely relevant for investors with a
strong preference for strategies that payoff in the short run. For example, the momentum
strategy with a formation period of six months and a holding horizon of nine months needs
just 71 months under its SC preferred model before its probability of loss declines below 5%.
The sales growth-based value strategy with a holding horizon of one year and the industry
momentum strategy with a formation and holding period of three months are even more
impressive in this regard. They only need 50 and 52 months, respectively, to generate profits
with high probability. Thus, investors who prefer to attack short run mispricings in the
market will favor momentum, value, and industry momentum strategies.

6.2.2. Transaction costs and market frictions

Yet another concern is that the statistical arbitrage trading profits may not be sufficient to
overcome transaction costs and market frictions. This concern is particularly relevant given
that many of the statistical arbitrage opportunities (see Table 4) feature short (e.g., three
months) formation and holding periods. To account for the effects of transaction costs, we
adjust the trading profits downwards using conservative estimates of institutional investor
round-trip transaction costs from Chan and Lakonishok (1997). Specifically, we use
transaction costs of 1.45%, 1.71%, and 2.45%, which correspond to Chan and Lakonishok’s
(1997) estimates for NASDAQ trade packages with complexity (package size relative to
outstanding equity) levels between the 75th and 90th percentiles, between the 90th and 95th
percentiles, and above the 95th percentile, respectively. We use estimates for NASDAQ
stocks as opposed to NYSE stocks because there are more NASDAQ stocks than NYSE
stocks in the portfolios. Moreover, estimates of transaction costs for NASDAQ stocks tend
to be more conservative than those for NYSE stocks. Next, we adjust the trading profits
downwards for a short sales liquidity buffer (10%), a levy on the margin accounts (27.5 bps),
a margin rate (50%), and a borrowing rate that is 2% higher than the lending rate, as in
Jacobs and Levy (1995) and Alexander (2000). Then, we re-test the resultant post-transaction
costs portfolios for statistical arbitrage. For brevity, we confine our analysis to strategies that
test for statistical arbitrage (under the model chosen by the SC) at the 5% level of significance
and to strategies that require less than 400 months before their probability of loss falls below
5%. Since we find that volume-based strategies in general may not be particularly relevant to
short-term investors, given their relatively slow rate of decline in loss probability, we limit the
analysis to volume strategies with a nine-month formation period. This yields a total of 26
strategies on which we apply the transaction costs adjustment.19

18The average number of months is calculated using the preferred model determined by the Schwartz

Information Criterion. In the calculation of the stock value-based strategy average, we exclude the cash flow-to-

price strategy with a five-year holding horizon so as to avoid the effect of this outlier.
19The rest of our analysis focuses on this set of strategies.
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Table 5 reports the annual turnover for the 26 strategies, as well as their statistical
arbitrage test results under the various transaction costs regimes. Of the 26 strategies, 23
test for statistical arbitrage at the 5% level with the 1.45% round-trip transaction costs
adjustment. Even with the very conservative estimate of 2.45% per round-trip transaction,
we find that 17 of the 26 strategies still test for statistical arbitrage at the 5% level of
significance. Value and volume strategies are highly robust to the transaction costs
adjustments. Out of the four value and four volume strategies tested, all four value strategies
and three volume strategies test for statistical arbitrage at the 5% level with the 2.45%
estimate of transaction costs. Momentum strategies are also robust to transaction costs. Of
the 14 momentum strategi es tested, 9 remain statistical arbitrage opportunities at the 5%
level with the 2.45% estimate of transaction costs. In contrast, the industry momentum
strategies display the most sensitivity to transaction costs with only one of the four strategies
surviving the final adjustment for transaction costs. This is not surprising given the short
formation periods (e.g., three months), and consequently high turnover, of the industry
momentum strategies tested. On the other hand, the low turnover of the annually rebalanced
value strategies render them almost impervious to the effects of transaction costs.

