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Abstract 

Neurological Music Therapy uses live music to improve the sensorimotor regulation of children with 

severe autism. However, they often lack musical training and their impairments limit their interactions 

with musical instruments. In this paper, we present our co-design work that led to the BendableSound 

prototype: an elastic multisensory surface encouraging users to practice coordination movements 

when touching a fabric to play sounds. We present the results of a formative study conducted with 18 

teachers showing BendableSound was perceived as “usable” and “attractive”. Then, we present a 

deployment study with 24 children with severe autism showing BendableSound is “easy to use” and 

may potentially have therapeutic benefits regarding attention and motor development. We propose a 

set of design insights that could guide the design of natural user interfaces, particularly elastic 

multisensory surfaces. We close with a discussion and directions for future work. 

Keywords: multisensory interfaces; elastic surfaces; neurologic music therapy; autism; strength and 

timing regulation.  
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1 Introduction 

Autism is a neurological disorder associated with impairments in attention, social interaction and 

behavior (American Psychiatric Association, 2013). Most children with severe autism exhibit 

significant motor coordination (Fournier et al., 2010; Green et al., 2009; Piochon et al., 2014; Torres 

and Donnellan, 2015) and sensorimotor impairments (Torres and Donnellan, 2015). As a 

consequence, children with severe autism may have limited motor control defaulting their ability to 

redirect appropriately their movements to respond to sensory stimuli (LaGasse and Hardy, 2013; 

Staples and Reid, 2010). For example, when children with severe autism move their body to respond 

to stimuli, their reaction time is usually off by either reacting later or in advance. Additionally, 

children with severe autism frequently use insufficient or excessive amount of strength (Fournier et 

al., 2010). 

Neurological Music Therapy (NMT) is increasingly being used to support the sensorimotor regulation 

of individuals with autism with promising clinical results (LaGasse and Hardy, 2013). NMT is the 

therapeutic use of music to improve individual’s cognitive, sensory, and motor dysfunctions due to a 

neurologic [disorder] of the human nervous system (Thaut and Hoemberg, 2014). Particularly, the 

Therapeutic Instrumental Music Performance (TIMP) is a technique used in in NMT where therapists 

play musical instruments to help patients practice physical exercises (Mertel, 2014). In a typical 

TIMP-NMT session, musical instruments, not being played in a traditional manner, are arranged in 

different positions to guide patients’ movements (Mertel, 2014). For example, when working with 

two musical instruments, a therapist uses one musical instrument as the starting point of the movement 

and the second one as the ending point.  

Current TIMP-NMT sessions rely heavily on the use of traditional musical instruments1
. However, 

available traditional musical instruments might not be appropriately designed to support the needs of 

children with severe autism, presenting excessive cognitive load and demanding musical training 

(Magee, 2006). As a consequence, children with severe autism found it difficult to interact with 

traditional musical instruments, they often lose their attention, become frustrated (Burland and 

Magee, 2012), and abandon the therapy without meeting their goals. Designing tools to support the 

needs of children with severe autism during TIMP-NMT is not an easy task. These tools should be 

ease to use, attractive, and should use multi-sensory stimuli and enable a natural interaction. 

Particularly, the use of multisensory experiences could allow children with autism to maintain their 

attention and engagement during therapies (Cuvo et al., 2001). There is evidence that the use of 

adequate visual, auditory, and haptic stimuli leads to less caregiver assistance (Schaaf et al., 2014). 

As most interventions for children with autism (including some techniques used in music therapy) 

are more pragmatic and their main goal is to enable skills generalization; fading out prompts is 

paramount to enable children to apply the newly learned skills during therapy to real-life situations. 

The proper correspondence among each of  the multisensory stimuli helps to process adequately and 

integrate sensory information (Schaaf et al., 2014). 

It has been proved that interactive surfaces, any kind of surface augmented with multi-touch 

capabilities, offering a natural and casual interaction, and removing the complexity of the input 

interaction mechanism (Putnam and Chong, 2008); can support the interactions of individuals with 

                                                      

1
 We adopted the term traditional musical instrument to define instruments from both popular music and classical music. These instruments 

are designed for precise interaction, and usually require a high level of expertise from users to play them (Visi et al., 2014). Examples of 

traditional musical instruments used in NMT-TIMP include percussions, a guitar, a violin, a piano, or their electronic version (Magee, 

2006; Mertel, 2014).  
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disabilities with music (Boulay et al., 2011; Gorman et al., 2007; Hobbs and Worthington-Eyre, 2008; 

Oliveros et al., 2011). Interactive surfaces also provide the multisensory experience children with 

severe autism need to stay focused during therapeutic interventions (Villafuerte et al., 2012). 

Deformable displays allow users to use gestures and explore novel ways of interaction. Deformable 

surfaces enable users to vary the amount of pressure used when touching the surface by including an 

extra dimension (Müller et al., 2015). Deformable surfaces could be either flexible including those 

deformable displays that are highly flexible and may allow for permanent deformation; or elastic 

including elastic displays like fabrics allowing only for temporary deformation (Grunder et al., 2013).  

Particularly, our research aims to understand the design space of elastic multisensory surfaces that, 

in contrast with traditional musical instruments, can integrate a huge variety of sounds that could 

provide guidance to users about their movements. Elastic multisensory surfaces may benefit children 

with severe autism as they provide a rich multisensory experience and enable them to understand 

strength variations (Troiano et al., 2014). We hypothesize that elastic multisensory surfaces are better 

tools than traditional musical instruments to support children with autism during TIMP-NMT 

sessions. 

The main contributions of this work are2 

 A prototype of an elastic multisensory surface, called BendableSound, developed to encourage 

children with autism to practice coordination movements while playing sounds in a natural way 

by using touch-based interactions in a multisensory environment. 

 Qualitative and quantitative empirical evidence showing how elastic multisensory surfaces, 

augmented with multisensory feedback, are better tools than traditional musical instruments to 

help children with severe autism stay focused and uncover novel tactile experiences during TIMP-

NMT sessions. 

 Reflections from our co-design process and a set of design insights that could guide the design 

of natural user interfaces, particularly elastic surfaces, to design multisensory experiences.  

2 Related Work  

In this section, we first describe research related to the design of ubiquitous technology using 

multisensory stimuli to support the control of movements of individuals with disabilities; some of 

them support music therapy interventions. We then describe research around elastic displays and 

deformable surfaces in general. We close with a discussion of other interactive surfaces facilitating 

users’ interactions with live music. 

2.1 Multisensory environments to support individuals with disabilities 

Research has explored the design and development of interactive surfaces using visual stimuli to 

control the movements of individuals with autism (Parés et al., 2005; Ringland et al., 2014). For 

example, MEDIATE (Parés et al., 2005) is an interactive surface enabling children with autism to use 

their body to control the digital information displayed on the surface. A deployment study, with about 

                                                      

2This paper extends our previous results describing our iterative design process (Cibrian et al., 2016a) and an exploratory 

study conducted with toddlers to investigate the value of BendableSound for the early development in toddler classrooms 

(Cibrian et al., 2016b). In contrast, in this paper, we build upon our previous results and we present a new design of the 

BendableSound prototype, results from a formative study conducted to investigate the perception of psychologist-teachers 

to this new design, and results from a deployment study to investigate the impact of BendableSound in supporting the 

therapies of children with autism. 
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90 individuals with autism using MEDIATE, showed that the visual interaction allows individuals to 

be creative and self-express within the environment. Other projects have demonstrated the usefulness 

of using sonification techniques to provide feedback to users about their movements during sports 

(Cesarini et al., 2016; Schaffert and Mattes, 2015), when dancing (Grosshauser et al., 2012), and for 

rehabilitation purposes (Rosati et al., 2013; Sigrist et al., 2014; Singh et al., 2015). For example, the 

use of sonification techniques helps individuals with chronic pain to use sounds as a feedback 

mechanism to guide their movements (Singh et al., 2015).  

