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Abstract

Seafood is a prime target for fraudulent activities due to the complexity of
its supply chain, high demand, and difficult discrimination among species
once morphological characteristics are removed. Instances of seafood fraud
are expected to increase due to growing demand. This manuscript reviews the
application of DNA-based methods for commercial fish authentication and iden-
tification from 2000 to 2023. It explores (1) the most common types of commercial
fish used in assay development, (2) the type of method used, (3) the gene region
most often targeted, (4) provides a case study of currently published assays or
primer-probe pairs used for DNA amplification, for specificity, and (5) makes
recommendations for ensuring standardized assay-based reporting for future
studies. A total of 313 original assays for the detection and authentication of
commercial fish species from 191 primary articles published over the last 23
years were examined. The most explored DNA-based method was real-time poly-
merase chain reaction (qQPCR), followed by DNA sequencing. The most targeted
gene regions were cytb (cytochrome b) and COI (cytochrome c oxidase 1). Tuna
was the most targeted commercial fish species. A case study of published tuna
assays (n = 19) targeting the cytb region found that most assays were not species-
specific through in silico testing. This was conducted by examining the primer
mismatch for each assay using multiple sequence alignment. Therefore, there is
need for more standardized DNA-based assay reporting in the literature to ensure
specificity, reproducibility, and reliability of results. Factors, such as cost, sensi-
tivity, quality of the DNA, and species, should be considered when designing
assays.
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1 | INTRODUCTION

The global demand for fish and fish products has increased
from 141.5 million metric tons in 2005 to 184.1 million
metric tons in 2022 (Food and Agriculture Organization
[FAO], 2020, 2022; Rasmussen & Morrissey, 2009). The
inability to meet this demand and fluctuations in sup-
ply and trade have led to fraud and adulterations (Silva
et al., 2021). Oftentimes, fish and fish products lack exter-
nal morphological features like fin position, body shape,
scale size, or color pattern, which makes visually identify-
ing one species from the other a difficult task (Teletchea,
2009). In addition, phenotypic similarities among some
fish types/species further complicate the determination of
origin and species identification (Kim et al., 2015). There-
fore, (1) increased demand, (2) complexity of the supply
chain, and (3) inability to determine species once mor-
phological characteristics are removed make fish a prime
target for fraudulent activities.

As a result, authentication methods have been devel-
oped to validate fish species. DNA-based methods used
in food or fish authentication (Rasmussen & Morrissey,
2009) are considered more advantageous than protein-
based methods, as DNA is less susceptible to degradation
(Ward et al., 2009). DNA-based authentication methods
use various gene target regions to “fingerprint” or uniquely
identify fish species. The selected genetic markers tend
to have high interspecies and low intraspecies polymor-
phism (Rasmussen & Morrissey, 2009). However, a variety
of target genes are used to identify fish species more
accurately.

This manuscript reviews the development and applica-
tion of DNA-based methods, particularly PCR (polymerase
chain reaction) for fish detection and authentication. In
particular, it covers (1) the most common types of com-
mercial fishes used in assay development, (2) the type
of methods used (e.g., PCR), (3) the gene regions most
often applied as targets, and (4) a case study of currently
published assays for specificity.

2 | METHODS AND INCLUSION
CRITERIA

Electronic databases, for example, Google Scholar,
Scholar’s Portal, and Primo, were searched for peer-
reviewed articles published between January 2000 and
mid-June 2023. The articles were retrieved from searches
relevant to “fish primers,” common names of commercial
species of fish and “primers,” “fish authentication,” “fish
assay,” “fish primer for authentication,” and “molecular

fish identification methods.” The criteria to include the
articles in this manuscript were: (1) original articles with
new PCR primers designed, (2) only targeted bony fish
where DNA extraction occurred on muscle tissue (no eggs,
shellfish, mollusks, etc.), (3) publication date between
2000 and mid-June 2023, (4) relevant to commercial
species of fish, and (5) focus on fish authentication, foren-
sics, and/or identification. Articles examining population
genetics, environmental DNA (eDNA), fish species not
commonly eaten (e.g., exotic species) or published prior
to 2000 were excluded. In the end, 313 assays from 191
publications (Supporting Information Reference List)
were found to be relevant for this review.