In addition, we can leverage on the results in Table 5 and estimates from Chan and
Lakonishok (1997) to determine the amount that may be invested under the various
transaction costs regimes. The rightmost column of Panel B, Table III in Chan and
Lakonishok (1997) provides estimates of the number of trade packages and the dollar value
traded for NASDAQ stocks with market capitalization below the 30th NYSE percentile,
and for each complexity group. From those estimates we can infer the average size of the
trade packages for the smallest stocks in the NASDAQ. This together with the average
number of stocks in the long/short momentum portfolios (e.g., 412) allows us to derive an
estimate of the amount of funds that may be profitably invested in momentum strategies
under each transaction costs regime. For example, the average trade package size is $1.56m,
$0.81m, and $0.40m under the 2.45%, 1.71%, and 1.45% transaction cost regimes,
respectively, for the smallest stocks. Hence, the statistical arbitrage results in Table 5 imply
that at least $0.64bn (¼$1.56m� 412) may be profitably invested in each of the 17 strategies
that test for statistical arbitrage with the 2.45% round-trip estimate of transaction costs. This
number is somewhat more optimistic than those from Korajczyk and Sadka (2004).20

6.2.3. Illiquidity

Transaction costs aside, it will be important to also check the sensitivity of the statistical
arbitrage trading profits to illiquidity. If the trading profits are driven by highly illiquid
stocks, it would be hard for large institutional investors to take advantage of the market
inefficiencies uncovered. To gauge the effects of illiquidity, we constrain the stock sample
to the top 70% and top 50% of stocks in terms of volume (share volume/number of shares
outstanding) averaged over the evaluation period and re-test for statistical arbitrage. The
results reported in Table 6 indicate that the trading profits from momentum and value
strategies are not driven by illiquid stocks. In fact, the rightmost column in Table 6 reveals
that the loss probabilities often decline faster without the 50% most illiquid stocks than
with those stocks in the sample. Indeed, the probability of loss declines more rapidly for 10
of the 14 the momentum and three of the four value strategies without the illiquid stocks.
One view is that by removing illiquid stocks, we reduce the overall volatility of the risky

20See Figs. 4a, 5a, and 6a in Korajczyk and Sadka (2004).
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Table 5

Tests of statistical arbitrage with adjustments for market frictions and transaction costs.

The sample period is from Jan 1965–Dec 2000. The strategies and models are as per defined in the previous tables. The 1.34%, 1.71%, and 2.45% round-trip cost

corresponds to the estimated cost for the third, fourth, and highest complexity (trade size over stock size) groups of NASDAQ portfolios for institutional investors,

respectively, as in Chan and Lakonishok (1997). Incremental profits are also adjusted downwards for a short sales liquidity buffer (10%), a levy on the margin accounts

(27.5 bps), a margin rate (50%) and a borrowing rate that is 2% higher than the lending rate, as in Alexander (2000) and Jacobs and Levy (1995). Only strategies that

test for statistical arbitrage at the 5% level, before transaction costs, are included in the analysis. The preferred model is chosen using the Schwartz information

criterion. nsignificant at the 10% level; nnsignificant at the 5% level; nnnsignificant at the 1% level.

Portfolio Preferred

model

Annual

turnover

Round-trip transaction costs¼1.34% Round-trip transaction costs¼1.71% Round-trip transaction costs¼2.45%

Mean

m
Min-t p-value Months till loss

probo5%

Mean

m
Min-t p-value Months till loss

probo5%

Mean

m
Min-t p-value Months till loss

probo5%

JT3_6 CM 1.72 �0.001 �1.026 0.533 – �0.003 �2.087 0.794 – �0.006 �4.212 0.970 –

JT3_9 CM 1.16 0.002 1.769 0.002(nnn) 402 0.001 1.190 0.013(nn) 728 �0.000 �0.278 0.258 –

JT3_12 CM 0.89 0.003 2.498 0.000(nnn) 153 0.003 2.495 0.000(nnn) 198 0.002 1.742 0.000(nnn) 391

JT6_6 CM 1.72 0.003 1.959 0.001(nnn) 350 0.002 1.364 0.004(nnn) 585 �0.000 �0.046 0.192 –

