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Computational Model for Behavior Shaping as an Adaptive Health Intervention Strategy

Introduction

Behavior Shaping in Health Interventions

The leading causes of death and disease in the United States are modifiable

behavioral factors such as tobacco use, poor diet, physical inactivity, alcohol consumption,

and avoidable injuries [1, 2]. Studies have indicated that preventable, extrinsic factors

contribute >70-90% of lifetime cancer risks [3]. Consequently, enormous gains to public

health are achievable through behavior-altering interventions. Most behavioral

interventions, though, generate limited, short-lived effects [4], partly due to the reliance on

episodic assessments of behavior captured by tools such as counseling sessions, ecological

momentary assessments, surveys, and discrete direct observations. In contrast, recent

advances in mobile technology have enabled the development of just-in-time, adaptive

interventions (JITAIs) that have the potential to improve upon the shortcomings

associated with traditional trials [5, 6]. JITAIS typically use assessment technology that is

capable of observing and recording behavior in a natural environment on a near-continuous

basis over a long period of time. By pairing intensive data collection with analytic systems

capable of real-time decision making, JITAIs enable interventions to be provided on an

ongoing basis and automatically adapt in response to participants’ varying behaviors,

environmental contexts, and past history. This process is hypothesized as an ongoing

two-way conversation between patients and providers. While still in the preliminary stages,

adaptive interventions have been implemented to, for example, encourage physical

activity [7], assist with in-home living for older adults [8], and manage HIV medication

adherence [9].

The implementation of JITAIs can be enhanced by consideration of the precise

mechanisms by which interventions should adapt in response to participants’ behavior.

Often, adaptation strategies are developed in an ad-hoc fashion with little consideration of

theoretical underpinnings, despite findings indicating that adherence to established theory



COMPUTATIONAL MODEL FOR BEHAVIOR SHAPING 3

can increase the efficacy of behavioral interventions [10]. Current behavioral theories

provide little insight in this regard since they rarely consider behavior as a dynamic

entity [11]. Introducing theoretically-sound, responsive adaptation strategies will likely

lead to more effective interventions and, furthermore, can generate results that will allow

the underlying theories to be refined. One possible adaptation strategy with a theoretical

foundation is behavior shaping, defined as the process whereby a targeted behavior is

gradually cultivated via the differential reinforcement of successive approximations to the

target [12]. When implementing this procedure, the range of behaviors that are reinforced

narrows with time. [See Fig. 1i)]. The shaping process can lead to complex behaviors that

would otherwise not be emitted as quickly or at all. In a traditional shaping scenario, a

practitioner must discriminate which behaviors are sufficiently similar to the target

behavior in order to receive reinforcement and determine the optimal time to discontinue

the reinforcement associated with crude approximations. The withholding of reinforcement

produces a temporary extinction condition that might occasion novel or differential rates of

behavior that are appropriate for shaping. This process typically occurs in a controlled

environment such as classroom or training center. Proficiency in performing these tasks

arbitrate the ultimate effectiveness of shaping routines and specialists such as teachers and

coaches do this as an art. JITAIs, though, offer the opportunity to precisely gauge

behavior on a nearly constant basis and to continually assess its similarity to a target

behavior. This enables shaping procedures to be automatically implemented in a much

wider variety of contexts than has typically been possible [13]. Many behaviors are

reliably shaped throughout society. For instance, the entire educational system can be

viewed as a high-level shaping procedure where successively close approximations to

proficiency in certain disciplines are reinforced as individuals proceed through each grade.

Subsequent to these formal shaping protocols, the environment continues to shape

behavior, albeit under less predictable schedules. For example, education is reinforced by

the admission to college and subsequent employment. In contrast, behavior shaping
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routines that would be deployed in JITAIs, at least during this preliminary stage, are likely

to be rudimentary and not have the benefit of a host of strong, supporting contingencies.

In some cases, such as when attempting to shape tobacco smoking cessation, the opposite

may even be true and environmental factors could discourage the target behavior. The

extent to which simple shaping procedures deployed within a natural environment would

be successful in producing elevated levels of healthy human behavior is an open question

that this manuscript begins the process of addressing.

Outside of the JITAI domain, the effectiveness of behavior shaping in humans has

been reliably demonstrated in areas ranging from promoting motor activity in patients

recovering from strokes [14] to improving dental treatment acceptance among children [15]

to the management of cellular service consumption [16]. For individuals with autism,

shaping has been used to promote socio-emotional functioning [17], to aid in toilet

training [18], to increase the duration of sustained attention [19], and to develop

social-cueing skills [20]. The latter of these examples utilized automatic behavior

assessment features similar to those that are required for JITAIs.

