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applications to improve safety of the horizontal curves is crucial 

since the average accident rate for horizontal curves is 

approximately three times that of highway tangents [7] and 

about 25% of fatal crashes occur along horizontal curves [8]. 

Of these fatal crashes, around 76% are single-vehicle crashes 

where the vehicle left the roadway and hit a fixed object or 

overturned [9] attesting to drivers’ loss of control in negotiating 

curves.   

A large body of literature has focused on horizontal curve 

safety issues (for examples see [10]–[13]). Proper speed and 

accurate steering maneuvers are the two important factors 

associated to the safe navigation of a horizontal alignment. The 

impact of excessive speed on crash occurrences is well 

documented. Approximately 30% of fatal crashes are speed 

related [14]. On curves, the inappropriate selection of speed 

results in the inability to maintain lane position and potentially 

could lead to crashes [14], [15]. The initial speed of a vehicle 

before entering a curve has a statistically significant effect on 

the probability of successfully navigating the curve [16]. Speed 

reduction while traversing a curve impacts the frequency and 

severity of crashes as well [17]; it has been shown that the mean 

accident rate decreases almost linearly with the mean speed 

reduction [18]. Selection of vehicle speed affects vehicle path 

trajectory throughout the curve, which are both attributed to 

driver behavior and style of driving. Recognizing driver 

behavior and curve negotiation style supports the development 

of intelligent driver assistant systems which can offer a 

personalized feedback to enhance traffic safety on curvy roads. 

A two-level process has been defined for steering control 

through curves; namely, an open loop anticipatory control 

process in far regions which provides cues for predicting 

curvature and steering angle, and a closed-loop compensatory 

control process providing cues for correcting deviations from 

path [19]. However, path decision behaviors such as curve-

cutting needs further investigation. Drivers’ trajectory and path 

decisions depend on several factors such as perceived 

curvature, estimate of vehicle characteristics, driver 

psychological and physical states, and visibility. It is 

documented that drivers tend to cut curves to compensate for 

excessive speed and improper steering angle at curve entry [20], 

[21]. Approximately, 33% of drivers cut left-hand curves and 

22% cut right-hand curves [22]. Higher crash rates are 

correlated with vehicle path radius at the point of highest lateral 

acceleration [9]. 

Understanding driving style helps with the evaluation of 

vehicle performance such as energy consumption [23] and 

traffic safety [24]. Taubman-Ben-Ari et al. [25] divided the 

driving style into eight categories: dissociative, anxious, risky, 

angry, high-velocity, distress reduction, patient, and careful. 

Although there is no consensus regarding ‘‘aggressive driving’’ 

definition in the literature [26], there is a consensus on the 

negative effect of aggressive driving style on crash occurrence. 

However, classifying a particular driver is difficult since the 

collective driving data of an aggressive driver may include only 

isolated instances of aggressive driving behavior. The variance 

in driving styles is affected by disturbances from driving 

environments and driver physical or psychological factors. 

Also, it should be noted that the aggressive threshold value is 

different for individuals [27].  

A number of studies [28]–[33] have employed smartphone 

sensors such as accelerometers and gyroscopes to analyze 

driver behavior and style in order to identify aggressive driving. 

Johnson and Trivedi [31] collected more than 200 driver events 

(e.g. aggressive right turns, aggressive lane change, aggressive 

braking, etc.) by three different vehicles and three different 

drivers. One of their findings was that the combination of 

accelerometer and gyroscope data significantly improves the 

detection accuracy of driving events. In another smart phone 

study, Hong et al. [30] defined ground truth for aggressive/non-

aggressive driving by two approaches: self-reports of accidents 

and a driving style questionnaire. 

Machine learning techniques have been applied to the driving 

style classification problem. Wang and Xi [34] used a driving 

simulator data with 8 participants and applied SVM and 𝑘-

means methodologies to classify drivers into aggressive or 

moderate when negotiating. They also labeled each participant 

as aggressive or moderate before running the tests through a 

questionnaire completed by the participants. In terms of model 

variables, they employed speed and throttle opening. A review 

paper [35] on driving style analysis found Fuzzy Logic 

inference systems, Hidden Markov Models, and Support Vector 

Machines as promising artificial intelligence algorithms.  

