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Abstract

Falls are among the most serious accidents among the elderly leading to increased injuries,
reduced functioning and mortality. In 2009, about 2.2 million nonfatal fall injuries were reported
among the elderly population (CDC, 2010). In this study, eleven community dwelling elderly
(aged 65-84 years) participated in fall risk assessment camp at sterling senior center organized by
Northern Virginia Fall Prevention Coalition (NVFPC). Three custom made wireless inertial
measurement units (IMUs) were attached on trunk and both shanks. All participants performed
postural and locomotor tasks such as sit-to-stand (STS) and timed up and go (TUG). Temporal and
kinematic parameters were obtained. Raw signals obtained were denoised using ensemble
empirical mode decomposition and savistzky-golay filtering. The mean and standard deviation of
TUG time and STS completion time for participants were found to be 11.3+6.6 sec and 3.58+2.07
sec respectively. The high variation in the result may be due to the use of assistive devices (i.e.,
cane and walker) by two participants. The objective of this study is to classify fall prone
community dwelling individuals using non-invasive system. Four participants were classified as
fall prone, three without fall risk and four were at potential risk based on their objective
assessment and task performance. This system provides a platform for identifying fall prone
individuals and may be used for early fall interventions among the elderly.

Keywords

Inertial measurement units; Timed up and go; Ensemble empirical mode decomposition; Fall;
community dwelling elderly

INTRODUCTION

The elderly population is growing at a rapid pace and the senior most baby boomers i.e. born
between 1946 and 1964 will likely turn 65 in 2011[1]. Currently, there are 40 million people
in the US aged 65 and above, and it is expected to double and reach 89 million by the year
2050 [2]. Furthermore, in the 65 years and above age bracket, the “oldest old” i.e. 85 years
and over is projected to increase from 15 percent currently to over one-fifth of the total 65
years and above population by the year 2050 [2]. Falls have been seen to be one of the
leading causes of injury death among the elderly individuals and the most cited cause of
nonfatal accidents and trauma related hospital admissions [3]. Approximately, 2.2 million
elderly individuals underwent treatment in emergency departments in 2009 for nonfatal fall
injuries and around 581,000 were later hospitalized [3]. Fall related injuries can lead to
death, disability, nursing home treatment and direct medical expenses [4, 5]. About 82% of
fall related fatalities in 2008 were in the age group of 65 and above [3]. The direct medical
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costs alone for falls was around $19 billion in 2000 [4], adjusting for price inflation it would
be around $28.2 billion in 2010 dollar terms [3]. Additionally, the number of fall related
accidents have increased significantly from the year 2000 data point further exacerbating the
costs of medical care. Lacerations, hip fractures or head traumas are common injuries faced
by twenty to thirty percent of individuals who experience falls [3]. Fall injuries reduce the
mobility of elderly individuals [6, 7] and pose a significant social and economic cost to
society as a whole. Thus, it becomes imperative to determine fall risk elderly individuals and
introduce early fall interventions among them.

The timed “Up and Go” (TUG) test, designed and developed by Podsiadlo and Richardson
[8] has been used to investigate functional mobility among the elderly individuals. TUG test
consists of day to day movement activities like standing up, walking, turning and sitting
down. Previous research studies which used the TUG test indicate the total time was
different between the two community-dwelling elderly groups - history of falls in the last six
months and no fall history [9]. Thus, the TUG test acts as a good screening tool for
identification of fall risk prone elderly individuals. Sit-to-stand being an important daily life
movement activity [10] is another standard clinical test for elderly mobility [11]. Sit-to-stand
movement has been classified into four stages flexion momentum, extension, deceleration
and stabilization based on kinematic and kinetic events [12] [13]. Age seems to have a
profound influence on standing balance [14] and postural instability has been reported as a
major issue among the elderly individuals [15].

The current study attempted to investigate and classify fall prone community dwelling
elderly individuals using non-invasive systems and procedures like postural stability, sit-to-
stand and timed up and go (TUG).