Behavior Shaping and Computational Models

Using computational models to assess the effectiveness of behavior shaping routines

in JITAIs is an attractive preliminary approach since it allows for the components of

complex systems to be efficiently isolated and manipulated. Methodologies can be

explored, tweaked, and sometimes abandoned without the complications associated with

their real-world counterparts. The ultimate aim of the procedure presented herein is to

leverage the insight gained within simplified, digital domains to develop increasingly more

realistic controlled laboratory experiments and subsequent real-world trials, which will all

share a common theoretical underpinning. This will allow behavior shaping programs to be

designed with a degree of theoretical fidelity [10] that has been absent in this area thus far.

There is a rich history of implementing digital shaping programs within reinforcing

learning models that are popular in the realm of artificial intelligence (AI) research. For
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example, behavior shaping routines have been implemented in reinforcement learning

schemes within computational models of bicycle riding [21] and navigating a rod around

obstacles [22]. In addition to experiments occurring in a virtual environment, shaping has

also been included within the reinforcement learning protocol for robots learning to

simulate foraging and other survival behaviors [23, 24]. The shaping protocols in these

reinforcement learning models typically consist of having the agent preliminarily complete

a simplified version of the full target task and demonstrating that this priming increases

the rate at which the target behavior is acquired. In contrast to the hypothesized

implementation of shaping within JITAIs, these shaping routines have only a rudimentary

temporal component and do not adapt over time, which limits their generalizability to the

JITAI domain.

Due to the shortcomings of the existing computational shaping routines discussed

above, this paper aims to develop computational models that are suitable for a JITAI

framework. This is accomplished by modifying McDowell’s evolutionary model of behavior

dynamics [25] by incorporating behavior shaping. In accordance with Darwinist principles,

the McDowell model emits a stream of behaviors chosen from a population via a system of

selection, reproduction, and mutation, a process that may be equivalent to reinforcement

learning [26]. As will be detailed below, this is an abstract model that considers a digital

organism emitting generic behaviors. The absence of specificity regarding behaviors and

targets is an attractive feature since, as opposed to the behavior-specific AI reinforcement

learning tasks described above, it enables findings to be generalized to many different

JITAIs. As described in Table 1, the McDowell computational model has consistently

produced results that agree with many material world experimental findings. In the case of

temporally-adaptive behavior shaping routines, the appropriate real-world experiments

required for model comparison have not yet been performed. The results outlined within

this paper lay the groundwork for the development of such experiments that will allow the

consistency of computational and material-world findings to be assessed in order to inform
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behavior shaping JITAIs.

Behavior Shaping in McDowell Model

Summary of Previous Work

Mcdowell’s model [25] considers a hypothetical digital organism whose behavior

evolves over time according to low-level rules informed by principles of behavior. This

foundation defines the relationship between the emission of a behavior and its consequence,

as specified by the probability of this behavior being emitted in the future. In a process

similar to agent-based modeling, the interaction of these rules for various behaviors are

simulated via computational experiments that produce emergent, higher-order results that

cannot be extrapolated by solely examining the structure of the rules. The system is

entirely decentralized without explicit considerations of global outcome and has

stochasticity built into it. Drawing on the parallels between operant behavior and natural

selection, model components are presented in evolutionary terms.

The behavior of the digital organism evolves over time according to the algorithm

illustrated in Fig. 1ii) and now described. Each behavior is associated with a unique

integer within the interval [0,1000] and at each time step a repertoire of 100 behaviors is

active. The integers are stratified into behavior classes, one or more of which represents a

targeted class which contains behaviors that are eligible to receive reinforcement when

emitted. The experiments detailed herein include three classes: Class I: [0,494], Class II:

[495,505],and Class III: [506,1000], the second of which is the target class. The range of

integers defining behaviors, the size of the active repertoire and the specification of the

reinforced class can be freely chosen. At each time step, the probability that a particular

class of behavior is emitted is given by the proportion of total behaviors within the

repertoire that correspond with this class. Based on the probabilities calculated for each

class, one class is selected at random for emission. The specific behavior from within the

class that is emitted is randomly selected from the behaviors in the repertoire associated
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with this class. To create the behavioral repertoire at the next time step so this procedure

can be iterated, “parent” behaviors are selected from the current behavioral repertoire and

“cloned” and “mutated” to generate a new set of 100 behaviors comprising the new

repertoire. The full details of this process are detailed in Ref. [25] and in the Appendix A,

which describes deviations from the methodology outlined in Ref. [25].