Acceleration has been used as an intuitive measure to identify 

aggressive driving. For example, De Vlieger defined a range of 

0.85 to 1.1 m/s2 as aggressive driving. However, speed is a 

critical variable that affects the capability of vehicles to 

accelerate/decelerate and, thus, aggressive driving based on 

acceleration should be defined differently for different speed 

ranges [26]. Motion-related variables such as 

acceleration/deceleration and vehicular jerk were used in [26] 

to identify aggressive driving (volatile driving in their 

terminology). A behavior is considered aggressive if 

acceleration/deceleration or vehicular jerk go beyond one 

standard deviation across all data points for a certain speed 

range. This identifies a particular moment of driving as 

aggressive behavior. They also aggregated these aggressive 

moments on an individual basis to identify subjects with the 

highest percentage of aggressive behavior. 

 In addition to motion-related variables, time-to-lane 

crossing (TLC) is a factor that can be used to assess risky 

driving behavior while negotiating curves.  TLC has been 

suggested as a driver-imposed risk/performance management 

criteria that acts as a satisficing control [36].  That is, drivers 

attempt to maintain driving within an acceptable range of 

acceptable TLCs.  TLC can be considered a measure of risk 

since it indicates the time available to execute a corrective 

action.  The viability of lane departure warning systems using 

TLC has been demonstrated, but they typically utilize onboard 

cameras [37], [38] or GPS/mapping devices [39] rather than CV 

data and do not focus on identifying aggressive driving.  A 

benefit of the TLC metric is that it allows for a moment by 

moment classification of aggressive driving in real time, as 

opposed to requiring the full data set to identify aggressive 

driving. 
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In this paper, we develop a model using a machine learning 

approach to identify motion-based factors that can predict 

aggressive driving for horizontal curve negotiation. The model 

is trained using the basic safety message (BSM) data from a real 

field connected vehicle study. Modeling and analysis of driver 

behavior in a realistic manner using the emerging technology of 

CV is a vital step towards the development of countermeasures 

to increase safety on curvy roads. To our knowledge, the present 

paper is among the first efforts to use real-world CV data 

focusing on driver behavior modeling on horizontal curves.  

The remainder of this paper is organized as follows: The next 

section provides the description of data and study site. Then, 

research methodology is discussed including variable selection 

logic, aggressive driving tagging process, and classification 

method. Later, the results of the developed model are described 

followed by conclusions and future directions.  

II. DATA DESCRIPTION AND STUDY SITE  

The data used in this study are a part of the Safety Pilot 

Model Deployment (SPMD) study that were obtained through 

a transportation data sharing system, Research Data Exchange, 

provided by the U.S. Federal Highway Administration [40]. 

The data were collected during two months of October 2012 

and April 2013 in Ann Arbor, MI from over 2,700 vehicles, 

equipped with CV technology. The SPMD study makes 

available a rich database for research on CV technology to 

explore the potential of this “big data” for CV applications.  

This study used BSMs sent and received by vehicles and 

roadside equipment participating the SPMD. The BSM includes 

data on vehicle's state of motion and location such as current 

location, speed, heading, etc. that is transmitted with a 

frequency of 10 Hz. More specifically, the "BsmP1" file in the 

SPMD dataset for April 2013 was used. The “BsmP1” contains 

Part I elements of the BSM and a limited number of elements 

of Part II. The “BsmP1” was collected through the vehicle’s 

Controller Area Network (CAN) bus and transmitted via an 

onboard Wireless Safety Unit (WSU). This immense dataset is 

available in a compressed CSV format with the size of 51.9 GB 

expanding to 204 GB with around 1.5 billion rows of data. 

Scripting in the R programming language was used to process 

and extract information. For descriptions of the data elements 

in the “BsmP1” file, readers are referred to the metadata files 

[41], [42]. 

Eastbound of a horizontal curve on Plymouth Rd in Ann 

Arbor, Michigan, with latitude and longitude of 42.299487 and 

-83.725144 (curve midpoint) was selected for the study site 

(shown in Fig. 1). The SPMD study area included a small 

number of horizontal curves. An eastbound curvature on 

Plymouth Rd was chosen due to its isolation and a relatively 

few number of access roads throughout the curvature to 

minimize the effect of road environment factors. No advisory 

speed is posted for the curve, and posted speed limit on the 

approaching tangent is 56 km/h (35 mi/h). The curve length and 

radius are 274 m and 180 m, respectively. Vehicle trajectories 

along with motion information (i.e. speed, acceleration, etc.) 

provided by BSMs were extracted for use in identifying 

aggressive/risky driving as vehicles negotiate this curve.  

