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Exploring the efficacy of transfer learning 
in mining image‑based software artifacts
Natalie Best1, Jordan Ott2 and Erik J. Linstead1* 

Introduction
Despite the recent successes of deep architectures, such as convolutional neural net-
works, on software engineering data, the lack of sufficiently large training sets for some 
applications continues to be a substantial hurdle. This requirement has led researchers 
to label tens of thousands [1] and even millions of images [2] by hand. Recent work has 
shown that this precludes the use of many off-the-shelf convolutional neural network 
architectures, requiring empirical software engineering researchers to rely on custom 
(more compact) architectures [3]. Another possible solution, however, is to leverage 

Abstract 

Background: Transfer learning allows us to train deep architectures requiring a large 
number of learned parameters, even if the amount of available data is limited, by 
leveraging existing models previously trained for another task. In previous attempts 
to classify image-based software artifacts in the absence of big data, it was noted that 
standard off-the-shelf deep architectures such as VGG could not be utilized due to their 
large parameter space and therefore had to be replaced by customized architectures 
with fewer layers. This proves to be challenging to empirical software engineers who 
would like to make use of existing architectures without the need for customization.

Findings: Here we explore the applicability of transfer learning utilizing models 
pre-trained on non-software engineering data applied to the problem of classifying 
software unified modeling language (UML) diagrams. Our experimental results show 
training reacts positively to transfer learning as related to sample size, even though the 
pre-trained model was not exposed to training instances from the software domain. 
We contrast the transferred network with other networks to show its advantage on 
different sized training sets, which indicates that transfer learning is equally effective to 
custom deep architectures in respect to classification accuracy when large amounts of 
training data is not available.

Conclusion: Our findings suggest that transfer learning, even when based on models 
that do not contain software engineering artifacts, can provide a pathway for using 
off-the-shelf deep architectures without customization. This provides an alternative to 
practitioners who want to apply deep learning to image-based classification but do 
not have the expertise or comfort to define their own network architectures.
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transfer learning to deal with large parameter spaces. Through this process models learn 
in one domain—where data is plentiful—and transfer this knowledge to a domain where 
data is scarce.

One significant limitation in deep learning is data dependence. As computational 
ability and available algorithms have improved significantly over the years, many deep 
learning techniques are still held back by the need for massive amounts of labeled truth 
data. As architectures increase in depth and number of parameters, the amount of 
data needed to train networks increases as well. When large datasets are not available, 
or are difficult to curate, researchers must turn to other methods in order to improve 
their models. Other possible solutions to small amounts of data have been investigated 
including low shot learning, meta-learning, and data augmentation [3]. Although, even 
with these other methods to combat small datasets, the bottleneck of large parameter 
spaces and the computation time needed to train a deep neural network remains. As 
an example, the very deep convolutional networks developed by the Visual Geometry 
Group at the University of Oxford, take about 2–3 weeks to fully train the 130–140 mil-
lion parameters in a network, depending on the architecture [4].

In this paper, we explore transfer learning as a way to combat the issues related to lim-
ited data. Many publicly-available, state-of-the-art models already exist and have been 
trained on huge amounts of data including VGG [4], AlexNet [5], ResNet [6], and Incep-
tion [7]. These networks have repeatedly been applied to different tasks from which they 
were originally trained [1, 8–11]. We will also apply an off-the-shelf architecture, fine 
tuning it to our task, to show the advantages of knowledge transfer when working with 
limited data in the software domain. We focus on the classification of unified modeling 
language (UML) diagrams into class and sequence diagrams from a publicly-available 
dataset [12]. This dataset has been previously leveraged to demonstrate barriers that 
arise when applying deep architectures with vast parameter spaces.

The remainder of this paper will be structured as follows. In the next section, we dis-
cuss the transfer learning technique, as well as how to apply it and how to assess its 
results. In our data section, we detail the dataset used in this study and how the images 
were prepared. The neural network architectures and methods used in our experiments 
are described in the Methods/Experiments section. We then report the results for each 
of these architectures at increasing levels of training data. In our final two sections, we 
discuss various applications of transfer learning and conclude the paper.