JT6_9 CM 1.15 0.006 3.047 0.000(nnn) 124 0.005 3.047 0.000(nnn) 152 0.004 2.404 0.000(nnn) 243

JT6_12 CM 0.89 0.005 1.922 0.000(nnn) 131 0.004 1.920 0.000(nnn) 157 0.004 1.918 0.001(nnn) 231

JT9_3 CM 2.11 0.002 0.871 0.034(nn) – 0.000 0.124 0.152 – �0.003 �1.620 0.708 –

JT9_6 CM 1.45 0.006 3.205 0.000(nnn) 154 0.005 2.793 0.000(nnn) 191 0.004 1.930 0.000(nnn) 337

JT9_9 CM 1.15 0.006 2.236 0.000(nnn) 142 0.005 2.236 0.000(nnn) 176 0.004 0.086 0.000(nnn) 288

JT9_12 CM 0.88 0.004 1.485 0.001(nnn) 189 0.004 1.484 0.002(nnn) 233 0.003 1.480 0.001(nnn) 388

JT12_3 CM 1.84 0.004 1.997 0.000(nnn) 319 0.003 1.512 0.002(nnn) 488 0.001 0.511 0.064(n) –

JT12_6 CM 1.29 0.005 2.348 0.000(nnn) 200 0.005 2.284 0.000(nnn) 251 0.003 1.577 0.000(nnn) 450

JT12_9 CM 1.04 0.005 1.701 0.002(nnn) 230 0.004 1.702 0.001(nnn) 292 0.003 1.429 0.000(nnn) 512

JT12_12 CM 0.89 0.003 1.165 0.007(nnn) 418 0.003 1.164 0.008(nnn) 576 0.002 0.814 0.014(nn) 1414

BM5 CMC 0.17 0.010 1.074 0.031(nn) 39 0.009 1.072 0.024(nn) 40 0.009 1.067 0.029(nn) 41

SALE1 CM 0.49 0.007 1.263 0.014(nn) 54 0.007 1.283 0.006(nnn) 58 0.006 1.316 0.005(nnn) 70

SALE3 CM 0.29 0.005 0.979 0.039(nn) 73 0.004 0.969 0.049(nn) 79 0.004 0.943 0.039(nn) 90

SALE5 CMC 0.18 0.004 2.566 0.001(nnn) 115 0.004 2.551 0.001(nnn) 121 0.004 2.519 0.000(nnn) 131

VOL9_3 CM 0.81 0.004 1.043 0.061(n) 383 0.004 1.044 0.056(n) 484 0.003 1.047 0.058(n) 808

VOL9_6 CM 0.67 0.005 1.101 0.046(nn) 313 0.004 1.102 0.048(nn) 354 0.004 1.103 0.039(nn) 515

VOL9_9 CMC 0.58 0.005 1.302 0.027(nn) 358 0.004 1.301 0.023(nn) 404 0.004 1.300 0.029(nn) 549

VOL9_12 CMC 0.49 0.005 1.427 0.011(nn) 323 0.005 1.426 0.017(nn) 362 0.004 1.409 0.015(nn) 443

IND3_3 CM 3.05 0.001 0.522 0.100(n) – �0.001 �0.793 0.491 – �0.006 �3.977 0.989 –

IND3_6 CMC 1.58 0.002 1.112 0.023(nn) 622 0.001 0.699 0.051(n) – �0.001 �0.673 0.455 –

IND3_9 CMC 1.04 0.003 1.278 0.012(nn) 182 0.003 1.267 0.016(nn) 261 0.002 1.153 0.014(nn) 744

IND9_3 CMC 1.78 0.004 1.893 0.000(nnn) 288 0.003 1.484 0.010(nnn) 496 0.001 0.459 0.102 –
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Table 6

Tests of statistical arbitrage with controls for stock liquidity.

The sample period is from Jan 1965–Dec 2000. The strategies and models are as per defined in the previous tables. The strategies are based on the top 70% and top

50% of stocks in terms of past volume. Only strategies that test for statistical arbitrage at the 5% level, on the full sample, are included in the analysis. The preferred

model is chosen using the Schwartz information criterion. nsignificant at the 10% level; nnsignificant at the 5% level; nnnsignificant at the 1% level.