These projects show that a multisensory environment facilitates individuals with disabilities to 

interact with multisensory stimuli, but there is no evidence of how such solutions could support the 

sensorimotor regulation of children with severe autism and there is limited research in exploring novel 

haptic experiences with multiple sensory stimuli. 

2.2 Deformable interfaces 

Beyond exploring technologies that limit our senses of vision and audition, others have proposed the 

use of deformable materials to design novel haptic and tactile experiences. Flexible interfaces have 

been used to improve musical experiences of children with disabilities (Grierson and Kiefer, 2013) 

who experience more challenges than typical children when interacting with traditional musical 

instruments. For example, NoiseBear (Grierson and Kiefer, 2013) is a wireless malleable soft 

controller designed to help children with autism to create sounds and music through gestural 

interactions. A pilot study of the use of NoiseBear showed that children with severe autism found 

NoiseBear engaging when creating music, but lacking the visual stimuli to provide them with a 

complete multisensory experience. 

On the other hand, elastic displays which, given their elasticity allow users to change the surface by 

pulling, pushing or twisting them (Müller et al., 2015; Sahoo et al., 2016; Troiano et al., 2014; Yun et 

al., 2013) have been proposed to support navigation (Yun et al., 2013), and manipulate physical 

(Müller et al., 2015) and multimedia (Cassinelli and Ishikawa, 2005) information. Users can either 

use one finger, their complete hand, or unimanual and bimanual gestures (Müller et al., 2015; Troiano 

et al., 2014). For example, DepthTouch (Müller et al., 2015) is an elastic display mimicking the 

gravitational forces between spheres. The spheres react according to the force applied when users 

push the elastic surface. Spheres can either repulse or attract according to the force of gravity. The 

use of DepthTouch shows the elastic display is easy to understand and help users to create quickly a 

mental model of how its interaction works (Müller et al., 2015). 

These projects suggest that the affordances of elastic displays, including haptic sensations combined 

with visual stimuli, help users to understand quickly how to interact with the surface. However, to the 

best of our knowledge, there are no studies reporting results from evaluations of elastic multisensory 

displays to support children with autism. Descriptions of such real-life deployments are urgently 

needed to better understand their interaction experience and their potential therapeutic value for this 

population. 

2.3 Musical interfaces 

Previous research on interactive surfaces has explored innovative ways to help users learn how to 

play music through rhythm games (e.g., Guitar Hero, Rock Band) or by augmenting traditional 

musical instruments with interactive information (Rogers et al., 2014; Xiao et al., 2016). For example, 

Andantino (Xiao et al., 2016) is an interactive surface projecting animated figures on top of a piano. 

Animated figures represent a wide range of musical elements like sound quality, moods in the music 

or harmonies. The aim of Andantino is to provide an enjoyable music learning environment for 
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children. These projects emphasize the importance of using multisensory stimuli to improve the 

overall experience of playing music. Other musical interfaces have explored the use of tangible 

interactions to support children when creating music (Ichino et al., 2014; Jordà et al., 2007). For 

example, Vuzik (Ichino et al., 2014) is an interactive display mimicking a stand-up easel enabling 

typical children to create music while painting on a canvas. A study with 14 children (aged 9 to 12 

years old) found Vuzik was easy to use and provided better support for creativity than a software 

helping children to compose music running on a traditional desktop interface. Although some of these 

interactive surfaces are commercially available and used by expert musicians, they have not yet been 

evaluated with children with severe autism.  

Other interactive interfaces have been proposed to support individuals with motor disabilities during 

therapeutic interventions (e.g., MINWii (Boulay et al., 2011), Music Maker (Gorman et al., 2007), 

Movement-to-Music (Hobbs and Worthington-Eyre, 2008)). For example, MINWii (Boulay et al., 

2011) is a game for patients with dementia using music therapy techniques that helps individuals to 

play different songs. A deployment study of the use of MINWii shows that combining both tangible 

and gestural interactions could ease the process of playing music for patients with motor and cognitive 

impairments. However, MINWii does not provide an appropriate dynamic that could allow patients 

with motor impairments to practice how to self-regulate their strength and improve their movement 

timing.  

Although, this body of work has made the compelling argument that multisensory environments are 

appropriate for children with autism (Parés et al., 2005; Ringland et al., 2014), and particularly 

deformable surfaces facilitate their interactions with live music (Grierson and Kiefer, 2013; Troiano 

et al., 2015); to our knowledge, there is no evidence of the design of a device devoted to support 

TIMP-NMT sessions for children with severe autism. Our design differs from others available in the 

literature as it combines multiple sensory stimuli and provides children with severe autism with 

challenges related to sensory integration and motor development using techniques from therapeutic 

interventions.  

3 Designing the BendableSound prototype 

We followed an iterative user-centered design methodology to design BendableSound, a large-scale 

elastic multisensory surface that allows users to make music when tapping and touching on top of the 

canvas (Figure 1-left). Users can play the sounds of different musical instruments. BendableSound 

displays a 3D background showing an animation of a nebula with translucent space-based elements, 

like stars and planets, appearing on top of the fabric. BendableSound is a system using a Kinect 

sensor, speakers, and an ultra-short throw projector placed behind a spandex fabric (Figure 1-right).  

The design of BendableSound involved three iterations. In total, we conducted 12 semi-structured 

interviews, 10 design sessions, and completed 21.5 hours of passive observation (Table 1).

Figure 1. The BendableSound prototype. A child discovering sounds and the space nebula (left). A mock-up of BendableSound 

(right). 
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  Table 1. Details of the data collected and activities conducted when designing BendableSound 
Iteration Activity Purpose Outcome # of participants Job description 

I 

4 Semi-structured 

Interviews 

Identify the activities conducted, artifacts, and, technology used at 

'Pasitos' during current activities, the common problem children with 

autism face during their day and the type of prompting, incentives, and 

reinforcement used during class 

An understanding of the everyday practices 

and the problems children face during these 

activities 

4 

1 Psychologist-teachers (women) 

from Pasitos 

2 Musicians (Male)  

1 Father of a child with autism  

15 hours of passive 

Observation 

Observe the current activities and the common problems that children 

face in the classes at Pasitos and playing in the playground 
38 

8 Psychologist-teachers 

30 Children with autism 

4 Design sessions 

Define a set of preliminary low-fidelity prototypes 
A set of design scenarios and low-fidelity 

prototypes 
2 2 HCI experts 

Discuss advantages and disadvantage of different prototypes of 

interactive surface, and choose one from the alternatives 

Three low fidelity prototypes such as 

interactive floor, tabletop and elastic 

multisensory surface. 