Transfer learning
Transfer learning is the process of taking a model trained for one task, where data is 
more readily available, and applying it to a new but similar task [13]. Traditionally, given 
two separate tasks, we would have to obtain two distinct training sets and build models 
for each task. Unfortunately, large amounts of data in every domain are not always avail-
able, and in a lot of cases are not always needed if two tasks are similar enough.

When considering how humans learn to do new tasks, they rarely have to start at 
the absolute beginning—tabula rasa—and typically are building off of similar previ-
ous experiences. If one tries to learn a new language, or how to play a new game, one 
draws on prior knowledge and adapts to complete the task at hand. This is core idea 
of transfer learning; to learn general features in one domain and apply those features 
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to another, similar domain. In our case, we transfer general features learned when the 
VGG network has been trained on the ImageNet [14] dataset and fine tune it to the 
task of UML classification. We choose this classification task for our experiment for 
three reasons. First, the work in [3] used this same data to demonstrate the inability 
of deep networks such as VGG-16 to learn features when training samples are lim-
ited, requiring custom architectures to be built. Second, UML is sufficiently dissimilar 
to other objects found in ImageNet that we can be confident that pre-trained mod-
els will not have already learned features directly applicable to the classification task. 
Finally, the automated classification of software artifacts is an essential task when 
curating data on an Internet-scale as is typically the case in empirical software engi-
neering studies. In our study, we will implement the same networks used by Ott et al. 
as baselines [3].

When applying transfer learning, a decision must be made to determine how much 
will be borrowed from the original model. It is common practice to take an established 
architecture and freeze some amount of the original layers, while fine tuning the rest to 
the specific needs of a problem. As a result, only the unfrozen layers are trained—result-
ing in far fewer learnable parameters which decreases the size of the required labeled 
dataset for training. The amount frozen and fine-tuned is variable depending on the task 
at hand. We will explore two variations on the VGG-16 architecture, as well as a shallow 
CNN in this paper. In one VGG network, we fine tune all available weights and see poor 
accuracy when dealing with small training samples due to the large parameter space that 
must be learned. In the second, we freeze the majority of weights while fine tuning only 
the final layer and see accuracy near 90% even at very low numbers of training samples.

In general, when implementing transfer learning, we look in three areas for possible 
superiority over other networks, as outlined in [15]. First, we may find a higher start-
ing accuracy, at the beginning of training, before the model has been refined further. 
Second, we could see a steeper or faster rate of improvement of accuracy as training 
continues. Finally, we look for a higher asymptote, or greater accuracy toward the end 
of training. In our results, we find that the frozen VGG network exhibits higher accu-
racy in all three of these areas over the pre-trained VGG and a shallow CNN.

Data
From the Lindholmen Dataset [12], an initial corpus of 14,815 portable network 
graphics (PNG) images of UML diagrams is obtained. That is then reduced to 13,359 
images when only active UML diagrams are considered. Of the active diagrams, there 
were 11,319 Class Diagrams and 2040 Sequence Diagrams. We resize all images to 
250 × 250 pixels for uniformity. To resize a file, we sample the pixels depending on 
how large the original image was. For example, given a 1024 ×  1024 pixel image, 
every 4th pixel would be used in the x and y direction, or 1024 / 250 = 4 . This dataset 
was chosen for its small size and its relation to software repositories. The VGG-16 
networks we include in our tests have been trained on the ImageNet dataset which 
includes over 1,000,000 natural images belonging to 1000 categories. Although the 
natural images of ImageNet and UML diagrams exist in quite different domains, we 
still see improvement in classification when using knowledge transfer.
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Methods/experiments
In our experiments, we compare three convolutional neural network (CNN) architec-
tures on their classification ability of UML diagrams. First, we use a simple network with 
four convolutional layers, max pooling, dropout, and global average pooling layers fol-
lowed by fully connected dense layers for classification. This network contains 2,260,000 
trainable parameters. Two other networks explored are variations of the popular VGG 
network with sixteen convolutional layers modified to fit the size of our input data [4]. 
The first VGG we test starts with the original weights and we then allow all 14,715,000 
trainable parameters to be updated as we train for our task. Conversely, in the second 
VGG, we freeze the majority of layers, and then modify and train only the last layer con-
taining only 1026 trainable parameters. The four layer CNN and VGG architectures are 
shown in Fig. 1. All networks are implemented in Keras with a TensorFlow backend.