The computational model includes a reinforcement component, which allows

behavior shaping to be introduced. Reinforcement is defined as the delivery of a stimulus

contingent upon performance of a behavior which results in the increased probability of

future occurrences of this behavior and others similar to it [27]. This construct is included

in the model as follows. If the emitted behavior is from the target class, a reinforcement

schedule is consulted to determine whether this behavior should be reinforced. If

reinforcement should occur, the emitted behavior is characterized as “fit” and the fitnesses

of the other behaviors in the repertoire are based on their similarity (i.e., distance) to the

reinforced behavior. A fitness function, fully detailed in Ref. [25], is then used to select the

parent behaviors for the next repertoire that are similar to the emitted, reinforced behavior

with preference given to the most similar behaviors. As a result, after cloning and

mutation, the behaviors comprising the repertoire at the next time step will be similar to

emitted behavior, satisfying the definition for reinforcement. If the emitted behavior is not

reinforced, the parent behaviors are selected at random.

Operationalizing Behavior Shaping

The primary focus of the research summarized in this manuscript is to operationalize

the construct of behavior shaping within the McDowell computational model so that

digital experiments concerning its optimal implementation can be performed. To simulate

the reinforcing of successive approximations to a target behavior, the McDowell model was

modified so that a class of behaviors wider than the target behavior class was reinforced.

Since shaping requires, as time progresses, behaviors to be increasingly similar to the

desired behavior in order to receive reinforcement, the width of this reinforcement class
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was gradually tightened according to some non-increasing function w(t). The reinforced

class at any given time is defined as [500 − W, 500 + W ], where W = w(t)−1
2 . It follows that

w(t) = 11 defines the reinforcement of only the targeted behavioral class [495,505]. To

ensure that the reinforced class is defined by integers, all values of w(t) are rounded to the

nearest odd integer. As the behaviors defining the reinforced class are updated according

to w(t), the other classes must be updated as well. Class I is thus defined as

[0, 500 − W − 1] and Class III is defined as [500 + W + 1, 1000]. This study aims to identify

w∗(t), the function that optimally narrows the reinforcement class towards the target class.

Discrete Shaping Procedure

The simplest shaping procedures start with a reinforcement window that is wider

than the target window and tighten it at discrete time point(s), which can be summarized

by treating w(t) as a step function. Several example step functions chosen for exploration

and denoted as wn(t) for n = 1 . . . 6 are shown in Fig. 2. Panel i) in this figure represents

the baseline case where only the target behavior class (w(t) = 11) is reinforced at all times.

Figures 2ii) and iii), are denoted as 1-step shaping procedures. In this case, the class

[489-511] (w(t) = 22) was initially reinforced and then the reinforcement window was

reduced to the target class at t = 60 and t = 120, respectively. Figures 2iv) and v),

illustrates 2-step shaping procedures and Fig. 2vi) illustrates a 3-step shaping procedure.

Figure 2vii) depicts the results generated by these shaping functions. The metric

shown is the percentage of target behaviors in the behavior repertoire at each time step.

To account for stochasticity in the system, this value is averaged over 5,000 simulations.

After approximately 50 time steps, each of the shaping procedures produces higher levels

of the target behavior than does w1(t), where only the targeted class was reinforced. This

demonstrates that the operationalization of shaping within the computational algorithm is

functioning as expected since higher levels of behavior were eventually produced relative to

the scenario where only the target behavior class was reinforced. w2(t) and w3(t) are both

1-step functions that utilize the same two reinforcement windows, but spend a different
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amount of time in each window. The different results for these functions demonstrate the

effect of this temporal feature on results. The 3-step function w6(t) produced a higher level

of target behavior than the 2-step functions w4(t) and w5(t), which in turn produced a

higher level of behavior than the 1-step functions. Taken together, these results indicate

that continuously narrowing the reinforcement with time, as opposed to the discrete

contraction used in this section, might lead to more pronounced behavior change.

Continuous Shaping Procedure

The first step in the continuous shaping procedure is to develop functions that can be

used to guide the reinforced class width. These functions are analogous to those illustrated

in Fig. 2, but are continuous and nonlinear. The following, generic piecewise function is

used:

w(t) =


A(1 − ebt) + w0 t ≤ tf

wc t > tf ,
(1)

where w0 is the initial width of the reinforcement class, b is an exponential loss/gain

parameter, A is the distance between the horizontal asymptote and w0, and tf is the time

at which the target reinforcement width is met. For t > tf , only behaviors within the

target behavior class are reinforced. To ensure that w(t) is continuous, the restriction

w(tf ) = wc is established, which leads to the condition A ≡ wc−w0
1−ebtf

.