6 

1 Designer, 

1 Interactive surface expert,  

3 HCI,  

1 Musician 

Observe typical interactions of neurotypical children with different 

prototypes, understand their preferences, and define what gestural 

interactions are appropriate for the chosen prototype 

A set of movement that children could perform 

on an elastic multisensory surface 
6 

2 Girls,  

4 HCI experts 

Discuss the animation of the interactive surface 
A visualization that could be integrated into an 

elastic multisensory surface 
5 

1 Psychologist,  

4 HCI experts 

II 

3 Semi-structured 

Interviews 

Identify the physical therapy lifecycle, including activities conducted, 

artifacts and strategies for clinical case management and assessment, and 

the common motor problems children with autism face. 

An understanding of physical therapy and 

motor development techniques used during the 

motor control exercise 

3 

1 Physical therapist (male) 

1 Psychologist (women) 

1 Neuropsychologist (women)  

0.5 hours of passive 

Observation 
Observe the interactions of children with autism using BendableSound. 

Initial reactions of children with autism to 

BendableSound 
8 

7 Children with autism using 

BendableSound  

1 Psychologist 

3 Design sessions 

Discuss the appropriate movements that children could perform in an 

elastic multisensory surface 

A set of movement that children with autism 

perform using BendableSound 
4 

1 Physiotherapy 

3 HCI experts 

Define the sequences of movements more appropriate to strength and 

timing regulation 

The sequences of movements more appropriate 

to strength and timing regulation   
3 

1 Neuropsychologist 

 2 HCI experts 

III 

5 Semi-structured 

Interviews 

Identify the activities conducted, artifacts, and technology used during 

music-therapy session and music activities, and the type of prompting, 

incentives and reinforcement used during music therapy session and 

music based activities 

Understanding of a music therapy lifecycle and 

techniques using in neurologic music therapy 

session 

4 
2 Music therapist. (Female and male)  

2 Music teacher (Female and male) 

6 hours of passive 

Observation 

Observer eight music classes of children with autism attending to Pasitos 10 
8 Children with autism 

2 Music teacher 

Observe two Music therapy sessions of children with autism attending to 

Pasitos 
3 

2 Children with autism 

1 Music therapist 

Observe two Dance classes of two groups of children at Pasitos. 14 

10 Children with autism 

2 Dance teacher 

2 Psychologist-teachers 

3 Design sessions  

Define the musical elements arrangement in BendableSound 
The match between the movement and the 

musical elements 
4 

2 Music-teacher 

2 HCI experts 

Discuss the agreement between the visual and auditory stimuli with the 

haptic experience 

The match between the movements, musical 

elements and visualization 
5 

1 Music therapist 

4 HCI experts 

Define the levels of BendableSound integrating all the stimuli, sequences 

of movement and TIMP Neuro-MT elements. 
The  dynamic’s game of BendableSound 7 

1 Multimedia designer 

1 psychologist 

5 HCI experts 
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3.1 Data collection 

For each iteration, we first conducted semi-structured interviews with specialists to understand the 

potential context of the use of BendableSound and observed children with severe autism in different 

activities at “Pasitos” 3 (Table 1). In order to have participants actively involved in the design process, 

we supplement our interviews and observations with design sessions with specialists (Table 1). 

During design sessions, all the participants were considered to be equal partners in the design process, 

and one HCI expert acted as the moderator of the sessions. Specialists were encouraged to brainstorm 

and reflect on design ideas, propose low-fidelity prototypes and discuss advantages and disadvantages 

of each prototype (Wendell et al., 2004).  At the end, specialists were asked to choose one prototype 

from all the alternatives they have proposed during the design sessions. 

3.2 Data analysis 

For data analysis, we transcribed all the interview’s data and observation reports. Data analysis 

included the use of qualitative techniques, such as, open and axial coding (Strauss & Corbin, 1998) to 

score our interviews and then group our codes in an affinity diagram. To analyze these data, we used 

the software atlas.ti4. All the data collected during our design sessions was analyzed using techniques 

from rapid contextual design (Wendell et al., 2004) and were materialized as sketches, storyboards and 

new ideas for potential activities to incorporate on the proposed prototypes. 

3.3 Findings 

In this subsection, we describe the main findings of each iteration.   

3.3.1 Iteration 1: Defining the gameplay and the visual stimuli 

Our qualitative results indicate that an elastic multisensory surface was the preferable prototype due 

to its novel way of interaction and potential innovative interaction experience. Specialists suggested 

including concepts commonly used during early development instruction, like real-life environments 

as potential visual themes for the prototype. Specialists selected the space theme as the most 

appropriate visualization for this population; explaining that it is gender neutral, sturdy and age 

appropriate. Specialists proposed a set of open-ended activities mimicking the improvisation 

activities conducted during a TIMP-NMT session and some goal-oriented tasks imitating the 

“companion role” of therapists. These results are consistent with others reported in the literature 

emphasizing that activities that might enable the long-term engagement of children should involve 

the making of music in a free manner (Srinivasan and Bhat, 2013) and should promote the integration 

of both simple and complex activities (Darrow, 2009).  

To combine the improvisation activities with goal-oriented tasks conducted during a TIMP-NMT 

session, specialists suggested to include activities similar to the activity of drawing. Interactive 

surfaces proposed in the literature have shown the drawing activity, following an open-ended 

interaction model, is appropriate for children with autism (Hourcade et al., 2012; Parés et al., 2005; 

Ringland et al., 2014). For the goal-oriented task, specialists suggested the use of avatars and visual 

                                                      
3 “Pasitos” www.pasitos.org is a school-clinic located in Tijuana, Mexico where 18 psychologists-teachers attend to close to 

60 children with severe and mild autism. Both our formative and summative studies for the development of BendableSound 

and its evaluation were conducted at this clinic. 

4 http://atlasti.com, a software to support qualitative research. 
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stimuli to provide step-by-step guidance for children with autism. Both, avatars and visual supports 

are commonly used when designing goal-oriented activities for children with autism and are 

instrumental in giving them the structure they need during therapies (Hayes et al., 2010; Hopkins et 

al., 2011; Tartaro and Cassell, 2008). Specialists also proposed to use the piano as it is one instrument 

typically used during TIMP-NMT (Magee, 2006; Wigram Tony, Pedersen Inge Nygaard, 2011). 

Particularly, in Pasitos the piano is being used during music lessons. 

These findings guide the design and develop the first version of the BendableSound prototype (Ortega 

et al., 2015). This first version of BendableSound supports two open-ended activities and one goal-

oriented task. In the first activity, children must erase a black layer covering the animation of space 

nebulas (Figure 2-left). In the second activity, children move space-based elements randomly 

appearing on top of the fabric canvas that will reproduce sounds when touched or moved (Figure 2-

right). In the third activity, an astronaut appears providing children with guidance on how to play a 

nursery rhyme by touching a blinking star (Ortega et al., 2015).   

However, specialists expressed this version of BendableSound does not adequately mimic motor 

therapeutic interventions, as it does not provide feedback to children about what movements they 

need to conduct. Thus, we conducted a second iteration to uncover the appropriate movements to 

incorporate into our prototype. 

3.3.2 Iteration 2: Designing the haptic experience  

The movements, that specialists selected, match with those typical movements used during motor 

therapeutic interventions for children with autism, especially those focused on improving movement 

timing and the self-regulation of their strength (Keele et al., 1987; Lundy-Ekman et al., 1991; Schmidt 

and Wrisberg, 2008). Specialists agreed that it is important to focus on one movement at the time and 

they selected a set of exercises that challenge children with severe autism at different levels. 