Access roads are present beyond the midpoint of the curve. The 

presence of the access roads likely affects curve negotiation 

behavior as drivers use and react to other drivers using them. 

To avoid this influence all data points east of (42.299469, -

83.724666) (i.e. study end point) were eliminated from 

consideration.  

    
Fig. 1.  Study site 

III. METHODOLOGY 

Time to lane crossing (TLC) was used to tag risky driving 

behavior while negotiating a curve, which provided target 

classes to perform supervised learning analysis. In addition, 

motion-related variables such as longitudinal acceleration, 

speed, and longitudinal jerk were used to identify aggressive 

driving. Another important class of factors that were considered 

is roadway design characteristics. Intuitively, a certain 

deceleration value for a horizontal curve may not be considered 

as aggressive, but the same value for a highway segment could 

reflect an aggressive behavior. Therefore, focusing on specific 

roadway sections (curves, highway section, etc.) while defining 

aggressive, greatly reduces this generalization error. Below we 

discuss how TLCs and motion-related variables were explored 

and applied in this study’s methodology. Subsequently, our 

classification method based on these metrics are discussed.  

A. Aggressive driving tagging using time to lane crossing 

Time to lane crossing (TLC) can be calculated as either 

straight-line TLC, which is defined as the time to leave the lane 

if the current heading and speed are maintained or curved TLC, 

which is the time to leave the lane if the current yaw rate is 

maintained.  This research considers only straight-line TLC, as 

it is generally considered more accurate and easier to calculate 

[36]. For simplicity, conditions such as vehicle vibration and 

external disturbances, which have been shown to have an effect 

on TLC in simulation studies [43], have been ignored. 

The calculation of TLC requires knowledge of the location 

of lane boundaries, which is not provided with the BSM data. 

Using Google Earth, an attempt was made to extract the GPS 

coordinates of the lane boundaries; but when plotted, many of 

the vehicle trajectories appeared to be located outside of the 

road. This nonsensical finding is likely due to an 

incompatibility between the GPS recording devices in the two 

systems. To eliminate this issue, the lane boundaries were 

assumed to be the 99% confidence interval (CI) of all vehicle 

trajectories. Because the points at which the vehicles were 

assessed were non-uniform, to determine the 99% CI, 
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trajectories were interpolated into curves sharing uniform 

independent variable (𝑥) positions. This was done by fitting a 

cubic smoothing spline to each curve with the longitude 

measurement serving as the independent variable (𝑥) and the 

latitude serving as the dependent variable (𝑦). Each spline was 

then evaluated at a common set of points 𝐿 =  {𝑙𝑗}, for 𝑗 =

1 … 60 such that 𝑙1 was the minimum longitude value over all 

trajectories, 𝑙60 was the maximum longitude value over all 

trajectories, and all other 𝑙𝑗’s were evenly spaced between 𝑙1 

and 𝑙60. (𝑙𝑗 , 𝑓 𝑖̂(𝑙𝑗)) represents the interpolated point of the 𝑖th 

trajectory evaluated at 𝑙𝑗. Denote the 0.005 and 0.995 quantile 

of 𝑓 𝑖̂(𝑙𝑗) over all 𝑖’s as 𝑓𝑗
𝐿 and 𝑓𝑗

𝑈, respectively. The sets of 

points {(𝑙𝑗 , 𝑓𝑗
𝐿)} and {(𝑙𝑗 , 𝑓𝑗

𝑈)} for 𝑗 = 1 … 60 trace out the 

lower and upper bounds, respectively, of the 99% CI trajectory.  

The mean path (𝑙𝑗 , 𝑓𝑗̅), where 𝑓𝑗̅ is the mean over all 𝑖’s of 

𝑓 𝑖̂(𝑙𝑗), was also calculated. In analyses outside the scope of this 

paper, sixty interpolation points were found to produce a 

smooth curve without being unduly computationally expensive. 