In Eq. (1), negative values of b correspond to concave-up functions, which represent

an initial rapid decrease in the reinforced class. Positive values of b correspond to

concave-down functions, representative of a gradual initial decrease in the reinforced class

along with a rapid narrowing of the reinforced class later in time. For b = 0, the

non-constant component of w(t) is undefined. However, a linear Taylor expansion about

b = 0 shows that, in the limit, this function can be approximated by a straight line

crossing through the two points (0, w0) and (tf , wc), i.e. the slope is wc−w0
tf

and the

y-intercept is w0. Therefore, when b = 0 the reinforced class is narrowed at a constant rate.

Figure 3i) illustrates the qualitative shape of Eq. (1) for different values of b.
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In order to fully define Eq. (1), values for tf , wc, b, and w0 are required. The chosen

target behavior class of [495,505] corresponds to wc = 11. tf was set equal to 100 and the

simulations were run until t = 250. These three values are free parameters of the system.

Exploratory analyses outside the scope of this manuscript indicated that different values

for these parameters did not affect the qualitative nature of the findings detailed below.

The computational experiments performed in this work explore the effects of varying w0,

the initial value of w(t) that can be interpreted as the maximal deviation from the target

behavior that will result in reinforcement and b, the reinforcement window narrowing rate.

The experiments were conducted for values of (b, w0) ∈ B × W0, where

B = [−0.2, −0.19, ..., 0.19, 0.2] and W0 = [80, 120, ..., 200, 210].

Results of the Continuous Shaping Procedure

Figure 4i) illustrates the target behavior level (measured as in Fig. 2vii) as the

percentage of target behaviors in the behavioral repertoire at each time step (averaged over

5,000 simulations) versus time for selected values of (b, w) ∈ B × W0. For all cases,

including those not shown in Fig. 4i), the evolution of target behavior proceeds in, roughly,

three different ways. For certain sets of parameters, the percentage of target behavior

increases rapidly at the onset of the simulations and then asymptotes. For other sets of

parameters, the trajectory is sigmoid-like with a nearly constant low level of behavior

followed by a large, rapid jump to a higher level of behavior that approaches an asymptote.

The last class of behavior does not begin to increase until tf , when the target class is

reached, and then increases gradually before asymptoting. To characterize the trajectory

for the entire set of parameters, the following two metrics were calculated: 1.) the time at

which the trajectory begins to increase, denoted by tc and approximated by time at which

a target behavior value equal to 15 is first breached [see horizontal dashed line in Fig. 4i)]

and 2.) the asymptote as time approaches ∞, denoted by hM and approximated by the

maximum value a given trajectory realizes over the course of a simulation. The highest hM

values summarized in Figs. 4iii) and v) are higher than the those produced by the discrete
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shaping functions in Figure 2, demonstrating the superiority of continuous shaping

procedure.

Figures 4ii) and iii) illustrate tc and hM over B × W0. The variation in target

behavior associated with parameter b, the curvature of the function, is much greater than

the variation associated with w0 for all metrics. For example, in Fig. 4ii), if b is fixed at

zero and w0 is varied, the range of the tc values is approximately 50 to 90 while if w0 is

fixed at 150 and b is varied, tc ranges from approximately 20 to 120.

As summarized in Fig. 4ii), the smallest value for tc was 16, generated by six (b, w0)

combinations, all located in the bottom-left corner of the figure. These are concave up

shaping functions characterized by a rapid initial decrease in reinforcement class width

followed by long time intervals with a width relatively close to wc. High values for tc, on

the other hand, are produced by parameter combinations in the upper-right corner of

Fig. 4ii), which represent w(t) functions that start relatively far from wc and decrease very

slowly until t is near tf . Both of these results indicate that w(t)’s proximity to wc is

associated with a jump in the level of target behavior.

hM (the asymptotic height) changes dynamically and only a snapshot at a particular

moment can be illustrated. For instance, Fig. 4iii) presents the results at t = tf , where the

maximum value is 51.2% of target behaviors in the repertoire, which is associated with the

parameter set (b, w0) = (−0.01, 130). In this snapshot, the largest values of hM are

associated with nearly linear functions that have negative b values near 0. But tc, the time

at which the trajectory jumps, is larger for these values of b than for large negative values

of b. This represents competing effects where the target behavior trajectories that jump

most quickly are not associated with highest levels of target behavior. To account for this

competition between tc and hM in determining the overall levels of target behavior, the

area under the trajectory curve (AUC) was also considered as a metric, as illustrated in

Fig. 4iv). The maximum AUC is associated with (b, w0) = (−0.06, 100) and in general,

larger area values are associated with concave-up functions as opposed to concave-down
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functions.