Specialists proposed an “exercise routine” demanding children to first push the fabric using their left 

hand, then the right hand, and finally alternating hands. In this manner, children are being challenged 

with movement patterns that demand from them practice bimanual coordination exercises (Brakke et 

al., 2007; Fagard and Wolff, 1991). Specialists also suggested adjusting the amount of strength being 

used when conducting the “exercise routine”. They proposed activities that demand from children to 

either use extreme or little exertion of force at different levels of speed. This level of scaffolding 

during motor therapeutic interventions including strength and speed variations, and challenges around 

bimanual coordination has shown promising clinical results (Brakke et al., 2007; Fagard and Wolff, 

1991).  

Figure 2 The BendableSound preliminary prototype. A participant playing the first activity of BendableSound erasing the black smog 

covering the space nebula by tapping throughout the fabric (left). A participant playing the second activity moving a spaceship to make 

piano sounds (right). 
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Specialists suggested changing the goal of the game by demanding children to use the appropriate 

amount of strength to help the rocket safely land on a planet. The rocket will appear on the left side 

or on right side of the fabric according to the hand children must use to push the rocket (See figures 

in Table 2), and throughout the game, children will be challenged with strength variations (Cibrian et 

al., 2016a). Specialists particularly proposed to include the following two activities: 

 First, children must push the rocket to catapult its flight towards the next planet (Figure 3-left). 

The flight distance is determined by the amount of strength children use when pushing the fabric. 

The aim of this activity is to teach children how to follow bimanual coordination patterns (Brakke 

et al., 2007).   

 Second, the amount of strength children use when pushing the fabric should catapult the rocket’s 

flight that will collect an array of space-based elements that are either close or far from the rocket 

(Figure 3-center and right). Children must use enough strength to catch all the space-based 

elements, but not too much to skip them. This activity allows children to practice strength 

variations that could have a therapeutic benefit concerning force control (Keele et al., 1987; 

Lundy-Ekman et al., 1991; Schmidt and Wrisberg, 2008). 

For both activities, children must complete a number of repetitions specified by the therapist. One 

rocket flight will count as one repetition. 

Table 2. Set of movements proposed during participatory design sessions and included in BendableSound 
Motor coordination 

exercise 

Movement Strength 

variation 

Timing Variation Example 

Uni-manual directed 
movement 

Push left-hand Free 
Soft 

Strong 

Free 
Slow Rhythm 

Fast Rhythm 

 
Uni-manual directed 

movement 

Push right-hand Free 

Soft 

Strong 

Free 

Slow Rhythm 

Fast Rhythm 

 
 

Bimanual 

coordination  

asynchronized 

Push alternating Free 

Soft 

Strong 

Free 

Slow Rhythm 

Fast Rhythm 
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Although these two activities better reflect the goal of the therapy, specialists explained that children 

needed more guidance. Thus, they suggested supplementing the visual and the haptic stimuli with 

appropriate sounds and music. This is consistent with previous findings in the literature regarding the 

benefits of using music and sounds to provide appropriate movement guidance (Keele et al., 1987; 

Lundy-Ekman et al., 1991; Schmidt and Wrisberg, 2008). Therefore, we conducted another iteration 

to design the appropriate auditory experience. 

3.3.3 Iteration 3: Defining the auditory experience  

Specialists agreed that BendableSound should control the musical elements based on users’ 

interactions. Musical elements could emphasize motor patterns and engage children in the therapeutic 

process (Srinivasan and Bhat, 2013; Thaut and Hoemberg, 2014). Musical elements should be 

organized as follows (Figure 4): 

 For pitch, specialists agreed that sounds should be arranged from lower to higher in the vertical 

axis. This pitch arrangement could give children a sense of movement direction (Berger, 2002; 

Salgado-Montejo et al., 2016), given that, the most robust crossmodal correspondence of 

ascending pitch is elevation  (Spence, 2011). For example, when the pitch goes up, the movement 

should go up as well. Specialists suggested that the notes selected should be from a song 

according to each child’s preferences. The notes arrangement will determine the vertical position 

of the rocket. Children will use their strength to catapult the rocket and catch one or more musical 

notes represented by space-based elements. When catching the element children must hear the 

note or the array of notes being caught.   

 For musical dynamic (intensity), specialists decided to vary the sound’s volume according to the 

amount of strength being used to push the fabric. For example, a gentler push will decrease the 

volume. Dynamic should be akin to the energy level of music (Berger, 2002), to provide 

crossmodal correspondence between the sound and the amount of strength being used to push the 

fabric (Spence, 2011). 

 For rhythm, specialists decided to control the music tempo using a “music pulse” being played in 

the background. This music pulse signals users when the music speeds up or slows down, 

enabling children to play the song according to the music tempo. However, children are not 

penalized when missing a beat.  A “music pulse” being played in the background could improve 

the motor timing in children with autism (Hardy and Lagasse, 2013; Repp and Su, 2013), as 

children may potentially control their motor timing ability (Keele et al., 1987; Lundy-Ekman et 

al., 1991; Schmidt and Wrisberg, 2008).  

 For timbre, specialists agreed that therapists must personalize the musical instruments according 

to each child’s preferences. Musical instruments selected by specialists included a variety of 

Figure 3. Screenshots of the activities available in BendableSound. Freely interaction to discover the black nebula (left). A rocket showing 

where to push to collect a note with and without base-pulse (center). A rocket showing where to push strong to collect a set of notes that 

are far away (bottom-right). A rocket showing where to push soft to collect a set of notes that are near (right). 
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musical instruments commonly available in music synthesizers. As timbre is one of the factors 

that is more problematic for people with sensory integration deficits (Berger, 2002), then, the 

personalization is highly recommended. 

After our design team reviewed and agreed to all the modifications suggested to our prototype, we 

proceed with its development. 

4 Developing the BendableSound prototype   

The goal of the final version of BendableSound is that children use their strength to catapult the flight 

of a rocket to help it to land on a planet. During its journey, the rocket will collect notes of a nursery 

rhyme previously selected by the therapist. The BendableSound prototype works as follows: 

First, children must interact in a free manner by erasing a black layer covering the space nebula 

(Figure 2-left). Second, a rocket appears on the left side of the fabric and children must tap on it to 

catapult its flight. While flying the rocket will collect one note of the nursery rhyme. Children must 

complete a certain amount of repetitions using their left hand. Then, the rocket moves to the right and 

children must complete the same number of repetitions using their right hand. Finally, children must 

alternate their hands and the rocket moves from left to right when appropriate (Figure 3-left). Third, 

children must use more strength to help the rocket reach the farthest planet and collect a set of notes 

(Figure 3-center). Then, they must push the rocket a little bit gentler to reach the closest planet (Figure 

3-right). As in the past activity, children first use their left hand, then their right hand and finally they 

alternate their hands. Fourth, a music pulse appears and children must tap on the rocket according to 

music tempo to play the song (Figure 3-left). Finally, children go back to the first activity to play with 

the fabric in a free manner (Figure 2-left).  

Therapists use a dedicated interface to select the musical instrument and the nursery rhyme according 

to each child’s preferences. We added keyboard shortcuts that therapists could use to select a specific 

activity available in BendableSound or adjust the movement speed of the music. For selecting 

activities, teachers use numbers and the up/down arrows to speed up or slow down the music pulse. 