With the lane boundaries established, the TLC was able to be 

calculated as follows. Let 𝑜𝑡
𝑖 be the 𝑡th observation of the 𝑖th 

vehicle trajectory. Each 𝑜𝑡
𝑖 has an associated vehicle position, 

speed, and heading. Using the direction provided by the 

heading, a straight line was extended from the position of each 

𝑜𝑡
𝑖 and the location of the intersection of this line with the lane 

boundary was calculated. The lane boundary is described non-

parametrically so a numerical routine was used to identify the 

point of intersection. Because vehicles were traveling east, only 

intersections east of the vehicle position (longitude greater than 

the vehicle’s position) were considered. There were three 

possible scenarios for lane boundary intersection: (1) intersect 

the left boundary (upper 99% CI) first, (2) intersect the right 

boundary (lower 99% CI) first, or (3) intersect neither 

boundary. There were 551,326 instances of the first scenario, 

2,629 instances of the second scenario and zero instances of the 

third scenario as illustrated in Fig. 2; therefore, only TLCs 

associated with intersecting the left boundary are considered 

hereafter as it is, by far the most common lane departure 

scenario. Let 𝑑𝑡
𝑖  be the distance from the position associated 

with 𝑜𝑡
𝑖 to its intersection point with the road boundary and 𝑠𝑡

𝑖 

be the speed associated with 𝑜𝑡
𝑖. Then 𝑇𝐿𝐶𝑡

𝑖 =
𝑑𝑡

𝑖

𝑠𝑡
𝑖  is the TLC of 

the 𝑡th observation of the 𝑖th vehicle trajectory.  For a small 

number of observations 𝑠𝑡
𝑖 was equal to 0; 𝑇𝐿𝐶𝑡

𝑖 for these cases 

was undefined. 

Summary metrics of TLCs are now provided. Observations 

with undefined TLCs were not included in this analysis.  

Additionally, TLCs greater than 10 sec were also disregarded 

since the large value likely represented either device 

malfunction or low speeds that did not fit our focus on curve 

negotiation. The mean TLC over all observations was 1.72 sec. 

A kernel density estimate, illustrated in Fig. 3a, of the 

distribution of TLC values was calculated via the density 

function in the R Statistical Software package using the default 

options of a Gaussian kernel and the nrd0 rule for the section 

of the bandwidth. TLCs were also summarized by individual 

driver, as shown in Fig. 3b, which illustrates a kernel density 

estimate of the distribution of mean TLCs for each driver. 

 
Fig. 2.  Three boundary crossing scenarios along with the number of instances 

of each case in the BSM dataset 

We first note that Fig. 3a justifies the non-inclusion of TLCs 

> 10s, as the distribution is essentially flat from approximately 

5s onwards. Fig. 3b indicates that there is a bimodality in the 

distribution of driver mean TLCs, despite the fact that the 

distribution of all TLCs is approximately normal. The 

bimodality suggests that drivers generally stratify two well-

defined categories – either large TLCs, associated with drivers 

exercising a high degree of caution or small TLC associated 

with less caution. A greater number of drivers fall into the latter 

category. 

 

  
Fig. 3.   a) distribution of TLC values, and b) distribution of mean TLCs for 

each driver. 

Geospatial effects of TLC were also observed by examining 

the TLC of observations that were situated near each other. To 

do this, 60 bins were created, each one centered at an 𝑙𝑗 with a 

width equal to 𝑙2 − 𝑙1. Each observation was placed into the bin 

where its Longitude measurement fell and the mean TLC value 

per bin was calculated. Fig. 4 illustrates the mean trajectory, 𝑓𝑗̅, 

around the curve colored by the average TLC value. As 

expected, the highest TLC values are located at the apex of the 

curve. As this part of the curve is reached, there is a gradual 

increase in TLC values. This figure serves as confirmation that 

the TLC calculations yield reasonable results. 

The correlation between TLC and each driver’s average 

speed around the curve was also calculated and was found to be 

-0.025, indicating essentially no correlation. Even though TLC 

a) b) 
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is inversely proportional to speed, the TLC metric captures 

information about driving behavior that is not possible by 

examining speed alone.  

 

 
Fig. 4.   mean trajectory around the curve colored by the average TLC value 

In this study, we used the calculated TLCs as a tagging 

variable for aggressive versus normal driving classification. 

Further explanation is provided in the classification method 

section below. 

B. Variables selection using motion-related metrics 

Aggressive driving has been attributed to motion-related 

variables. Most existing studies used a single value as a 

threshold for identifying aggressive driving. Wang et al. [26] 

took a step further in defining aggressive driving by including 

the variation of acceleration/deceleration for different speeds. 

Aggressive driving was defined as longitudinal acceleration or 

longitudinal jerk exceeding one (or two) standard deviation 

above or below the mean [26]. The longitudinal jerk is the 

derivative of longitudinal acceleration with respect to time, 

which can reflect instantaneous driver decisions (i.e. abrupt 

movements). 