Data was collected on eleven community dwelling elderly (age 60+8 years). Participants
(height 163.28+12.07 cm and body weight 86.18+22.19 kg ) were asked to perform a timed
up and go task, sit-to-stand using arm-rest and knee support, walking and their postural
stability was determined with eyes open and eyes closed in a senior center facility. All
participants were ambulatory, did not require the use of any assistive devices, and were able
to rise from chair without assistance and free of orthopedic injury. All participants who
participated in the study provided written consent prior to participating.

Participants wore three TEMPO nodes (one on each ankle, and one on the trunk at sternum
level). The participants sat comfortably on chair with backrest and arm-rest with their thighs
and feet parallel and were instructed to use arm-rest/ knee support while rising from chair.
The spacing between feet was maintained at 15 cm. Chair popliteal height was 45 cm and
knee angle was maintained from 85°-90° using Styrofoam. Participants were instructed to sit
such that thigh did not rest on seat and only buttocks rested on it. Participants were asked to
wait for an auditory signal before initiating movement. The signal was given at least 3
seconds after the handheld computer started data collection. The co-investigator
demonstrated the TUG / STS task prior to data collection. Participants performed three Get-
Up & Go task from a fixed height chair. During TUG task, no restriction was given
regarding which foot to use for the first step, but all participants consistently used the same
foot to initiate swing in all three trials. Participants were asked to stand still for 60 seconds
for determination of postural stability data. Three trials were collected for each eyes open
and eyes closed condition.

Biomed Sci Instrum. Author manuscript; available in PMC 2013 July 19.
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Data collection and processing

The inertial measurement unit (IMU) used is TEMPO (Technology-Enabled Medical
Precision Observation) 3.1 which is manufactured in collaborative research with the inertia
team in UVA [16]. It consists of MMA7261QT tri-axial accelerometers and IDG-300 (x and
y plane gyroscope) and ADXRS300 as z-plane uniaxial gyroscope. The data acquisition was
carried using a bluetooth adapter and Laptop through a custom built LabView VI [16]. Data
are acquired with sampling frequency of 128Hz. This frequency is largely sufficient for
human movement analysis in daily activities which occurs in bandwith [0.8-5Hz][17]. The
data was later processed using custom software written in Matlab (the Mathworks, Inc.). We
denoised IMU signals based on the Ensemble Empirical mode decomposition (EEMD)
framework with Savitzky-Golay filter. A similar denoising method combining EMD with
the Savitzky-Golay has been used for denoising lidar signals, referred to as EMD-Golay
algorithm has already been proposed by Zhang et.al [18]. Empirical Mode Decomposition
(EMD) [19, 20] is an adaptive time-frequency data analysis method and can adaptively
divide the IMU signals into different intrinsic mode function (IMF) components according
to different time scale, and noise mainly concentrates in the high-frequency component. The
Savitzky-Golay (SG) filter method is time-domain smoothing [21]. We have used EEMD-
Golay denoising on signals from trunk and both shanks. EEMD is a new technique which
was developed to overcome the problem of mode mixing [22]. Essentially, it repeatedly
decomposes the original signal into IMFs by using the original EMD algorithm. During each
trial of the decomposition process, white noise of finite amplitude is added to the original
signal. The ensemble means of the corresponding IMFs generated from each trial are
subsequently treated as the IMFs of the EEMD algorithm. Here the number of ensemble
trials chosen is 100 with ratio of standard deviation of the added noise to that of signal as
0.2. First half of the IMF’s containing high frequency noise are filtered using savitzky-golay
filter (polynomial order 3 and number of frames as 41) and then reconstructed to get the
denoised signals.