Portfolio Preferred model Top 70% of stocks based on volume Top 50% of stocks based on volume

Mean (m) Min-t p-value Months till

loss probo5%

Mean (m) Min-t p-value Months till

loss probo5%

JT3_6 CM 0.006 3.151 0.000(nnn) 166 0.008 2..839 0.000(nnn) 106

JT3_9 CM 0.007 3.333 0.000(nnn) 104 0.009 3.117 0.000(nnn) 77

JT3_12 CM 0.007 2.532 0.000(nnn) 68 0.009 2.384 0.000(nnn) 54

JT6_6 CM 0.009 3.598 0.000(nnn) 109 0.011 3.209 0.000(nnn) 82

JT6_9 CM 0.010 2.861 0.000(nnn) 71 0.012 2.607 0.000(nnn) 58

JT6_12 CM 0.008 1.997 0.000(nnn) 81 0.010 1.908 0.001(nnn) 68

JT9_3 CM 0.009 3.557 0.000(nnn) 138 0.011 3.295 0.000(nnn) 106

JT9_6 CM 0.011 2.983 0.000(nnn) 79 0.013 2.740 0.000(nnn) 67

JT9_9 CM 0.010 2.195 0.000(nnn) 85 0.011 2.012 0.000(nnn) 132

JT9_12 CM 0.007 1.628 0.001(nnn) 122 0.008 1.482 0.000(nnn) 108

JT12_3 CM 0.010 2.792 0.000(nnn) 106 0.012 2.664 0.000(nnn) 87

JT12_6 CM 0.009 2.187 0.000(nnn) 113 0.010 2.150 0.000(nnn) 96

JT12_9 CM 0.007 1.599 0.002(nnn) 151 0.008 1.518 0.001(nnn) 129

JT12_12 CM 0.005 1.207 0.002(nnn) 276 0.005 1.156 0.003(nnn) 226

BM5 CMC 0.010 1.424 0.004(nnn) 110 0.010 1.317 0.017(nn) 48

SALE1 CM 0.009 0.797 0.026(nn) 39 0.010 0.467 0.090(n) 37

SALE3 CM 0.006 1.085 0.024(nn) 74 0.006 1.086 0.034(nn) 70

SALE5 CMC 0.005 1.763 0.004(nnn) 110 0.005 1.541 0.012(nn) 89

VOL9_3 CM 0.009 �0.368 0.379 – 0.008 1.678 0.016(nn) 84

VOL9_6 CM 0.008 �0.709 0.458 – 0.008 1.544 0.030(nn) 82

VOL9_9 CMC 0.008 �0.485 0.416 – 0.008 1.831 0.010(nnn) 99

VOL9_12 CMC 0.008 �0.438 0.430 – 0.008 1.743 0.007(nnn) 99

IND3_3 CM 0.010 �2.062 0.867 – 0.011 �2.377 0.877 –

IND3_6 CMC 0.008 �1.166 0.601 – 0.008 �1.341 0.662 –

IND3_9 CMC 0.007 �0.916 0.568 – 0.008 �1.187 0.628 –

IND9_3 CMC 0.011 0.093 0.180 – 0.013 �1.752 0.772 –
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Table 7

Tests of statistical arbitrage by subperiod.

The sample period is from Jan 1965–Dec 2000. The strategies and models are as per defined in the previous tables. The statistical arbitrage test is applied separately

to the first half and the second half of the sample period. Only strategies that test for statistical arbitrage at the 5% level, on the entire sample period, are included in the

analysis. The preferred model is chosen using the Schwartz information criterion for each subperiod. nsignificant at the 10% level; nnsignificant at the 5% level;
nnnsignificant at the 1% level.