Using this definition, Fig. 5a and Fig. 5b illustrate how 

acceleration and vehicular jerk, respectively, can be used to 

distinguish aggressive driving behavior from normal driving 

behavior for different speeds using this study’s dataset. For 

example, if a vehicle acceleration at a certain speed range is 

greater than the mean acceleration plus two standard deviations 

for that specific speed range, that moment is marked as 

aggressive, as shown in Fig. 5a. As can be seen in Fig. 5a and 

Fig. 5b, the standard deviation of either acceleration or jerk is 

larger at lower speeds. These figures show that many driving 

moments especially between speeds of 14 m/s and 22 m/s are 

labeled as aggressive. 

As the focus of this study is on navigating horizontal curve, 

another important variable that can reflect instantaneous driver 

decisions is the yaw rate, also known as the rotational (angular) 

acceleration. In horizontal curves, the vehicular jerk based on 

the yaw rate, known as angular jerk, can also be considered as 

a factor reflecting an instantaneous driver decision. Aggressive 

driving can be differentiated from normal driving based on 

these metrics in a similar fashion as was shown for acceleration 

and longitudinal jerk as shown in Fig. 5c and Fig. 5d. Due to 

high variability of yaw rate, a wide range was found indicating 

normal driving moments as shown in Fig. 5c. Unlike other 

variables, standard deviation of angular jerk as shown in Fig. 

5d, was not sensitive to the speed, and thus normal driving 

behavior is associated with almost constant range for different 

speeds.  

 

  

  
Fig. 5.   classification of aggressive and normal driving based on a) 

longitudinal acceleration, b) longitudinal jerk, c) yaw rate, and d) angular jerk 

To extend the investigation of other factors that might 

contribute to identifying aggressive driving behavior, we 

selected a variety of motion-related variables as predictors to be 

included in the aggressive driving detection model. Two types 

of motion-related variables were assessed: (1) variables with 

explicit values, and (2) variables that were defined based on 

standard deviations of the variable associated with relevant 

speed ranges. The predictors examined in modeling aggressive 

driving behavior are summarized in appendix. The monitoring 

period used in defining the predictors refers to a time period 

immediately before an observation during which variables such 

as speed and acceleration were extracted. More detailed about 

the monitoring period and the variables are provided in the 

classification method section below. 

C. Risky/Aggressive Driving Classification Method 

An aggressive/risky or normal driving moment at time 𝑡 for 

the 𝑖𝑡ℎ driver (𝑀𝑡
𝑖) was defined based on the use of the TLC 

metric as ground truth. Intuitively, as the TLC decreases the 

driver has less time to make adjustment in order to avoid lane 

crossing. The selection of a specific TLC threshold to identify 

a risky and normal moment would be suboptimal, and 

somewhat arbitrary, as it does not account for differences 

between drivers. Thus, this study uses multiple TLC values to 

label these moments. Assuming the threshold is denoted by ℎ, 

the driving moments with TLC exceeding ℎ are labeled as 

normal driving moments, and the ones less than ℎ, were labeled 

as risky driving moments. Therefore, for each 𝑜𝑡
𝑖, 𝑀𝑡

𝑖 is defined 

as a binary variable with a value of either risky or normal. This 

variable serves as the response variable in model development. 

Once a risky or normal driving moment is labeled, the 

a) 

c) 

b) 

d) 
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monitoring period immediately before this moment is 

considered during which motion-related variables that can 

reflect aggressive behavior were extracted. For example, if the 

length of the monitoring period is 𝑇 seconds including p data 

points, 𝐴𝑡−1:𝑡−𝑝
𝑖   represents vehicle longitudinal acceleration of 

𝑝 points over the monitoring period immediately before 𝑜𝑡
𝑖  (i.e. 

𝐴𝑡−1
𝑖 , 𝐴𝑡−2

𝑖 , … , 𝐴𝑡−𝑝
𝑖 ). Other motion-related variables extracted 

from monitoring periods are presented in Table I. 