2.1 | Datarecorded

Data captured from the articles included identified
fish (species and common name), sample type (fresh,
frozen, canned, etc.), target gene, reaction type (single-
plex/multiplex), primer pairs and probe (if applicable), size
of amplified DNA fragment, and detection method.

2.2 | Fish families/order groupings

Fish families and grouping into various orders were
modified following Rasmussen and Morrissey (2009) in
conjunction with the FishBase database retrieved from
fishbase.org. Fish order and groupings are outlined in
Table 1.

2.3 | Case study

231 | Inclusion/exclusion criteria

Commercial tuna assays (n = 27) were reviewed as a
case study of primer/probe specificity. The assays included
(n =19) met the following criteria: (1) were from primary
articles, with new PCR-specific primers, relevant to com-
mercial species of tuna, over the last 23 years, (2) illustrated
the most common tuna species explored in the literature,
(3) represented the most common gene target used in
primer design for tuna, cytb (cytochrome b), (4) targeted
<3 species (for multiplex assays), (5) contained sufficient
data to align primers and probes to both target and non-
target taxa. Primer annealing temperatures and primer
concentrations were not considered part of the in silico
analysis. Table 2 summarizes the assays covered in the case
study.
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TABLE 1 Common species covered in the literature and their respective order.

Order Taxonomic families Common species (common name)

Acipenseriformes Acipenseridae Sturgeon

Beloniformes Exocoetidae Flying fish

Clupeiformes Engraulidae and Clupeidae Anchovies, herrings, shads, sardines, menhadens, and

sprats

Cypriniformes Cyprinidae Common carp, Colden carp

Gadiformes Gadidae, Phycidae, Lotidae, and Hakes, pollock, codfish, and haddock
Marluccidae

Gobiiformes Gobiidae Transparent goby

Lophiiformes Lophiidae Monkfish and anglerfish

Osmeriformes Salangidae Icefish

Perciformes Apogonidae, Carangidae, Centropomidae, Perches, sunfish, groupers, snappers, jacks, porgies
Lutjanidae, Moronidae, Percidae, (seabream), bass, drums, wreckfish, dolphinfish, and
Polyprionidae, Sciaenidae, Serranidae, and billfish
Sparidae

Pleuronectiformes Pleuronectidae and Soleidae Flounder, halibut, plaices, soles, and turbots

Salmoniformes Salmonidae Salmon and rainbow trout

Scombroidei Scombridae, Trichiuridae, Istiophoridae, Mackerel, tuna, bonito, cutlassfish, hairtails,
and Xiphiidae ribbonfish, billfish, and swordfish

Siluriformes Clariidae, Ictaluridae, and Pangasiidae Catfish

Tetraodontiformes Tetraodontidae Pufferfish

Note: Orders and families were retrieved from fishbase.ca for common species included in the literature between 2000 and 2023.

2.3.2 | Case study DNA reference database
and alignment library for in silico specificity
testing

DNA sequences were obtained for selected taxa from NCBI
GenBank and the Barcode of Life Datasystems with the
R (R Core Team, 2020) package MACER (V 2.1) (Young
et al., 2021) using the auto_seq_download() function with
default settings.

A total of 19 species of tuna and common substitutes
were included in this study as outlined in Table 3. Species
from the genus Thunnus included are outlined in Table 3.
Bonito, a tuna-like fish species, is often substituted for or
mixed with tuna products from the genus Thunnus (Gor-
doaetal., 2017; Lockley & Bardsley, 2000). Thus, the bonito
were also included. Lastly, as escolar is commonly substi-
tuted for tuna species and can pose a risk to consumers’
health (Warner et al., 2013), Lepidocybium flavobrunneum
(escolar) was included.