These three models were trained as binary classifiers to differentiate UML diagrams as 
either sequence or class diagrams. To show the advantages of transfer learning, we incre-
mentally increase the available training data in two tests. We begin with 50 samples of 
each class and increase by increments of 250 to 1800 samples. A second test to show the 
accuracies at very low samples is performed beginning with 5 samples and increasing by 
increments of 5 to 50 samples. Upon incrementing the sample size, each network is reset 
to the same original weights.

Each model was trained for a minimum of 5 epochs and stopped when the accuracy 
had not improved after a patience of 5 epochs. We implemented fivefold cross validation 
for robustness. It is common practice to include a patience in order to control training 
time [16]. Therefore, when a model shows no signs of improving, and we have met an 
established minimum number of epochs, we are free to stop. For example, in our test 
of the 1800 diagram sample size, our frozen VGG network quickly reached an accuracy 
of around 93%, on each fold, after an average of only 15 epochs. Continuing to train 
would likely not improve our model by any significant amount and could even lead to 
overfitting.

Fig. 1 Visuals of the networks used. a The four convolutional layers, interspersed with max pooling for 
downsampling followed by dropout, max pooling, and fully connected layers for classification. b Standard 
VGG network with sixteen convolutional layers
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The code and data to train all models, as well as the learned models themselves, are 
available publicly at: (removed for anonymity) We hope they, in turn, will be utilized for 
transfer learning in future deep learning applications on software data.

Results
Figure 2 shows the test accuracy achieved by each network from 50 to 1800 samples of 
each class, or 100 to 3600 total images respectively. Both the frozen VGG and 4 layer 
CNN are eventually able to classify the given diagrams with about 90% accuracy given 
a sufficient amount of samples. Although, we see a significant difference in the starting 
accuracies as well as faster convergence.

However, we are also interested in the best accuracy achievable with the least amount 
of data. The frozen VGG is able to classify with an about 80% accuracy after only 100 
total training samples while the 4 layer CNN falls short at about 52% accuracy. As can be 
expected, the VGG that was left free to train the massive number of parameters within 
its network, also performs poorly, barely reaching 50% accuracy. In which case, it would 
be no better than simply flipping a fair coin to classify each diagram. The tiny amount of 
training data given to this network is, of course, nowhere near enough to train all 14 mil-
lion parameters.

Figure 3 shows the training accuracy for all three networks when given 5 to 50 samples 
of each class, or 10 to 100 total images. We include this figure to demonstrate the supe-
riority of the frozen VGG over both networks especially at very low samples. Even with 
only 10 total samples, the frozen VGG is able to classify the UML diagrams with an aver-
age 73% accuracy, compared to an accuracy of only 50% for both other networks.

Class activation mapping allows us to investigate further what parts of an image a con-
volutional network uses to make its prediction, as well as ensure those features make 
sense [17]. Using the Keras Visualization Toolkit [18], we produced CAM results for one 
UML sequence diagram and one class diagram. CAM results are shown in Figs. 4 and 5 
for the frozen VGG-16 network trained on 1800 sample images from each class. CAM 

Fig. 2 Displayed above is the number of training samples from each category, from 50 to 1800, vs the 
validation set accuracy achieved by each model. For robustness, 5 trials were run for all training samples 
tested. The color bands indicate the distribution of results from the 5 trials
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produces a heat map highlighting the regions most heavily weighted by the network. We 
are able to see clearly that the network learns features specific to sequence and class dia-
grams. Specifically, in class diagrams, the boxes containing class attributes and methods 