The following scenario exemplifies how children with severe autism and their therapist could use 

BendableSound in practice. 

Figure 4. The musical elements arrangement in BendableSound: the pitch is represented by the musical notes arranged from lower to 

higher; the sound dynamic is represented with the volume and will vary according to the amount of strength; timbre is represented with 

the musical instruments sounds; and for rhythm, we use a music pulse as a background sound.  
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Marley is a 6-year-old child with severe autism who exhibits motor problems. Marley has difficulties 

when controlling his strength. Today, Marley is going to play BendableSound. The teacher Ms. Becky 

selects the piano instrument and the “Twinkle, twinkle little star” song. Marley pushes and swipes 

throughout the fabric to erase the “black layer” covering the space nebula. When Marley discovers 

the space nebula, a spaceship appears and Ms. Becky prompts Marley: “Marley, please push as hard 

as you can the fabric with your left hand”. Marley touches the fabric softly and the rocket slowly 

flights collecting only one blinking star and one note of the song. Then, the rocket appears on the 

same side again and Marley pushes harder, and the spaceship collects four stars.  Marley hears the 

collected notes and discovers the song “Twinkle, twinkle little star”. Marley laughs. Ms. Becky 

congratulates Marley saying “Good job! Marley” and activates the last activity enabling Marley to 

play in a free manner with the music compasses and notes he discovered when playing with 

BendableSound. 

The final version of BendableSound was developed using the Processing language, a 3D shader and 

TSPS library. We use the JavaSound API for controlling audio playback and a MIDI synthesizer. 

5 Evaluation methods 

We conducted two studies at Pasitos. The studies aim to answer the following questions: 

 Do teachers perceive the design of BendableSound attractive and usable for children with severe 

autism?  

 What is the overall interaction experience of children with severe autism with a multisensory 

deformable surface? 

 What are the potential therapeutic benefits that BendableSound offers over a keyboard piano 

commonly used during TIMP-NMT sessions for children with severe autism? 

5.1 Formative study 

To answer the first two questions, we first conducted a formative survey-study to understand teachers’ 

perception towards the design of BendableSound and discuss potential improvements to the design 

of BendableSound. 

5.1.1 Participants 

We recruited 18 teachers working at Pasitos. Although they are not the final users, they are the primary 

caregivers of these children at the clinic and were used as “proxies” to gather their perceptions. This 

“proxy” technique is commonly used when working with non-verbal populations (Tang and 

McCorkle, 2002)5.  

5.1.2 Procedure 

First, teachers used the first activity of BendableSound to get a better sense of its interaction 

experience. After that, we showcased all the activities of BendableSound and finally, we asked them 

to fill two questionnaires. First, teachers completed the System Usability Scale (SUS) (Brooke, 2013) 

survey using a 5-point Likert scale to measure user satisfaction. Then, they completed the User 

Experience Questionnaire (UEQ) (Laugwitz et al., 2008) using a 7-point Likert scale with bipolar 

items. We selected the SUS questionnaire as it is generic, quick, easy to administer and provides a 

                                                      
5 A practice commonly used when working with non-verbal populations 
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high-level usability perceptions from users. We selected the UEQ questionnaire as it enables a quick 

assessment of the user experience and has been released in Spanish (Rauschenberger et al., 2013). 

These surveys also had been widely used to evaluate usability (Bangor et al., 2008; Meldrum et al., 

2012; Schonauer et al., 2011) and user experience (Nawaz et al., 2015; Santoso et al., 2014) of 

interactive interfaces. We also decided to use these questionnaires as both provide a benchmark of 

data that enable us to compare our results with those available in the literature. We analyzed the results 

from each questionnaire separately using the formulas specified by each survey (Brooke, 2013; 

Laugwitz et al., 2008). 

5.2 Deployment study 

To answer our last two questions, we conducted a deployment study at Pasitos. 

5.2.1 Participants 

Twenty-four children with severe autism6, between three to eleven years old, but with the same 

developmental age, were voluntarily enrolled in the study (Avg. age = 6.6; SD = 2.17). Most of the 

participants were non-verbal, had attention problems, presented multiple sensory and cognitive 

impairments, and were not following a pharmacological treatment. None of the participants in the 

study had taken music lessons and had neither previously interacted with the piano nor with 

BendableSound. So, both conditions were novel experiences to the participants. We hired one 

psychologist trained in music therapy techniques who conducted the therapy sessions. 

5.2.2 Setting up and installation 

We equipped two therapy rooms at Pasitos with two video-cameras to monitor user’s interactions, 

reactions, and movements. In the first room, we deployed BendableSound (Figure 5-left). In the 

second room, we removed all the potential available stimuli, like furniture or visual supports, and 

placed a keyboard piano on top of a table (Figure 5-right).  

                                                      
6 For simplicity of reading, we will now refer to the children with severe autism participating in our evaluation study as participants. 

 

Figure 5. The installation of the two conditions. A mockup representation of the BendableSound room showing the hardware and software 

installation of BendableSound (left). A mockup installation of a traditional TIMP-NMT showing the installation of the keyboard piano and 

the laser light (right) 
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5.2.3 Procedure 

All parents consented to the study on behalf of their children. The psychologist received a 15-minutes 

training to learn how to use BendableSound. Then, we conducted a 6-days within-subjects study. 

Participants attended a 5-minute music-therapy session, randomly rotating through the following two 

conditions: 

 Using the first activity of BendableSound: participants interacted in a free manner for 5 minutes 

with BendableSound removing the black layer to discover the space nebula. 

 Using a piano keyboard: participants freely interacted for 5 minutes with a keyboard piano 

commonly used during TIMP-NMT sessions at Pasitos 

All sessions were video recorded, and logs were stored indicating participants’ interactions with the 

fabric, for a total of 4 hours (2 hours per condition). Every day, upon completion of the experimental 

portion of the study, the psychologist was briefly interviewed (Total time = 53.9 min; Avg. = 8.91 

min). These short and semi-structured interviews allowed us to follow up on anything that had 

happened during the session and included questions to uncover the differences between using the first 

activity of BendableSound and the keyboard piano.  

Data analysis followed a mixed-method approach. To analyze video recordings, we used techniques 

inspired by structured observation (Mintzberg, 1970). Three researchers went through all the videos 

and systematically scored participants’ behaviors following a pre-defined coding scheme (Table 3); 

The Inter-observer agreement, among these three researchers, was acceptable (Fleiss kappa Avg. κ = 

0.88). We estimated, for each participant and under each condition, the total and descriptive statistics 

of the time and frequency participants spend executing each behavior. Then, as our data distribution 

was non-parametric, we used the Wilcoxon Signed Rank-test to compare each behavior. 

All interviews with the psychologist were recorded, transcribed and analyzed together. We used 

deductive analytical approaches, based on our initial questions focused on understanding the overall 

interaction experience of BendableSound. We used deductive coding to examine how observed 

behaviors and reported perceptions supported or contradicted our research questions. We additionally 

used inductive approaches to allow new themes to emerge from our data.  To support our inductive 

analysis, we used open and axial coding, and affinity diagramming (Charmaz, 2006). Finally, we 

examined the themes regarding our inductive analysis to explain the results of our deductive analysis. 