Portfolio 1st half of sample period 2nd half of sample period

Preferred model Mean(m) Min-t p-value Months till

loss probo5%

Preferred model Mean(m) Min-t p-value Months till

loss probo5%

JT3_6 CM 0.001 0.128 0.210 – CM 0.004 �0.151 0.276 –

JT3_9 CM 0.002 0.688 0.059(n) 658 CM 0.007 0.030 0.227 –

JT3_12 CM 0.004 1.077 0.019(nn) 178 CM 0.007 0.179 0.156 –

JT6_6 CM 0.004 0.094 0.029(nn) 409 CM 0.009 �0.181 0.294 –

JT6_9 CM 0.006 1.271 0.004(nnn) 148 CM 0.010 0.223 0.137 –

JT6_12 CM 0.005 0.442 0.094(n) 155 CM 0.009 0.226 0.149 –

JT9_3 CM 0.003 0.591 0.076(n) 881 CM 0.009 0.311 0.141 –

JT9_6 CM 0.007 1.248 0.005(nnn) 151 CM 0.011 0.361 0.119 –

JT9_9 CM 0.006 0.516 0.064(n) 149 CM 0.010 0.490 0.084(n) 38

JT9_12 CM 0.005 �0.007 0.204 � CM 0.008 0.537 0.067(n) 58

JT12_3 CM 0.007 0.963 0.016(nn) 200 CM 0.010 0.382 0.086(n) 51

JT12_6 CM 0.007 0.513 0.075(n) 177 CM 0.010 0.422 0.116 –

JT12_9 CM 0.006 0.092 0.166 – CM 0.008 0.634 0.048(nn) 68

JT12_12 CM 0.004 �0.426 0.404 – CM 0.006 0.679 0.048(nn) 111

BM5 CMC 0.009 �1.666 0.838 – CMC 0.011 0.144 0.196 –

SALE1 CM 0.007 �0.102 0.247 – CM 0.010 0.878 0.055(n) 27

SALE3 CM 0.007 �1.983 0.927 – CM 0.005 1.405 0.021(nn) 60

SALE5 CMC 0.009 0.222 0.105 – CMC 0.005 1.950 0.004(nnn) 95

VOL9_3 CM 0.009 2.003 0.001(nnn) 123 CM 0.006 �1.682 0.761 –

VOL9_6 CM 0.009 2.084 0.000(nnn) 118 CM 0.007 �1.722 0.753 –

VOL9_9 CMC 0.009 1.981 0.000(nnn) 129 CMC 0.006 �1.406 0.716 –

VOL9_12 CMC 0.008 1.938 0.000(nnn) 136 CMC 0.007 �1.468 0.754 –

IND3_3 CM 0.009 0.513 0.069(n) 41 CM 0.007 2.264 0.001(nnn) 72

IND3_6 CMC 0.006 0.413 0.131 – CMC 0.005 1.780 0.002(nnn) 109

IND3_9 CMC 0.005 �0.029 0.220 – CMC 0.006 3.170 0.000(nnn) 76

IND9_3 CMC 0.005 0.021 0.205 – CMC 0.009 3.453 0.000(nnn) 77
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portfolio and allow for faster convergence to arbitrage. It is not surprising that the volume-
based strategies display some sensitivity to the removal of the illiquid stocks. However, it is
intriguing to note that the volume strategies without the 50% most illiquid stocks actually
outperform those without the 30% most illiquid stocks. Moreover, the strategies in the
former group also outperform their counterparts based on the full sample of stocks (see
Table 4) in terms of the loss probability metric. This suggests that the profitability of
volume strategies is not simply a function of the cross-sectional variation in volume within
the sample nor is it solely dependent on the presence of extremely illiquid stocks in the
sample. In contrast to the momentum and value strategies, the industry momentum
strategies do not test for statistical arbitrage when we remove the most illiquid stocks from
the sample. This together with the transaction costs results suggest that it would be difficult
for institutional investors to take advantage of the industry momentum profits.

6.2.4. Rational arbitrageurs and statistical arbitrage

Finally, there are also concerns that, going forward, market participants will quickly
arbitrage away most of the profits from the statistical arbitrage opportunities, rendering
them irrelevant in the near future. While we cannot directly test this assertion, we can
conduct subperiod tests to see whether investors are arbitraging away the trading profits
over the 1965–2000 sample period. To this end, we split the sample period into two and
conduct statistical arbitrage tests on each subperiod. If arbitrageurs are reducing the
trading profits from the statistical arbitrage opportunities, then we would expect the
statistical arbitrage profits to diminish significantly in the second half of the sample period
relative to the first half of the sample period.