 
TABLE I  

PREDICTORS EXAMINED IN CLASSIFICATION MODELING 

Motion-related variables over the monitoring period 

𝐴𝑡−1:𝑡−𝑝
𝑖 = 𝐴𝑡−1

𝑖 , 𝐴𝑡−2
𝑖 , … , 𝐴𝑡−𝑝

𝑖   

𝐴𝑡−1
𝑖 : longitudinal acceleration of the 𝑖𝑡ℎ driver at time 𝑡 − 1 

𝑌𝑡−1:𝑡−𝑝
𝑖 = 𝑌𝑡−1

𝑖 , 𝑌𝑡−2
𝑖 , … , 𝑌𝑡−𝑝

𝑖   

𝑌𝑡−1
𝑖 : yaw rate of the 𝑖𝑡ℎ driver at time 𝑡 − 1 

𝐿𝐽𝑡−1:𝑡−𝑝
𝑖 = 𝐿𝐽𝑡−1

𝑖 , 𝐿𝐽𝑡−2
𝑖 , … , 𝐿𝐽𝑡−𝑝

𝑖   

𝐿𝐽𝑡−1
𝑖 : longitudinal jerk of the 𝑖𝑡ℎ driver at time 𝑡 − 1 

𝑅𝐽𝑡−1:𝑡−𝑝
𝑖 = 𝑅𝐽𝑡−1

𝑖 , 𝑅𝐽𝑡−2
𝑖 , … , 𝐴𝑡−𝑝

𝑖   

𝑅𝐽𝑡−1
𝑖 : rotational jerk of the 𝑖𝑡ℎ driver at time 𝑡 − 1 

 

Statistical measures, namely 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(. ), 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(. ), 

and 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(. ), were used to create predictors associated 

with monitoring periods.  The statistical measures applied over 

monitoring periods can capture aggressive driving indicators 

such as hard braking (i.e. 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝐷𝑡−1:𝑡−𝑝
𝑖 )) or swerving 

(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑅𝐽𝑡−1:𝑡−𝑝
𝑖 )). Random forest classification [44], an 

ensemble learning method, was employed to classify a driving 

moment as either risky or normal based on the predictors. 

Random forest has been shown to produce results as good as 

other powerful methods such as SVM [45], [46]. The random 

forest method essentially proceeds by implementing a 

collection of decision trees. Each tree is grown from a root 

node, where the entire data set is divided into two parts (nodes) 

by applying the recursive binary splitting method. This 

procedure continues to grow the tree. At each node, the data is 

divided into the next two nodes using different criteria. The 

stratification at each node is specified by the Gini index 

criterion, which is recommended in [46], and it was applied in 

the present study. Equation (1) shows the Gini index 

formulation. To classify an observation, the majority vote of all 

tree outputs is used with ties broken at random. 

 

 
𝐺 = ∑ 𝑃𝑘

𝑚(1 − 𝑃𝑘
𝑚)

𝐾

𝑘=1

 (1) 

Where,   

𝑃𝑘
𝑚 =

1

𝑁𝑚
∑ 𝐼(𝑦𝑖

𝑚 = 𝑘)

𝑜𝑡
𝑖∈𝑂𝑚

 

𝑃𝑘
𝑚  Proportion of class 𝑘 observations in node 𝑚 

𝑁𝑚  Number of observations received at node 𝑚 

(𝑀𝑡
𝑖)𝑚  

The response value corresponding to the 𝑡th observation of the 𝑖th 

vehicle trajectory at node 𝑚 

𝑂𝑚  Observations received at node 𝑚 

𝑜𝑡
𝑖  the 𝑡th observation of the 𝑖th vehicle trajectory  

𝑘  Class (aggressive or normal) 

 

To define risky/aggressive moments three TLC thresholds 

were investigated (1.5, 1, and 0.5 seconds). As the TLC 

threshold decreases the number of moments identified as risky 

decreases, which results in imbalanced data. For example, using 

TLC threshold of 0.5 seconds, approximately 15,000 moments 

were labeled as risky, meaning that the minority class (i.e. risky 

moments) constitutes less than three percent of the entire data. 

Imbalanced data can result in poor performance since the 

minority class may not sufficiently be present in bootstrap 

samples in random forest procedure. Balanced random forest 

[47] that uses stratified bootstrapping was applied to deal with 

imbalanced data issue. It was assumed that the monitoring 

period as defined earlier is three seconds in all scenarios. As a 

result, the driving moments up to three seconds from the start 

of each trajectory were excluded because there was insufficient 

data to perform the analysis. The randomForest package [48] 

was adopted to implement our procedures. Optimizing random 

forest models requires two parameters to be tuned; number of 

trees and number of variables (features) used in tree nodes. The 

tuning process is shown in the results section below. 