Variables and analysis

There are in total eight postural transition and gait events which can be easily identified
from denoised Sit-to-walk (STW) component data from sacrum, right and left shank IMUs’.
They are (E1) Initiation of STW, (E2) peak flexion angular momentum, (E3) seat-off event,
(E4) peak extension angular momentum, (E5) swing toe-off, (E6) swing heel strike, (E7)
stance toe-off and (E8) stance heel strike. Previously based on similar postural transition
events and gait events, STW phases have been defined and validated by Kerr et. al.[23, 24]
and Buckley et.al.[25, 26]. In order to rely on easy detection algorithm, we have divided
STW movement into 3 phases as flexion momentum phase (phase 1), combined extension
and unloading phase (phase 2), and stance phase (phase 3). The first phase of STW is
flexion momentum phase (Phase 1), which encompasses the beginning of the movement
(EX1) until seat off (E3). In this phase high flexion momentum is generated and is later
followed by seat unloading. Initiation of STW event (E1) is defined by IMU situated at
trunk to be as first local maxima before the peak flexion angular velocity (global minima)
(E2) in denoised Gyro X signals (figure 2a-d). Seat off event (E3) is detected as minimum
acceleration in denoised Acc Z signals when TUG signals are truncated to half of their total
length (neglecting return data of TUG test). Also, denoised signals from trunk Gyro-X
(across medio-lateral axis) were used to acquire trunk peak flexion and peak extension
angular velocities. The denoised shank Gyro Z signals (across mediolateral axis) is used and
its first peak is maximum mid-swing angular velocity and the local minima to left and right
are swing toe off (E5) and swing heel strike (E6) events respectively. Similarly, stance toe
off (E7) and stance heel strike (E8) can be computed. STW completion is the time from
event E1 to event E7.

Biomed Sci Instrum. Author manuscript; available in PMC 2013 July 19.
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Sit-to-stand (STS) events were identified from trunk Gyro-X (across medio-lateral axis) and
were used to acquire trunk peak flexion and peak extension angular velocities. Seat off event
is detected as minimum acceleration in denoised trunk Acc Z signals. Time to STS
completion was from STS initiation to STS completion event.

STS completion time is defined from STS initiation to stabilization phase of standing. An
average time spent by older adults to complete STS with arm rest was 3.83+2.62 seconds.
STW completion time is defined from STW initiation to toe off of stance foot. However,
during performance of STW task higher flexion and extension momentums are generated by
the body in order to meet the requirement of body to raise its Center of mass (COM) and
initiate gait.

Thus, in the case of STW, the event of stance toe off is reached before complete extension of
trunk. The average time to complete STW in older participants was 2.03+1.17 seconds.

The trunk sway velocity and mean radius recordings obtained in all subjects in the open eyes
and closed eyes conditions are shown in Table 2. The results showed that the mean trunk
sway velocity and radius with closed eyes condition were greater than those measures with
open eyes conditions.

Seven of the elderly participants (P1, P2, P3, P4, P5, P9, P11) spent more than 3 seconds to
perform STS. As few subjects were unable to perform STS using knee support, thus we have
discarded the STS evaluation using Knee support for our analysis. Total time to complete
STW task in healthy older adults (1.82+0.27 seconds) is found to be significantly different
to that of healthy younger adults (1.46+0.10 seconds) [25]. Two of the participants (P2 and
P6) took more than 2 seconds to complete STW task. Two participants (P2 and P9) took
more than 11 seconds to complete timed up and go task. TUG time (>11seconds) is
correlated with falls, vestibular and balance disorders [27].

DISCUSSION

In order to study fall mechanisms to diagnose fall prone individuals, prevent falls from
occurring, and assess the benefit of therapeutic techniques designed to reduce fall risk,
technologies for gait monitoring and assessment are necessary. This study evaluated the
characteristics of postural stability (eyes open and closed), TUG, STW and STS to predict
fall risks individuals in community dwelling elderly aged age 65 or older. Numerous studies
have shown that inability to rise from chair due to muscles weakness or joint stiffness [28,
291, mobility difficulty [30, 31] and balance deficits [32-34] are the indicator of high risk of
fall in elderly. Buatois study [33] shows that the threshold of 3 seconds for STS (15 seconds
for sit to stand transition) has been useful to be used as the prediction of elderly subjects at
higher risk of recurrent falls. Our results showed that 64% of the participants were unable to
complete the task within the time. Our TUG results indicated that 2 out of 11 participants are
fall prone as they failed to complete the task within the required 11seconds. Buckley et al
study [25] suggest that healthy old adult require more time, about 2 seconds to complete
STW task compared to healthy young adults 1.56 second. STW is a complex task than STS
as it involves gait initiation along with STS. The total time to complete STS was found to be
3.83+2.62 seconds which is more than that to complete STW (2.03£1.17 seconds). This can
be explained by the complexity of STW task, as the participants have to generate higher
flexion and forward momentum in order to successfully initiate gait from the sitting posture.