Only one researcher coded the data, grouping the interview quotes that uncovered potential emerging 

themes. To analyze data, the researcher used the software atlas.ti. 

Table 3. Brief definition of the codification scheme used to code the target behaviors 
Category Target behavior Definition Type of 

measurement 

Users’ 

Behaviors 

Attention  On task  The child is engaged and focused on the activity Time 

Off task  The child is distracted Time 

Emotions  Negative  The child is crying (sad), frowning (angry), and screaming (fear).  Time 

Positive  The child is smiling (joy), clapping (happy), laughing (amused),  Time 

None  The child does not express any emotion Time 

Users’ 

movements 

Hand 

Finger The children use one or more fingers to push the fabric Frequency 

Palm The children use one or both hands palms to push the fabric Frequency 

Clenched fists The children use one or both clenched fists to push the fabric Frequency 

Feet Kick The children kick the fabric with their foot Frequency 

Head Immerse The children use the whole head to push the fabric Frequency 

Push with the face The children use their face to push the fabric Frequency 

Back Slip down The children slip down backward over the fabric.  Frequency 
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6 Results 

Overall, our results indicate teachers found the design of BendableSound to be “usable” and 

“attractive” and that both teachers and students found it “easy to use”. Our results also show 

BendableSound might have potential therapeutic benefits regarding attention and motor development.  

6.1 Teachers’ satisfaction of the design of BendableSound 

According to the SUS questionnaire (Brooke, 2013), on average, teachers agreed that the design of 

BendableSound was “acceptable” (Avg. = 72.637, Figure 6), also, 83% of teachers rated it as above 

average (Brooke, 2013). This result suggests that the usability of BendableSound is above average 

compared to a benchmark of data from other studies using the SUS survey (Brooke, 2013). We found 

that 50% of teachers are satisfied with the design of BendableSound rating it as “good” and 11.1% 

rated it as “excellent”. All the teachers found the new design of BendableSound is “easy to use”. 

These results show that our new design of BendableSound is “good” and “usable”.   

6.2 Overall user experience 

Overall, our results show BendableSound has the potential to provide a more natural interaction and 

an intuitive multisensory experience. All teachers found BendableSound “attractive”, “novel” and 

with an appropriate “learnability8”. Our results from our deployment study suggest elastic 

multisensory surfaces promote the discovery of new haptic experiences, and children with severe 

autism found BendableSound “easy to use”, “engaging” and “novel”.  

6.2.1 Teacher’s perceptions of the user experience of BendableSound 

According to the UEQ survey (Rauschenberger et al., 2013), teachers were very satisfied with the 

new design of BendableSound as it meets their expectations (see Table 4 for more details of the 

                                                      
7 The result of the questionnaire is a value between 1 and 100, where 1 signifies that a user found a system absolutely useless and 100 that a 

user found a system optimally useful. Results above 68 signify “acceptable”. 

8 The ability of a user to easily get familiar with the product. (Rauschenberger et al., 2013). 
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Figure 6. System usability scale (SUS) score per teacher of the design of BendableSound (Scores above 68 signifies “acceptable”). 
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measurements and their score).  Analyzing our results by theme (see the scales in Table 4), we found 

out teachers scored attractiveness very high (Avg. = 2.25 out 3) and the categories related to novelty, 

dependability, and learnability were scored as high (Avg. above 1.5). These results could be partially 

explained because having multisensory environments in clinics for children with autism in Mexico is 

very expensive and most clinics lack such support. Thus, BendableSound was perceived highly novel. 

In contrast, efficiency was scored below average. This might mean that teachers could feel a little 

intimidated to use music during their everyday practices as they lack musical training. 

Table 4. Teachers responses to the UEQ questionnaire to measure BendableSound design (n=18; means are scaled from -3 to +3. Thus, -
3 represents the most negative answer, 0 a neutral answer, and +3 the most positive answer). 

Confidence intervals (p=0.05) per scale 

Scale Mean Std. Dev. Confidence interval 

Attractiveness 2.25 0.77 1.89 2.61 

Learnability 1.85 0.87 1.45 2.25 

Novelty 1.69 1.19 1.15 2.24 

Dependability 1.57 0.78 1.21 1.93 

Stimulation 1.40 1.20 0.85 1.95 

Efficiency 1.39 0.76 1.04 1.74 

Comparing our results with a benchmark of data from other studies using the UEQ to evaluate 

interactive interfaces (Laugwitz et al., 2008); in general, our design was perceived by users as  “Good” 

(Figure 7). Particularly, teachers agreed that BendableSound excels in attractiveness and novelty as 

both variables were scored as “Excellent”. These results could be partially explained because teachers 

appreciated the interaction experience provided by the fabric and its multi-sensory stimuli. Our results 

also indicate teachers found BendableSound “easy to use” and are motivated in using it, as the 

variables of learnability, dependability, and stimulation were scored as “Good”. This could be 

partially explained because teachers found the combination of open-ended activities and goal-oriented 

tasks to be appropriate to support their therapeutic practices. 

6.2.2  Use and adoption 

The psychologist reported that participants found BendableSound “easy to use” by rapidly learning 

how to interact with the fabric and perceiving it as a useful tool. 

“Performing [the activity] was really simple and smooth [referring to the use of BendableSound]. 

BendableSound facilitated children to play music …” psychologist9.  

                                                      
9 All the quotes were transcribed by a non-native English speaker and the psychologist was non-native English speakers. 

Figure 7. Results of the UEQ relative to the benchmarks 
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Our results reflect that for around 80% of the time, in both conditions, our participants did not exhibit 

emotions (Table 5). From those who exhibited emotions, 71%10 participants exhibited positive 

emotions using BendableSound and 58% of participants exhibited positive emotions when playing 

with the Piano (p=0.35, Figure 8). For both conditions, close to 5% of the time participants exhibited 

a negative emotion (p=0.52). Our statistical analysis shows no significant differences between the 

two conditions when analyzing positive and negative emotions. But according to the psychologist’s 

perception, when using BendableSound, participant’s emotions were mostly positive and more 

intense and visible (Figure 8). 

“Some participants [that could pronounce some words] said some expressions of astonishment like 

‘wow’ or ‘thanks’. […] I think it was due to the multiple sensory stimuli available in the fabric, the 

game, the stars and everything available in the fabric. The fabric is what children like the most” 

psychologist  

Table 5. Comparative of the positive and negative emotions participants exhibited using BendableSound (BS) and the Piano, on average. 

Note that the total exceeds 100% because participants could exhibit both positive and negative emotions on each condition 

 Exhibited an emotion  Positive emotion Negative emotion 

Piano BS Piano BS Piano BS 

% Participants 75% 83.33% 58.33% 70.83% 33.33% 20.83% 

Total time (sec) 997 1471 814 1074 363 397 

Avg. Time (sec) 49 61 34 45 15 17 

Avg. %  time 16.34% 20.43% 11.31% 14.92% 5.03% 5.51% 

When we queried the psychologist about the reasons for some participants exhibiting negative 

emotions when using BendableSound, she attributed such negative behaviors to the lack of tolerance 

of children with severe autism to disruptions to their routine and their fear of being exposed to new 

and novel experiences (American Psychiatric Association, 2013). Most negative emotions 

participants’ exhibited when using the piano were related to being bored and frustrated (Figure 8).  