The analyses described above were calculated at time t = tf . As Fig. 4i) illustrates,

many trajectories have not reached their maximum height at this time. At t = 250, which

represents the end of the simulation, the trajectories have developed further and Fig. 4 v)

and vi) illustrate hM and AUC at this time. The concave-down functions associated with

positive b values now have the highest hM levels, although the largest values are still

associated with essentially linear functions. The highest values are also associated with

larger w0 values. This rightward shift in the graph is mirrored when considering the AUC,

as shown in Fig. 4vi). In this case the maximum values is for (b, w0) = (−0.01, 130). The

functions with negative b values, i.e. the concave-up shaping functions, jumped to elevated

target behavior levels very quickly. While the concave-down functions take longer to jump,

their hM values are higher. As longer time frames are considered, this elevated level of

behavior outweighs the initial gains made by the concave-up functions and the AUC

increases, as shown in Fig. 3ii). The maximum hM values, though, remain centered around

b = 0, indicating that a linear function will ultimately result in the most target behavior.

To summarize, concave-up shaping functions (b < 0) produce rapid increases to

asymptotic target behavior levels, but this asymptote is lower than that of linear (b = 0)

and concave-down functions (b > 0), particularly as the simulation runs for longer periods

of time. The linear and concave-down shaping functions result in extended periods of a low

rate of target behavior before jumping up to higher levels.

Effects of Model Parameter Variation

Fixed Initial Behavioral Repertoire

The results summarized in Fig. 4i) point to an upper limit for the horizontal

asymptote of the behavior trajectories. The generic w(t) functions used in the continuous

shaping procedure were selected to capture a range of concavity characteristics. It is

possible that more complex shaping functions could ultimately lead to higher levels of
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targeted behavior. This section explores the level of targeted behavior supported by the

computational model with the specific parametrization described in Appendix A.

Simulations were performed where some portion of the initial behavioral repertoire was

required from the outset to be from the target behavior class. This stands in contrast to

the standard procedure where the initial behavior class is chosen at random. Furthermore,

setting a fraction of the initial behavior class to the target behavior simulates a previous

learning history for the organism, a scenario which more accurately reflects the real-world

conditions to which this model can be applied.

Once a fraction of the initial behavioral repertoire was fixed, only behaviors within

the targeted class were reinforced, i.e. there was no shaping. The behavior trajectories,

averaged over 5,000 simulations, for various proportions are illustrated in Fig. 5. There

appears to be an upper limit of approximately 65% for the asymptotic level of targeted

behavior, even for the ideal case when all behaviors initially in the repertoire are target

behaviors and each of these target behaviors are reinforced when emitted. This feature is

due to the shaping and cloning procedures (see. Ref. [25] and Appendix A) which result in

sufficient variance in the next generation of behaviors to ensure that non-target behaviors

are included in the repertoire. Interestingly, beginning with 60% and 70% of the initial

behavioral repertoire in the target class results in an overshoot of this asymptotic level,

but eventually the rate of behavior decreases to the asymptote. In the simulations detailed

thus far, asymptotes as high as approximately 55% have been observed. Given an upper

limit of 65% and the fact that the standard shaping procedure begins with a random initial

behavioral repertoire, it is not expected that alternate shaping functions would drastically

improve the ultimate levels of behavior generated.

Parameter Variation within the Computational Model

In all of the previously-detailed findings, a fixed-ratio 1 (FR1) reinforcement schedule

was implemented, meaning that every time a behavior from the reinforcement class was

emitted, it was reinforced. The effects of utilizing an FR3 schedule, where every third
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reinforcable behavior that is emitted is reinforced, was also explored. Figure 6 illustrates

the effects of this schedule, where differences compared with the previously-described

results can be seen. As is expected with less reinforcement, the overall target behavior

levels are lower. This effect is particularly pronounced for parameter sets pairing large,

negative values of b with small values of w0 (i.e. the lower left corner of the figure), where

tc values are much larger. It appears that the infrequent reinforcement coupled with a

sharp initial reduction in reinforcement window does not result in sufficient reinforcement

for shaping to be effective. This reinforcement schedule also resulted in the highest AUC

values being more localized around b = 0 than was the case for previous analyses. As was

the case for the FR1 schedule, at t = 250, the maximum hM values are associated with

linear functions, but, in general, the values are relatively higher for concave-down shaping

functions.

The effects of varying the reinforcement strength (how similar the next repertoire is

to a reinforced behavior), target class size, and time to target class were also explored. A

full accounting of these results is beyond the scope of this article, but the results of these

analyses were in accordance with the findings above, namely they contained a tradeoff

between trajectories that quickly jump to elevated levels of target behavior versus

trajectories that took longer to jump to ultimately higher levels of target behavior.