Biomed Sci Instrum. Author manuscript; available in PMC 2013 July 19.
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The identification of specific components of during the transition from sitting to walking
movement among the elderly can help to identify mobility problem in different phase of the
transition. In this study, as discussed in method section, the completion time of STW task
was obtained directly from the IMU for more accurate reading compare manually timed.
Our finding indicated two participants are out of healthy range (required more than 2 second
to complete the task) and are at risk of fall. For postural stability measurement, there are two
participants complete the task above the 75 % quartile for sway velocity and mean sway
radius with eyes open and closed. One participant data was missing because he was not able
to complete the task. In summary, participant £9has high risk of fall as he failed to complete
four out of five tasks (Table 3). Two participants, (P2 and P5) failed three of the task and
participant P4 failed in two tasks. 4 participants (P1, P3, P6 and P11) failed in single task
and three participants (P7, P8 and P10) successfully completed the all the tasks within the
target.

CONCLUSIONS

Data of postural stability (eyes open and closed), Sit-to-stand (STS), Sit-to-walk (STW) and
timed up and go (TUG) were collected from eleven participates (65-84 years) through three
TEMPO nodes. A novel denoising technique based on the Ensemble Empirical mode
decomposition (EEMD) framework with Savitzky-Golay filter was proposed, since the
nature of EEMD algorithm makes it suited for application of postural and locomotor data.
After analyzing denoised data, we identified the fall prone individuals by evaluating the task
completion time, as well as the participants’ medical history. In our research, we implement
a non-invasive system for locating fall prone individuals among the elderly. Research is
being continued to further explore more effective signal processing methods and more
sufficient samples to consolidate our conclusions.
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a Trunk Angular Velocity across sagittal Axis
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Figure 3.

STS event identification with a. 1. STS Initiation, 2. Peak flexion angular velocity, 4. Peak
extension angular velocity, 5. STS Termination b. Seat Off
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Lockhart et al.

Mean and S.D. of STS with Arm Rest, STW, and TUG for all participants’ data (n=11).

Tablel

Activities  Time (sec) Mean +S.D. CoV  Percentage
Phase I: initiation to peak flex Ang. Vel 0.79 £0.24 30.60 20.70
Phase I1: peak flex Ang. Vel to seat off 0.28+1.48  534.48 7.22
o VF\QILtgt Phase 111 seat off to peak ext Ang. Vel 1664254 15340 4320
Phase IV: peak ext Ang. Vel to stance 1.11 +0.47 42.60 28.89
Total time to complete task 3.83+£262 6833 100.00
Phase I: initiation to peak flex Ang. Vel 0.45 +0.12 26.53 22.19
Phase I1: peak flex Ang. Vel to seat off 0.40£0.74  184.60 19.64
Phase I11: seat off to peak ext Ang. Vel 0.46 +0.62  134.59 22.69
STW Phase IV: peak ext Ang. Vel to Swing Toe Off 0.18+0.26  145.09 8.69
Phase V: Swing Toe Off to Swing Heel Strike 0.46 £0.04 9.63 22.67
Phase VI: Swing Heel Strike to Stance Toe Off  0.08 £0.09  111.41 411
Total time to complete task 2.03+1.17 57.50 100.00
TUG Time Get Up and Go 11.31+6.65  58.82 100.00
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Lockhart et al.

Mean and S.D. of trunk sway velocity and mean radius for all participants’ data (n=11).

Activities Mean + S.D.

CoV

Open Eyes Sway Velocity (m/s) 0.0122 + 0.0022
Open Eyes Mean Radius (m) 0.0026 + 0.0009
Closed Eyes Sway Velocity (m/s)  0.0143 + 0.0043
Closed Eyes Mean Radius (m) 0.0035 + 0.0020

18.08
35.30
30.07
59.98
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