IV. RESULTS 

Here we discuss the results of the three scenarios. As shown 

in Fig. 6, as the number of trees increases the Out-Of-Bag 

(OOB) error and misclassification rate decreases. After 

approximately 80 trees no significant improvement can be 

observed. To ensure that the model achieves the best possible 

performance, a large value of 400 trees was used knowing that 

increasing the number of trees would not have a negative 

impact. Increasing the number of variables used in each 

decision tree may not necessarily result in better accuracy. As a 

rule of thumb, the square root of total number of variables 

should be a good value [49]. Having a total of 23 variables 

suggests using 4 or 5 for this parameter. As shown in Fig. 6, 

using more than one variable led to similar performances. It 

should be noted that the OOB error was very close to the test 

error on Fig. 6b so the respective curves are on top of each 

other. In the final random forest model, the value of 4 was 

selected to use. 

Misclassification rate based on the test data and the OOB 

error for all three scenarios (i.e. TLC threshold = 0.5, 1, and 1.5) 

are presented in Table II. Relatively small error rates were 

found in all scenarios suggesting that motion-related variables 

examined over a short monitoring period are good indicators in 

identifying aggressive/risky driving moments, as defined by 

TLC. As an example, when using a TLC threshold of 1.5, more 

than 250,000 moments were labeled as risky resulted in a fairly 

balanced data. The misclassification rate and the OOB error 

were found to be 7.23% and 7.30%, respectively. 
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Fig. 6.   Random forest parameter optimization: a) impact of number of trees 
on error assuming number of features used is 5 b) impact of number of 

features on error assuming number of trees used is100 

In addition, receiver operating characteristic (ROC) curves 

and the associated area under the curve (AUC) are shown in 

Fig. 7. In all three cases, the AUC was very high, but it should 

be noted that there is a tradeoff between high true positive rates 

and low false positive rates. After calculating probabilities of 

each class, a cut-off point is used to decide if an observation is 

predicted as risky or normal. The default cut-off point is 0.5, 

which means if the class probability of a new observation for 

risky class is more than 0.5, it is predicted as risky and normal 

if is less than 0.5. The confusion matrices associated with the 

default cut-off point for the three scenarios are shown in Fig. 8. 

True positive rates, false negative rates and other similar 

metrics can be calculated using the confusing matrices. For 

instance, the confusion matrix of scenario 3 as shown in Fig. 8, 

leads to a false negative rate of 17.16%, which means 17.16% 

of the time an actual risky moment was misclassified as normal. 

Also, 3.17% of the time an actual normal moment was 

misclassified as risky (i.e. false positive rate) for the same 

scenario. High false negative (or low true positive) rates show 

that the system performs poorly as it frequently fails to correctly 

detect risky behaviors. The ROC curve indicates that there exist 

scenarios with a high true positive rate that also have a high 

false positive rate, which could negatively impact users’ trust in 

the system. 

 

 
Fig. 7.  ROC and AUC for the three scenarios 

 

 
 

TABLE II  
PERFORMANCE SUMMARY OF CLASSIFICATION MODELS 

TLC threshold 1.5 1.0 0.5 

OOB error 7.30% 9.46% 3.56% 

Misclassification rate 7.23% 9.47% 3.57% 
AUC 97.11% 94.74% 95.34% 
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Scenario 3 
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norm 644 126288 
 

Fig.8.  Confusion matrices for the three scenarios (cut-off point = 0.5) 

A great advantage of random forest method is that it 

internally calculates variable importance that conveys the 

strength of each variable towards predictions within the model. 

Fig. 9 illustrates variable names in the order of importance for 

all three scenarios. The importance was calculated based on the 

Gini index averaged over all trees. Minimum yaw rate and 

maximum rotational jerk over the monitoring period were 

found to be the two most important variables in identifying 

aggressive behavior in both scenario 1 and 2 as shown in Fig. 

9. The third most important variable was maximum yaw rate 

and minimum rotational jerk in scenario 1 and 2, respectively. 

In scenario 3, the top three variables were maximum rotational 

jerk, minimum speed, and maximum speed over the monitoring 

period. In all three scenarios, maximum rotational jerk was 

found to be either the most or the second most important 

variable. This variable can be interpreted as how fast a steering 

wheel is turned by the drivers, which logically should have a 

critical effect when navigating horizontal curves. In all three 

scenarios, the variables that were created based on standard 

deviation of variables (e.g. A_MP1SD, J_MP2SD, etc.) were 

among the least important variables. 