                                                      
10 Percentages were calculated as a relation of the number of participants exhibiting the described behavior divided by the 

24 children with autism who participated in the study. 

Figure 8. Participants in both conditions. Participant 3 laughing and enjoying the use of both BendableSound (left-up) and the keyboard 
piano (left- down). Participant 15 fighting with the therapist when using Bendable Sound (center-up) and being calmed and focused 

when using the keyboard piano (center-down).  Participant 6 engaged and enjoying the use of BendableSound (right- up) but crying 

and refusing to use the keyboard piano (right-down) 
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These results show that BendableSound offers an enjoyable experience and, for most participants, the 

multi-sensory experience worked. But, open questions remain concerning how BendableSound could 

adapt its stimuli according to the context of use (e.g., by reducing the stimuli for those children that 

need less stimulation). This will demand not only to personalize the visualizations and the sounds 

available in BendableSound but also to propose new methods for emotion recognition. We believe 

the body language and gestural interaction of the children using BendableSound could be used to 

infer their emotional state.  

6.2.3 The interaction experience 

We observed different interactions when participants used BendableSound. Participants enjoyed 

swiping and touching the fabric, either by using one finger, multiple fingers or their open hand (Figure 

9). But they also used their whole body or specific body parts, like their heads or their back, to 

discover and explore movements they cannot do with traditional touch-based surfaces (Figure 9). 

Natural and novel interactions are important to help participants voluntarily and individually discover 

and explore new ways to interact with an interactive surface. The psychologist made several 

references to the importance of facilitating the interaction with the multisensory stimuli during 

therapies, 

“The interaction [with BendableSound] is easy and enabled participants to interact with the fabric 

[…] [BendableSound] encouraged children to take on the initiative to uncover new and novel ways 

to interact with the music and with the fabric” Psychologist 

The natural interaction and the combination of haptic, tactile, auditory, and visual sensations offered 

by BendableSound positively work together to increase children’s curiosity and improve their overall 

experience during therapy sessions. Research has shown multisensory environments using haptic 

sensations may be better accepted by children with autism (Sitdhisanguan et al., 2012). Our results 

show it is important to use a variety of multisensory stimuli to provide a richer sensory stimulation 

for children with autism during therapies. 

6.3 Potential therapeutic benefits 

BendableSound helps children with autism to maintain their attention during therapy. Participants 

were able to practice different movements exploring the use of different parts of their body to interact 

with BendableSound, these results might indicate BendableSound could have therapeutic benefits 

regarding motor development and control of motor skills.  

Figure 9. Participants with autism using different body parts to interact with BendableSound. From left to right, a girl using her hand to 

push the fabric; a boy pushing with both hands; a boy pushing with his head; a boy sitting to push the fabric with almost the whole body; 

a boy throwing in the floor watching and touching the fabric. 
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6.3.1 Attention and engagement 

79% of the participants were paying more attention to the session when using BendableSound than 

with the piano and, participants were 7% more time focused on the therapy (p=0.02). We found that 

BendableSound excelled the piano in improving the sustained attention of participants. Participants 

doubling the time they stay focused using BendableSound (2.13 more) than with the keyboard piano 

(Table 6, p = 0.003). 45% of the participants spend more than 1 minute consecutively engaged in the 

therapy when interacting with BendableSound (25% of them spend more than 2 minutes). In contrast, 

only 16% of participants stayed focused when using the Piano (only 8% of them spend more than 2 

minutes) (Figure 10). 

Table 6. Comparative of the sustained attention that participants spend in both condition. 

 Sustained Attention 

Piano BendableSound 

Avg. (sec.) 40.14326 85.8654 

Avg. of attention periods (#) 5.5 8.45 

Children spend >60 sec. (#)  4 11 

The psychologist attributes this improvement in participants’ attention to the BendableSound’s 

multisensory stimuli: 

“I think [participants] like [BendableSound], they like to see the stars and hear the sounds. 

BendableSound is something new, they like to erase the black layer, they have the goal of fully 

illuminating the fabric. This represents a challenge for them …” Psychologist. 

“[With the piano, participants] were frustrated … and I do not think their frustration was because of 

the keyboard or the piano itself; rather because the piano did not catch their attention like 

[BendableSound] does. As a consequence, they were most of the time distracted during the therapy” 

Psychologist 

Figure 10. Average of time in seconds that participants spend focused on the therapy continuously using piano against using 

BendableSound (BS). 
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Our results show BendableSound captures participants’ attention in a more effective way than the 

piano. As a consequence, participants were more time exposed to sounds and music, increasing their 

chances to improve their engagement and adequately supporting a TIMP-NMT session. These results 

could indicate that BendableSound provides appropriate multi-sensory stimuli to maintain 

participants’ attention during open-ended activities. Similar results in the literature show that a 

multisensory environment can improve engagement and attention of children with autism during 

therapies (Parés et al., 2005; Ringland et al., 2014). However, as the evaluation was conducted in a 

short period of time, open questions remain to study if these results are maintained in long-term and 

how participants’ attention change after the novelty effect wears off.   

6.3.2 Potential motor development  

Although on average, participants performed 1.7 more gestures using BendableSound than with the 

piano, there was no significance difference (p = 0.33, Table 7). 99% of such gestures performed by 

participants involved the use of their hands, but 87% of participants tried to use their back, head or 

feet when interacting with BendableSound. Only 33% of the participants tried these gestures when 

using the Piano. Participants performed almost four times more movements using their back, head or 

feet with BendableSound than with the Piano (p = 0.01).  According to the psychologist, she believes 

that these novel movements could have a potential impact on gross motor development and strength 

control:  

“I believe BendableSound [could have a potential impact] on gross motor skills, [children] have to 

push stronger, and sometimes they pushed the fabric in a softer way. Children also made figures on 

top of the fabric with their hands, these exercises could help them in the development of motor skills.  

I love this part!” Psychologist 

Table 7. Comparative of the frequency of body parts that participants perform using BendableSound (BS) and the Piano. Note that we 

compare hands movement and we group foot, back, heat as using different body parts. 

We also observe that participants varied their posture that could potentially help them to improve their 

balance and BendableSound may support the practicing of physical exercises that demand a change 

in their gait.  

Overall, these results might indicate that BendableSound promotes the exploration of novel 

interaction gestures. According to the psychologist perception, children with severe autism may also 

gain a better understanding of movement concepts using BendableSound. This could potentially 

evolve into a deeper understanding of their movements and improvements in their sense of agency as 

other have pointed out with other populations (Bellan et al., 2017; Longo and Haggard, 2009). 

However, most motor therapeutic interventions for children with severe autism are highly structured 

filled with prompts and visual supports to guide the movements of users. Our design was instrumental 

in integrating both open-ended and goal-oriented tasks that could potentially encourage the repetition 

of these type of interactions. 

 Using Hands Using different Body Part Total 

Piano BS Piano BS Piano BS 

Total 761 803 19 75 780 878 

Avg.  31.708 33.458 0.79 3.125 32.5 36.58 

SD 15.81 14.20 1.18 3.77 16.04 16.31 
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7  Implications for designing multisensory deformable surfaces 

Reflecting on these results, we have identified a set of design recommendations for Ubicomp and 

HCI researchers interested in developing multisensory interactive surfaces to support therapeutic 

interventions for challenging populations.   