The results from the subperiod analysis reported in Table 7 demonstrate that value
and industry momentum strategies perform better, while the volume and momentum
strategies fare worse, in the second half than in the first half of the sample period. Of the
original set of statistical arbitrage strategies, 15 and 12 test for statistical arbitrage at
the 10% level21 in the first and second subperiods, respectively. Overall, market
participants have only been able to reduce the number of statistical arbitrage opportunities
by 20%. Moreover, the average number of months until a loss probability declines below
5% has actually decreased for those strategies that test for statistical arbitrage in the
second period versus the first. The average is 70.2 months for the statistical arbitrage
opportunities in the second subperiod and 243.5 months for the statistical arbitrage oppor-
tunities in the first subperiod. Hence, while the number of statistical arbitrage oppor-
tunities declines somewhat over time, the opportunities that survive are much more
relevant to investors.

7. Conclusion

The traditional intercept test of market efficiency is a widely-used metric in empirical
asset pricing studies. However, the uncertainty surrounding equilibrium risk factors limit
this metric’s conclusions. This paper develops an alternative approach to the traditional
intercept test that replaces an assumed model of market equilibrium with an assumed
statistical model for trading profits. Our test improves on the power and consistency of the
test for statistical arbitrage in Hogan, Jarrow, Teo, and Warachka (2004) and permits the

21Note that the power of the test falls significantly with the reduction in sample size.
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examination of trading profits under fewer assumptions. When applying our test to a wide
range of financial anomalies, we find that over 50% of the strategies are inconsistent with
market efficiency, conditional on our assumed trading profit process.
Moreover, we provide several new insights into the economic relevance of these trading

strategies. We show that short-horizon investors will prefer momentum, value, and
industry momentum strategies over liquidity strategies. Furthermore, while the trading
profits from the momentum, value, and liquidity strategies are fairly robust to adjustments
for transaction costs and market frictions, the industry momentum strategies are not as
they tend to be driven by illiquid stocks. Finally, investors do not, in general, appear to be
arbitraging away the financial anomaly profits over our 35-year sample period.

Appendix A. Conversion of returns into trading profits

Define RL and RS as the long and short portfolio returns respectively from a zero-cost
trading strategy (return of past winners and return of past losers in the case of
momentum). The conversion of these portfolio returns into dollar-denominated profits
places the cumulative profit of the underlying trading strategy into the risk-free asset
(money market account) after each period. To properly capture an anomaly’s persistence,
a $1 buy/sell position in the risky long/short portfolios is maintained across time.22 This
conversion process yields cumulative trading profits equaling:

V ðjÞ ¼ expfrgV ðj�1Þ þ $1½expfRL
j g�expfR

S
j g�, ð11Þ

whose incremental trading profits (losses) are harvested each month, with cumulative
trading profits being constructed recursively as a consequence.
Observe that time-varying moments are induced by allocating wealth between the risk-

free asset and the risky portfolio. In particular, $1 is exposed to the risky long minus short
position while the cumulative trading profit is deposited into the risk-free asset (or
borrowed from in the event of a cumulative loss).
Overall, the cumulative trading profit may be decomposed as:

½1�pðjÞ�expfrg þ pðjÞ½expfRL
j g�expfR

S
j g� ð12Þ

over a single time increment. Thus, 1�p(j) is invested in the risk-free asset while the
remaining p(j) fraction is maintained in the risky portfolio. A statistical arbitrage has
p(j)-0. Intuitively, this conversion eventually creates a ‘‘risk-free arbitrage’’ (with a zero
investment). Note that the interest rate is not assumed to be constant nor is stationarity
imposed on the long/short portfolio returns. More importantly, the time-varying nature of
p(j) implies that y and l are not necessarily zero since incremental trading profits reflect
differences in the amount invested in the long/short portfolios underlying a particular
cross-sectional return anomaly. Eq. (11) may be altered by investing x(j) in the risky
portfolios rather than $1:

VxðjÞ ¼ expfrgVxðj�1Þ þ $xðjÞ½expfRL
j g�expfRRS

j g�: ð13Þ

22The standard buy- and hold-strategy yields trading profits that are very sensitive to the start date and is

inappropriate for frequent (e.g., monthly) realizations of intermediate gains and losses.
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For example, having x(j)¼B(j) gradually increases the statistical arbitrage’s exposure to
the risky portfolios over time (in nominal but not real terms) while maintaining its self-
financing property.

Recall that the purpose of statistical arbitrage is to test whether the persistence of cross-
sectional return anomalies generate arbitrage profits in the long run. This methodology is not
intended to test whether one can manipulate the returns of an anomaly so as to reject market
efficiency. Consequently, a rapidly decreasing x(j) function is not valid since the investment in
the underlying anomaly diminishes over time. Indeed, this conversion eventually puts a
negligible weight on the anomaly’s returns, and therefore fails to address its persistence.
Similarly, investing the cumulative trading profit x(j)¼Vx(j�1) from a return anomaly into
the risky long/short positions would not evaluate this anomaly’s persistence. Instead, this
conversion would allow the investor to lose their entire profit over a single time interval.

Overall, economic considerations dictate that the conversion of returns into trading
profits be accomplished using a simple transformation. The y and l lambda parameters
guard against inappropriate x(j) functions that cause incremental trading profits to rapidly
decrease or their volatility to rapidly increase, respectively.

Appendix B. Verification of semi-variance sub-hypotheses

The quantity Var[Du(t)9Du(t)o0] is computed from the distribution of Du(t), which
equals Nðmty,s2t2lÞ. The conditional variance is expressed as:

Var DuðtÞ9DuðtÞo0
� �

¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2t2l
p

Z 0

�1

ðx�mtyÞ2e�ðx�mtyÞ2=2s2t2l dx, ð14Þ

¼
1ffiffiffiffiffiffi
2p
p

Z �mty=stl

�1

ðstlyÞ2e�y2=2 dy, ð15Þ

¼
s2t2lffiffiffiffiffiffi
2p
p

Z �mty=stl

�1

y2e�y2=2dy, ð16Þ

rs2t2l, ð17Þ

after a change of variables y¼ ðx�mtyÞ=stl which implies stldy¼dx. The inequality in
Eq. (17) stems from;

1ffiffiffiffiffiffi
2p
p

Z �mty=stl

�1

y2e�y2=2 dyr
1ffiffiffiffiffiffi
2p
p

Z 1
�1

y2e�y2=2 dy¼ 1, ð18Þ

since the second term equals the second moment (or variance) of a standard normal
random variable. Thus, the constraint lo0 is a sufficient condition for the fourth axiom to
hold. However, the integral:

1ffiffiffiffiffiffi
2p
p

Z ð�m=sÞty�l
�1

y2e�y2=2 dy ð19Þ
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also converges to zero provided y4l. Indeed, if y4l, then ty�l-N as t-N, which
implies the range of integration declines to zero. Thus, a weaker version of the fourth
axiom implies statistical arbitrage occurs if either lo0 or y4l.
To provide an alternative perspective and confirm the above result, observe that the

integral in Eq. (16) equals:

mty�lffiffiffiffiffiffiffiffiffiffi
2ps2
p e�m

2t2ðy�lÞ=2s2 þN
�mty�l

s

� �
: ð20Þ

Although there is no closed form solution for the standard normal cdf, a polynomial
approximation (for xo0) is available in Hull (2000) as:

NðxÞ ¼N 0ðxÞ a1
1

1þ gx
þ a2

1

1þ gxð Þ
2
þ a3

1

1þ gxð Þ
3
þ h:o:t:

� �
, ð21Þ

where a1, a2, a3, and g are constants. Ignoring the constants a1, s, and m, as well as the
contribution of 1=ð1þ gxÞ implies the relevant terms of Eq. (19) are of the order:

ty�le�t2ðy�lÞ þ e�t2ðy�lÞ : ð22Þ

The product t2l from Eq. (16) or (17) results in the above expression becoming:

tyþle�t2ðy�lÞ þ t2le�t2ðy�lÞ : ð23Þ

Since the exponential function converges to zero for y�l faster than the power function
increases towards N, the conditional semi-variance becomes zero in the limit as t-N.