 

Scenario 1 

 

Scenario 2 

 

Scenario 3 

 
Fig. 9.  Variable importance for the three scenarios 

V. CONCLUSIONS  

This study employed real field connected vehicle data to 

identify aggressive driving behavior while negotiating 

horizontal curves. Aggressive driving moments were defined 

based on a TLC metric that generated three different scenarios. 

A random forest methodology was used to develop an 

aggressive driving detection model. This model contributed to 

high detection accuracy in all three scenarios. This suggests that 

a) b) 
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motion-related variables used in the random forest model can 

accurately reflect drivers’ instantaneous decisions. Variable 

importance analysis was assessed via the random forest model; 

maximum yaw rate, maximum rotational jerk, minimum 

rotational jerk, maximum speed, and minimum speed over the 

monitoring period were among the most important variables. 

The importance of yaw rate in all three scenarios implies that 

abrupt turns of steering wheel is likely the most critical event 

on horizontal curves. On the other hand, a group of variables 

created based on standard deviation of other motion-related 

variables were found less significant in identifying aggressive 

driving.  

It is expected that in near future vehicles will be able to 

communicate with each other and with intelligent infrastructure 

such as traffic signs at horizontal curves. The communication 

capability opens the door for more intelligent driver warning 

systems which alarm the risky behaving drivers on curves of 

their unsafe actions and prevent crashes. This information can 

also be communicated to the drivers to provide feedback so the 

drivers could modify their driving behavior. Future work 

includes application of unsupervised learning algorithms to 

define aggressive driving, assessment of monitoring period 

length, and aggressive driving identification on other roadway 

environment.  

The machine learning algorithm described within this paper 

is unique in its ability to, in theory, identify aggressive/risky 

driving in real time. It also has the ability to be personalized to 

an individual driver's history of TLC values or distribution of 

motion-based variables. The viability and effects of this type of 

personalization remain to be explored.  Because our analyses 

did not use actual, streaming data, practical considerations such 

as the optimal frequency of assessment, required computational 

resources, and topography of driver alerts have yet to be 

investigated. We are confident, though, that CV technology will 

eventually lead to adaptive, data-centric systems that will 

ultimately protect drivers.  The work within this manuscript 

represents a step towards this imagined future. 

 

APPENDIX 

This appendix provides Table III that summarizes all the 

predictors that were defined and examined in classification 

modeling. 

 
TABLE III  

PREDICTORS EXAMINED IN CLASSIFICATION MODELING 

Variable Description 

Type 1 variables 
A_MPmax Maximum acceleration experienced over the monitoring 

period 

A_MPmin Minimum acceleration experienced over the monitoring 
period 

A_MPvar Acceleration variance over the monitoring period 

S_MPmax Maximum speed experienced over the monitoring period 
S_MPmin Minimum speed experienced over the monitoring period 

S_MPvar speed variance over the monitoring period 

Y_MPmax Maximum yaw rate experienced over the monitoring 
period 

Y_MPmin Minimum yaw rate experienced over the monitoring 

period 
Y_MPvar yaw rate variance over the monitoring period 

J_MPmax Maximum longitudinal jerk experienced over the 
monitoring period 

J_MPmin Minimum longitudinal jerk experienced over the 

monitoring period 

J_MPvar longitudinal jerk variance over the monitoring period 

JY_MPmax Maximum angular jerk experienced over the monitoring 

period 
JY_MPmin Minimum angular jerk experienced over the monitoring 

period 

JY_MPvar angular jerk variance over the monitoring period 
Type 2 variables 

A_MP1SD Percentage of time over the monitoring period where 

acceleration exceeds 1 standard deviation below or above 
its mean  

A_MP2SD Percentage of time over the monitoring period where 

acceleration exceeds 2 standard deviations below or above 
its mean  

Y_MP1SD Percentage of time over the monitoring period where yaw 

rate exceeds 1 standard deviation below or above its mean  
Y_MP2SD Percentage of time over the monitoring period where yaw 

rate exceeds 2 standard deviations below or above its 

mean  

J_MP1SD Percentage of time over the monitoring period where 

longitudinal jerk exceeds 1 standard deviation below or 

above its mean  
J_MP2SD Percentage of time over the monitoring period where 

longitudinal jerk exceeds 2 standard deviations below or 
above its mean  

JY_MP1SD Percentage of time over the monitoring period where 

angular jerk exceeds 1 standard deviation below or above 
its mean  

JY_MP2SD Percentage of time over the monitoring period where 

angular jerk exceeds 2 standard deviations below or above 
its mean  
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