Fig. 3 Shown above is the accuracy achieved by each network at the corresponding sample sizes, from 5 to 
50 samples in each UML category. For robustness, 5 trials were run for all training samples tested. The color 
bands indicate the distribution of results from the 5 trials

Fig. 4 Class activation mapping prediction for a selected UML class diagram, original image on the left, 
resized image in the middle, heatmap indicating significant features on the right

Fig. 5 Class activation mapping prediction for a selected UML sequence diagram, original image on the left, 
resized image in the middle, heatmap indicating significant features on the right
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have been highlighted. Conversely, in sequence diagrams, the vertical lifelines are more 
significant.

We also compared the computational cost of training only the last layer of the frozen 
network to the entire unfrozen network. Training time for each model varies based on 
the number of epochs completed but generally, each one of these models can be fully 
trained in 30 minutes. The VGG model with frozen weights averages a little less than 
half a second faster, per epoch, than the VGG model training all layers. The difference 
results from less computations required during the backpropagation of errors in models 
with frozen weights. As the dataset increases in size one can expect the difference in 
time between the two models to increase as more batches are completed per epoch. We 
can also compare our computation time to the computation time needed to train the 
original VGG-16. No doubt the difference in dataset size has an effect in reducing com-
putation time, as the original network was trained on the large ImageNet dataset, but so 
would the number of trainable parameters. Simonyan and Zisserman, the creators of the 
VGG network, report that training a single network took 2–3 weeks depending on the 
specific architecture [4].

Discussion
The classification of UML diagrams has been studied through a variety of machine 
learning techniques. Ho-Quang et al. [19] proposed a logistic regression model using 19 
of their 23 proposed features for classifying UML and non-UML class diagrams (CD). 
When trained on a corpus of 1300 images, their model achieved 96% accuracy for UML-
CD and 91% of accuracy for non-UML CD. Years later, Ho-Quang et al. [19] furthered 
their work to differentiate between diagrams that were hand-made as part of the for-
ward-looking development process (FwCD), and diagrams that were reverse engineered 
from the source code (RECD). However instead of classifying the images directly, the 
authors extract various features and implement a random forest model to achieve 90% 
accuracy in distinguishing the two types of class diagrams. In another study, using a cor-
pus of 1300 UML and non-UML images, Hjaltason et al. [20] trained a support vector 
machine (SVM) with an average classification accuracy of 92.05% . Moreno et  al. [21] 
conducted a similar study to classify web images as UML and non-UML class diagrams 
using a rule based approach. By extracting features from the images, in a corpus of 19000 
web images, their algorithm reached an accuracy of 95%.

While we believe this is one of the first attempts to study the applicability of transfer 
learning to images within software engineering, transfer learning in general has been 
studied in many domains and aided in the development of powerful machine learning 
models. Authors in [22], propose the use of ’bellwethers’, or the software project whose 
data yields the best predictions on all other projects. They argue that a simple transfer 
learner constructed from the bellwhether’s data should be used as a baseline for future 
transfer learning work. In their study, they found that the simple transfer learner yielded 
comparable predictions to other more complex models. Effort estimation is just one area 
within the software domain where transfer learning has proven valuable. In an extension 
of previous work, Kocaguneli et al. [23], explore transfer learning in the field of effort 
estimation and for both the cross-company learning problem and cross time learning 
problem. Similarly, Ying et al. [24] also investigate transfer learning for cross-company 
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defect prediction in software. Another study, takes one step further to include canonical 
correlation analysis into their study of cross-company defect prediction [25]. In physi-
cal applications, such as robotics, training samples can be especially costly, both in time 
and energy costs. In order to learn most efficiently while balancing these costs, transfer 
learning has been employed to predict the performance of physical systems under dif-
ferent configurations [26]. As a result, models do not need to be trained from scratch 
for each time and existing configurations can be adapted with few additional training 
examples.