Approximately linear shaping functions produced the highest levels of behavior. This

indicates that the results detailed within are not a function of the choice of modeling

parameters.

Discussion

This work demonstrated the viability of using computational models to investigate

behavior shaping routines, a process that may be valuable in developing an alternative to

the ad-hoc modifications often incorporated into adaptive, just-in-time, health behavioral

interventions. The results indicate that shaping was effective at engendering higher levels

of target behavior than when only the target behavior class is reinforced. When shaping
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target behavior, narrowing the scope of behaviors that are reinforced on a continuous basis

rather than at discrete time points, is more effective in producing the target behavior.

Within this continuous framework, computational experiments were performed to explore

the role of both w0, the initial size of the reinforced behavior class, and b, which

determines the concavity of reinforced class narrowing, on the effectiveness of shaping

routines. The b values were more crucial in arbitrating the ultimate effectiveness of

shaping. When considering the total amount of target behavior produced, there were two

competing effects to consider: concave-up shaping functions that resulted in the percentage

of target behavior quickly jumping to a relatively low asymptotic value versus

concave-down shaping functions where the percentage of target behavior took a longer

period of time to jump to higher asymptotic levels. Approximately linear functions did the

best job of managing these two effects and led to the highest levels of target behavior.

There are practical conclusions to be drawn from the results outlined in the previous

paragraph. If high levels of target behavior are the chief concern of the shaping system,

then either a linear or concave-down shaping function should be used to guide the evolution

of reinforcement windows with the latter being appropriate if there it is only possible to

reinforce behaviors that are relatively similar to the target behavior, i.e. small w0. An

example of this scenario is someone training for an athletic competition, where the highest

levels of target behavior are desired regardless of the time it takes to reach this goal. As an

alternative scenario, consider a target behavior that is defined as the absence of some

deleterious behavior, such as cigarette smoking. Shaping routines could be used within a

gradual cessation program by informing the scheduling of increasingly longer intervals

between prompts designed to support cessation. If a linear or concave-down function is

used to guide the shaping, considerable harm could be done during the extended period of

low-level target behavior (high levels of smoking). In scenarios like this where it is critical

to change the behavior as soon as possible, a concave-up shaping procedure might be

preferred. Once the individual has reached a constant level of target behavior that has a
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sufficiently low risk, the shaping schedule can be transitioned to a linear/concave function

that may increase the level (or improve the topography) of targeted behavior even further.

Behavior shaping can be implemented in nearly any domain, but the argument for

formalized, automated shaping procedures presented herein requires the use of real-time

sensing technology such as accelerometers, particle sensors, and smart outlets. These

technologies provide the ability to continually assess an emitted behavior’s similarity to a

target behavior in order to determine the ideal moment for reinforcement. As an example,

our research team recently completed an intervention that used real-time air monitors in

homes to discourage secondhand smoke exposure by providing reinforcement when air

particle levels stay below a threshold for some extended period of time [28]. These

low-particle time intervals represent approximations to the desired behavior of no particle

exposure at any time. Shaping would proceed by requiring increasingly large time intervals

in order to receive reinforcement. The computational shaping platform in this manuscript

represents a tool to investigate the optimal way to expand the duration of intervals required

for reinforcement. The intervention model in this example can be replicated in many fields,

including the use of accelerometers to shape shorter bouts of sedentary behavior or the use

of screen tracking devices to promote less screen time. Each of these interventions can be

informed by the computational shaping model, but as discussed in the next paragraph, the

translation to real-world scenarios presents complications to be addressed.

The shaping procedures outlined within this report proceed by reinforcing a class of

behaviors that are wider than a target class. In the computational model, the similarity

between non-target and the target behavior is clearly defined as the difference between two

integers. This feature is not easily translated into most real-world scenarios. For instance,

while a large w0 value in w(t) indicates that behaviors that are quite dissimilar from the

target will be reinforced at the outset of the shaping procedure, there is no interpretation

as to whether this difference is based on function or topography or how the model would

handle very rare, distal approximation to the target. It is not likely that it will be possible



COMPUTATIONAL MODEL FOR BEHAVIOR SHAPING 17

to associate a one-to-one correspondence between the model constituents and the

components of any material-world models. It has been argued in Ref. [29] though, that this

lack of accordance is a feature of many successful models. For example, consider quantum

theory where underlying model components do not conform to standard descriptions of

space and time and, therefore, do not have an analogue in experimental model

components. Rather, consistency across model predictions and experimental findings are

sufficient to declare the two systems to be computationally equivalent, making the

computational model a suitable platform for investigation. While agreement between

McDowell computational model findings and several real-world experiments have been

demonstrated (see Table 1), to the best of our knowledge, behavior shaping experiments

with continuously-adapted reinforcement criteria have not yet been performed. Laboratory

experiments including this feature are currently under development by the authors of this

paper and, when performed, they will allow the computational equivalency of the model

and real-world findings to be assessed. This will likely increase the interpretability and

generalizability of computational results and refine the ability to automatically

programming generalizable shaping procedures.