7.1 Providing adequate feedback of the haptic experience  

The use of multisensory stimuli to provide users with appropriate feedback when physically 

manipulating the fabric could enable a meaningful and a better haptic experience. But creating such 

“representation” of the haptic experience is not an easy task, especially when the design aims to 

support vulnerable populations with sensorimotor problems and sensory disorders.  The way the user 

taps, touches or manipulates the surface should also modify the multisensory stimuli to give users a 

sense of control over their interactions and a complete experience of the effects of such interactions. 

This sense of agency has been suggested that it mainly arises from processes serving motor control 

(Moore and Fletcher, 2012), and facilitates the sensory processing and motor responses (Longo and 

Haggard, 2009).  

In our case, for example, we decided to use a spandex fabric as a surface to take advantage of the 

haptic feedback provided by the fabric. The spandex fabric helped users to realize other potential 

interaction modalities with digital information; like understanding that digital artifacts can bend and 

“computer screens” could be soft and may be pushed. These interactions are most of the time 

impossible or very challenging to explore when using rigid surfaces. In BendableSound users can feel 

how much pressure they are using when touching the fabric even when they use different parts of 

their body.  

In line with recent research in ubiquitous computing (Branje and Fels, 2014; Follmer et al., 2012; 

Giordano and Wanderley, 2013), we propose to take advantage of the haptic sensations provided by 

either using active “vibrotactile” or passive “textured” materials when designing multisensory 

surfaces. However, open questions remain to combine active and passive stimuli to improve the user 

experience and create novel haptic experiences. 

7.2 Balancing independence vs caregivers guidance 

Most of the interventions for people with disabilities are either behavioral or developmental (Ospina 

et al., 2008). Behavioral interventions are highly structured following discrete trial procedures heavily 

guided by therapists. For example, to improve motor performance, the same movement should be 

done repeatedly (Schmidt and Lee, 1988). In contrast, developmental interventions are more 

pragmatic enabling the patient to guide the therapy and demanding from therapists to follow 

children’s interests (Ospina et al., 2008). Both paradigms provide share commonalities, such us, a 

systematic progression towards goals. The success of any approach will depend of the needs and 

preferences of each child, and the therapists’ experience to balance both paradigms. 

For example, BendableSound combines both open-ended and goal-oriented activities to enable the 

user to be independent but at the same time allowing the therapist to guide the user when appropriate. 

The open-ended activities available in BendableSound mimic improvisation techniques used during 

TIMP-NMT sessions including the discovery of the background where users can manipulate the 

stimuli according to their interests. In contrast, to promote repetition it is necessary to provide more 

guidance to patients. Repetition is necessary to improve movement trajectories and improve 

movement control (Büitefisch et al., 1995; Sterr et al., 2002). In this stage, the role of the stimuli 
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guides children’s activities; for example, in BendableSound the rocket position should invite the 

patient to use their left, right or both hands to catapult the rocket and collect the musical notes. 

We recommend that multisensory surfaces must combine both open-ended and goal-oriented 

activities. And the multisensory stimuli must be arranged accordingly. However, there are open 

research questions around how to transition gradually from heavily guided interventions to 

interventions without prompts. 

7.3 Promoting natural and simple interactions 

One of the most popular ways to interact with computers is by using a mouse and a keyboard; both 

input devices, however, may inhibit our natural abilities of interaction (Malizia and Bellucci, 2012). 

Even though the mouse is a revolutionary device that changed how we use computers, it is not 

‘natural’. Users must learn how to control the mouse, and this could be challenging, especially for 

children, older adults, or people with disabilities. Natural user interfaces try to mimic how humans 

interact in the real world. (Malizia and Bellucci, 2012).  

In our case, BendableSound, as an elastic multisensory surface, allows users to use gestures to vary 

the amount of pressure used when touching the surface (Müller et al., 2015) and explore novel ways 

of interaction. This gestural interaction model invites users to grasp, push, or bend the surface, which 

in turn lets them discover multisensory interaction experiences. Our interaction model has a dual 

functionality; it is both engaging and appropriate for motor development. So children could get the 

therapeutic benefits while having fun. 

Using multisensory environments could provide a natural setting that allows a greater and more 

efficient learning practices (Shams and Seitz, 2008), even for children with autism (Parés et al., 2005; 

Ringland et al., 2014). Interactive multisensory surfaces are ideal to present immediate feedback to 

children with autism that can be introduced and regulated gently (Kientz et al., 2013), allowing 

children with autism to acquire successfully skills (Parés et al., 2005; Ringland et al., 2014). An 

interactive multisensory surface should incorporate a gameplay dynamic mimicking the type of 

rewards and prompts therapists gives to patients. Having an appropriate gameplay dynamic would 

help users to explore the surface, uncover new features, and solve challenges more directed to 

improve their skills. 

8  Conclusions and future work 

In this paper, we describe the co-design process we followed to develop the BendableSound 

prototype. Through both a formative and a deployment study we found out BendableSound is easy to 

use, useful and may have therapeutic benefits for both attention and motor development. 

From a design standpoint, we learned that the use of novel haptic experiences combined with auditory 

and visual stimuli could help children with autism to stay focused in the therapy and allowed them to 

uncover novel ways of interaction. We learned the importance of using appropriate stimuli when 

designing elastic multisensory surfaces. Teachers suggested that we could include more challenges to 

allow children more rapidly master the physical exercises and encourage the use of BendableSound 

in long-term. For example, auditory stimuli may include timbre variations. The visual stimuli could 

include a wide range of themes such as a forest- or an ocean-based theme, and the haptic sensations 

could involve a broad range of textures. It will be interesting to explore the integration of other 

mechanisms from other techniques used in NMT. For example, mimicking activities from the 

Patterned Sensory Enhancement technique (Thaut and Hoemberg, 2014) could demand the use 

sonification techniques to be incorporated into elastic multisensory surfaces.  
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From a technical standpoint of view, our results indicate psychologists perceived the installation of 

BendableSound in the clinic to be too complicated and not portable enough. Currently, we are 

working with industrial designers to uncover other potential materials and arrangement of our 

infrastructure to improve the set-up of BendableSound. Even though safety issues are a common 

problem when working with vulnerable populations and interactive technology, as others have 

reported (Vega-Barbas et al., 2015); we regret the lack of advances in technology that enable us to 

come up with a set up that is truly standalone, portable and easy to deploy. Overall, the development 

and deployment of elastic multisensory surfaces are heavily limited due to the lack of advances in the 

hardware currently being used for projection and the sensing hardware to detect where the user is 

touching.  

Although the research reached our goals, we observed some unavoidable limitations. This research 

was conducted in only one school-clinic of children with autism. Therefore, to generalize the results 

for other populations, the study should be replicated with a much larger population. Additionally, 

children with autism only play once with BendableSound, then, the study should be replicated in long 

term to avoid the bias due to the “novelty effect”. However, given that the objective of this study was 

not to generalize our findings but to get an overall impression of the potential of BendableSound in a 

particular use case, we feel that our results are valuable for researchers exploring the design space of 

elastic multisensory surfaces to support individuals with disabilities. As future work, we plan to 

conduct a longer deployment study to test the efficacy of using BendableSound as a therapeutic 

intervention to improve the self-regulation of the strength of children with autism, and investigate 

other clinical and educations benefits.  
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