Shin et al. [8] investigated the effectiveness of CNN architectures and transfer learn-
ing in detecting thoraco-abdominal lymph nodes and classifying interstitial lung disease 
from images. The authors achieve state-of-the art performance and find transfer learn-
ing to be beneficial despite the natural images used to train ImageNet being significantly 
different from medical images. Another study applied transfer learning to four medical 
imaging applications in 3 specialties including radiology, cardiology, and gastroenterol-
ogy [27]. Their experiments transferred weights from ImageNet layer-wise, using none, 
a few, or many layers and found that transferring a few layers improved performance 
compared to training from scratch.

As stated previously, transfer learning in the space of software imagery was motivated 
by the work in [3]. Here the authors showed definitively that deep networks like VGG 
were unable to compete with smaller architectures when labeled data was sparse. A via-
ble workaround was to create custom, shallower architectures that were compatible with 
available data volumes. The work presented here shows that off-the-shelf architectures 
can be used, but demand more efficient learning solutions—specifically the kinds pro-
duced via transfer learning.

The ultimate goal of the work in this paper is to make deep learning and off-the-shelf 
convolutional architectures more available to empirical software engineering research-
ers who have a need to classify software artifacts. While large, labeled datasets are read-
ily available for textual source code, for image-based artifacts such as UML, the curation 
of large volumes of training data continues to be a hurdle. This complicates the use of 
standard deep architectures such as VGG. The results achieved here indicate that trans-
fer learning provides a path forward to researchers who wish to apply deep learning 
architectures to software artifact classification when only modest amounts of data are 
available. Specifically, pre-training with ImageNet using standard VGG architectures 
results in excellent classification performance of class and sequence diagrams despite 
the fact that the ImageNet dataset itself contains no examples of these artifacts. These 
benefits are in addition to those provided by transfer learning when massive training sets 
are available, in particular shorter model training times.

As with all work, there are some limitations to the experimental results presented here 
that are worth noting. First of all, experiments make use of only one data set based on 
UML. In future work, we will apply our transfer learning approach to other image-based 
software artifacts. Secondly, the classification task detailed here is binary, and discrimi-
nates only between class and sequence diagrams. It will be important to generalize this 
work to multi-class classification problems where only small amounts of training data 
are available. Finally, it would also be useful to assess the performance of datasets other 
than ImageNet as a basis for transfer learning.
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Conclusion
Transfer learning allows us to take, in effect, a shortcut in training deep architectures. In 
this paper, we extended previous work regarding the application of machine learning tech-
niques for classification of UML images. Given limited data, it is nearly impossible to train 
a network with the depth and substantial number of parameters as in VGG. However, by 
transferring knowledge learned from one task to another, we are able to tune off-the-shelf 
deep architectures and achieve high classification accuracy, rather than having to design 
new architectures with fewer layers and smaller parameter spaces to learn. Most impor-
tantly, the knowledge that forms the basis of the transfer learning needs no previous expo-
sure to artifacts from the software domain, suggesting that transfer learning can be applied 
broadly to applications of deep learning within empirical software engineering.

Our experimental results have show training is positively effected by transfer learn-
ing even when the number of samples shown to the network is kept small. In contrast, 
even a smaller network with substantially fewer parameters is unable to learn as well. As 
a control, we also tested an off-the-shelf VGG and allowed the entire architecture con-
taining over 14 million parameters to train. As expected, this network failed to improve 
beyond 50% accuracy even when shown the maximum number of samples tested.

In addition to affirming the utility of utilizing transfer learning for mining software 
artifacts, our results suggest that as a research community we should be more proac-
tive in curating machine learning models trained on software data, in addition to the 
software data itself. Such repositories of pre-trained models would allow empirical soft-
ware engineering researchers to apply transfer learning to new applications using mod-
els already tuned using software data of various types.
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