In addition to being compared to real world experiments, the computational

modeling can be made more robust by exploring more complex modeling scenarios, such as

shaping the extinction rather than the establishment of behavior. More complicated

reinforcement schedules can be implemented and the consequences of errors within the

shaping routine (e.g., incorrectly reinforcing a behavior that is not eligible for

reinforcement) can also be explored. In particular, the use of variable ratio (and interval)

reinforcement schedules should be explored since the ultimate goal of public health

interventions is to sustain healthy behavior on a long-term basis and variable schedules are

known to lead to longer maintenance effects. Whether it is better to implement the

shaping routine with a variable schedule or to shape with a continuous schedule and then

transition to a variable schedule is an open question to be investigated.
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A focus on single simulations rather than aggregate results would be more

appropriate for comparison to JITAIs. As these features are added and the computational

shaping model becomes more rigorous, it will have an increasing potential to serve as a

beneficial tool to be used in the design and refinement of JITAIs.

Implications

Practice: A computational model of behavior shaping has been developed in order

to aid with the formalization and automation of behavior shaping procedures within

adaptive behavioral interventions that utilize real-time technology.

Policy: Policymakers interested in leveraging real-time sensing technology to

automatically personalize behavioral interventions should consider theoretically-rooted

intervention adaptation strategies.

Research: Further research should be aimed at verifying computational model

outcomes with real-world experiments.
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Appendix A: Details of the McDowell Computational Model

The computational model begins by randomly selecting a repertoire of 100 behaviors

from the 1,001 possibilities and grouping them by their respective classes. The probability

that a particular class of behaviors is emitted is defined as the proportion of total

behaviors within the repertoire that correspond to this class. Based on these probabilities,

a class of behavior is randomly chosen to be emitted and a specific behavior in the

repertoire from this class is randomly selected. If the selected behavior is from the target

class, a reinforcement schedule is consulted to determine whether this behavior is

reinforced. Any behavior that is to be reinforced is characterized as “fit” and the fitness of

the other behaviors in the repertoire is based on their similarity (distance) to the

reinforced behavior. The fitness metric is used to select 100 “parent” behaviors that will

generate the behavior repertoire at the next time step with preferential selection given to

behaviors that are most similar to the behavior that is being reinforced. The relationship

between a behavior’s fitness and the likelihood of its selection as a parent behavior is

governed by a parental fitness function, which can be any function that assigns higher

probabilities to smaller distances. The analyses in this report used the exponential

parental fitness function developed in Ref. [25] as follows. Let p(x) = re−rx be the

probability of reinforcing a fitness value of x for x ∈ [0, ∞). The mean is calculated as

µ ≡
∫ ∞

0 xp(x) dx = 1
r
. This relationship implies r = 1

µ
making the cumulative density

P (x) = 1 − e− 1
µ

x. Using this function, inverse transform sampling is used to select a value

at random from this distribution. The fitnesses of the current behavioral repertoire are

searched for a match and if one does not exist, a new random value is generated. This

process continues until 100 parent behaviors have been selected. µ, the mean, is the only

value required to parameterize this procedure. If the reinforcement schedule indicates that

reinforcement is not available or if the emitted behavior is not from the target class, then

rather than using the procedure described above, 100 parent behaviors are selected at

random from the repertoire.
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Each of selected parents is “cloned” to generate the behavior repertoire at the next

time step. In the original McDowell model, parent behaviors were “mated” via a bitwise,

binary procedure rather than cloned, but diagnostic analyses revealed biases within this

procedure that were not present with cloning. Cloning proceeds by considering a collection

of Gaussian distributions with a mean set equal to each of the parent behaviors. The

standard deviation of these distributions, a free parameter of the system, was set equal to

2 and one new behavior for the next repertoire was then selected from each one of these

distributions. A certain percentage of this new generation of behaviors are selected at

random for mutation, which is also done by considering a Gaussian distribution, with

mean set equal to integer representation of the behavior to be mutated and some standard

deviation as a parameter of the system. For the analyses presented herein, a proportion of

0.01 behaviors in the new repertoire were selected, at random, for mutation and the

standard deviation was 2.5. For both of the cloning and mutating steps, all calculations

are performed using modulo-1,001 arithmetic so that all behaviors are guaranteed to fall

within [0,1000]. Once the mutation has occurred, the behavior repertoire at the next

time-step has been completely determined and the probability that a particular class will

be emitted is updated accordingly as the proportion of total behaviors in this new

repertoire that belong to each class. The process then repeats. Table 2 details each of the

parameters in the system and default values, if appropriate.