Appendix C. Bonferroni approach for multiple hypotheses

This appendix discusses the Bonferroni approach for testing sub-hypotheses, with
particular reference to testing for statistical arbitrage.
Let H0 be the null hypothesis consisting of K sub-hypotheses h1, ..., hK, all of which are

required to hold under H0. Thus, the rejection of even one sub-hypothesis rejects the null
H0. As a consequence, H0 is the intersection of sub-hypotheses given by:

H0 :
\K

i ¼ 1

hi:

In the Bonferroni procedure, each sub-hypothesis hi is tested at a given level of
significance ai with a critical region denoted Ci so that PrðCi9H0Þ ¼ ai. The critical region of
the null hypothesis H0 is the union

SK
i ¼ 1 Ci. Let CC

i be the complement of Ci. The null
hypothesis H0 cannot be rejected if all the sub-hypotheses are accepted. Suppressing the
conditioning notation, the probability of failing to reject H0 equals Prð

TK
i ¼ 1 CC

i Þ.
The Bonferroni inequality states that:

Pr
\K

i ¼ 1

CC
i

 !
Z1�

XK

i ¼ 1

Pr Cið Þ ¼ 1�
XK

i ¼ 1

ai, ð24Þ

from which we obtain:

XK

i ¼ 1

aiZ1�Pr
\K

i ¼ 1

CC
i

 !
: ð25Þ
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Therefore,
PK

i ¼ 1 ai is an upper bound on the size of the statistical test, that is, the
probability of committing a Type I error. If H0 is not satisfied, then at least one sub-
hypothesis, say hj, is not satisfied. As:

Pr
[K

i ¼ 1

Ci

 !
ZPrðCjÞ, ð26Þ

we observe that if all the sub-tests reject their sub-hypothesis with probability one as the
sample size tends to infinity, PrðCjÞ-1, then Prð

TK
i ¼ 1 CiÞ-1. As a result, the Bonferroni

test is consistent.
However, in the statistical arbitrage test conducted by HJTW, the null hypothesis of no

statistical arbitrage is a union of sub-hypotheses. This statement is a consequence of the
fact that to reject no statistical arbitrage, all the sub-hypotheses must be rejected. Rejecting
one sub-hypothesis is not sufficient to reject no statistical arbitrage. Thus, the null
hypothesis is defined as:

Hn

0 :
[K

i ¼ 1

hi, ð27Þ

and the probability of being unable to reject Hn
0 is Prð

TK
i ¼ 1 CC

i Þ. As the probability of a
union is greater than its corresponding intersection, we have:

Pr
[K

i ¼ 1

CC
i

 !
ZPr

\K
i ¼ 1

CC
i

 !
, ð28Þ

which, when combined with Eq. (25), yields the relationship:

XK

i ¼ 1

aiZ1�Pr
\K

i ¼ 1

CC
i

 !
Z1�Pr

[K
i ¼ 1

CC
i

 !
: ð29Þ

Thus, we conclude that
PK

i ¼ 1 ai is also an upper bound on the size of the test for the null
hypothesis Hn

0 defined in terms of a union. However, Eq. (29) implies the Bonferroni
inequality is a weaker bound for Hn

0 than for H0. Furthermore, the Bonferroni test is
generally not consistent for Hn

0 , in contrast to H0. Indeed, when K is large, the actual size
of the Bonferroni test for Hn

0 may be far below
PK

i ¼ 1 ai, resulting in a test with low power.
Conversely, the Min-t test has the correct nominal size. To the extent that searching for the
maximum probability of rejection over the parameter space H0 results in the true
maximum, the power of the test is also enhanced.
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