All model simulations were performed in MATLAB R2012b. The model has a

stochastic feature to it so when assessing results it is important to consider outcomes that

are averaged over many runs. Due to the dimensionality of the parameter space that was

explored, this was a computationally demanding requirement. However, because the runs

are not dependent on each other, the computations are “embarrassingly parallel” [30]. To

take advantage of this feature, the runs were executed using Matlab’s built-in parallel

parfor loops. A batch script was created that allowed multiple, parallelized simulations to

be run simultaneously on different nodes within a cluster.
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Study Finding

Ref. [25] Consistency with the law of effect.

Ref. [31] Consistency with the power-function matching equation.

Ref. [32] Consistency with an extension of the power-function matching equation

that considers reinforcement magnitude.

Ref. [33] Demonstrated the effect of changeover delays when switching between

reinforcement schedules.

Ref. [34] Changing response preference based on concurrent reinforcement sched-

ules.

Ref. [35] Consistency with known inter-response time distributions.
Table 1

Summary of previous findings from computational model.
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Variable Symbol Value

Computational Model

Range of Behaviors - [0,1000]

Target Behavior Class - [495-505]

Number of Behaviors in Repertoire - 100

Fitness Function Mean (Reinforcement Strength) µ 5

Cloning Std. Dev. - 2

Proportion Mutated - 0.01

Mutation Std. Dev. - 2.5
Table 2

Variable definitions and default values used for all simulations, unless otherwise noted.
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Figure 1 . Panel i): Behavior shaping schematic. Panel ii): McDowell computational model

flowchart.
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Figure 2 . Panels i)-vi) illustrate step w(t) functions for discrete shaping and panel vii)

illustrates and analytic results for each function.
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Figure 3 . Panel i): Qualitative shapes for the shaping function described by Eq. (1) for

different values of b. wc, depicted as the horizontal line represents the width of the target

class. Panel ii): The w(t) functions with optimal parameters at time t = 100, 200 and 250

for the FR1 simulations outlined in the text. The largest area under the curve of the target

behavior trajectories (see next section) was used to determine which parameters were

optimal.



COMPUTATIONAL MODEL FOR BEHAVIOR SHAPING 29

0 50 100 150 200 250
0

10

20

30

40

50

60

Time

T
a
rg
et

B
eh
av
io
r

i)

−0.2 −0.1 0 0.1 0.2
80

100

120

140

160

180

200

b

tcii)

w
0

20

40

60

80

100

120

−0.2 −0.1 0 0.1 0.2
80

100

120

140

160

180

200

b

MaxHeightiii)

w
0

10

20

30

40

50

−0.2 −0.1 0 0.1 0.2
80

100

120

140

160

180

200

b

Areaiv)

w
0

500

1000

1500

2000

2500

−0.2 −0.1 0 0.1 0.2
80

100

120

140

160

180

200

b

MaxHeightv)

w
0

30

35

40

45

50

55

−0.2 −0.1 0 0.1 0.2
80

100

120

140

160

180

200

b

Areavi)

w
0

4000

5000

6000

7000

8000

9000

Figure 4 . Result of simulations for FR1 reinforcement with the values defined in Table 2. Panel i)

illustrates the level of target behavior with respect to time and panel ii) illustrates tc, the time required for

the targeted reinforcement to reach a level of 15, for all (b, w0) ∈ B × W , where b is the concavity and w0

is the initial value of the shaping function w(t). Panels iii) and iv) illustrate the maximum height (hM )

and the area under the curve (AUC) for all combinations of parameters calculated at t = 100. Panels v)

and vi) are a recalculation of the results in Panels iii) and iv), but with the metrics calculated at t = 250

rather than t = tf . All results are averaged over 5,000 simulations.
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Figure 5 . Target behavior trajectories for simulations with parameters in Table 2 with no

shaping routine. Each line represents fixing a certain proportion of the initial repertoire

with behaviors from the target class, rather than choosing the initial repertoire randomly

as is the case with other simulations.
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Figure 6 . Result of simulations with the default values defined in Table 2 but with an FR3

reinforcement schedule. The metrics illustrated in each panel are the same as in Fig. 4

with the exception that panel ii) illustrates the time required for the targeted

reinforcement to reach a level of 10 rather than 15.
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