Downloaded sequences were aligned in MAFFT using
the automatic alignment strategy with all other default
settings (Katoh & Standley, 2013). The multiple sequence
alignment (MSA) was manually edited, and records not
aligning and/or causing gaps or a stop codon after
translation were removed. The final MSA contained 945
records. Primers and probes were aligned to the MSA, and
nucleotide mismatches between primers/probes and each
record in the MSA, when complete overlapping nucleotide

sequence data was available, were individually assessed
using a custom R script. Results, analysis, alignment, and
script are outlined in the Supporting Information Results
and Alignment files attached.

2.3.3 | Primer mismatch scoring
Various studies have explored the factors affecting primer
binding and DNA extension. According to Kumar and
Chordia (2015), primer efficiency depends on (1) annealing
and extension temperature, primer kinetics, and disso-
ciation, (2) location of primer mismatch and primer
stability, and (3) polymerase recognition efficiency. How-
ever, a larger number of primer mismatches may signif-
icantly affect primer-annealing and, subsequently, effi-
ciency, specificity, and reproducibility. Lefever et al. (2013)
found that primers with >4 individual mismatches suc-
cessfully inhibited amplification, whereas 3 mismatches
in a primer and 2 in its primer-pair were also inhibitory
regardless of location. As such, it is recommended that
when primers are designed in silico, >4 nucleotide mis-
matches in a single primer or 3 mismatches in a primer and
>2 in its primer-pair should be implemented to prevent
nonspecific amplification (Lefever et al., 2013).

Therefore, this study scored the average number of
nucleotide mismatches between primers and probes
against the expected binding region for all unique hap-
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TABLE 3 Species included in the reference library for the case study.
Species scientific name Common name Inclusion/Exclusion
Auxis rochei Bullet tuna Included
Auxis thazard Frigate tuna Included
Euthynnus affinis Kawakawa Included
Euthynnus alletteratus Spotted tunny Included
Katsuwonus pelamis Skipjack tuna Included
Lepidocybium flavobrunneum Escolar Included
Sarda chiliensis Pacific bonito Included
Sarda orientalis Striped bonito Included
Sarda sarda Atlantic bonito Included
Thunnus alalunga Albacore Included
Thunnus albacares Yellowfin tuna Included
Thunnus atlanticus Blackfin tuna Included
Thunnus maccoyii Southern bluefin tuna Included
Thunnus obesus Bigeye tuna Included
Thunnus thynnus Bluefin tuna Included
Thunnus orientalis Pacific bluefin tuna Included
Thunnus tonggol Longtail tuna Included

Note: Common names are based on the FDA Seafood List (https://www.cfsanappsexternal.fda.gov/scripts/fdcc/?set = SeafoodList).

lotypes for both target and nontarget taxa in the MSA.
Only the number of mismatches was recorded, not the mis-
match location or type. Further information on the scoring
criteria can be found in Section 3.4.

2.3.4 | Considerations

Although the cytb locus of interest is approximately 1141 bp,
some downloaded sequences were shorter (e.g., ~200 bp)
or of various lengths (not the entire 1141 bp region);
therefore, only records with full data for the area where
the primers or probes align were studied for mismatch.
For example, if a species had 10 unique haplotypes and
the sequence associated with the primer-binding region
was only available for 3 of the haplotypes, only those 3
haplotypes were examined in the sequence alignment.

3 | FISH ORDERS AND DETECTION
METHODS

3.1 | Orders of fish in the literature

Table 4 summarizes the major fish orders for which
DNA identification assays have been developed for fish
authentication and their corresponding references. Sec-
tions 3.1.1-3.1.7 discuss each fish species’ order and their
susceptibility to fraud.

3.1.1 | Perciformes

Perciformes, comprising over 40% of bony fishes, is the
largest and most diverse order, making it difficult to define
due to its broad range of morphological characteristics
(Bray & Gomon, 2020). Percoidei, a suborder of Perci-
formes, also known as percoids, include perches, snap-
pers, groupers, sunfish, jacks, porgies (seabream), bass,
drums, wreckfish, and dolphinfish (Rasmussen & Morris-
sey, 2009). Due to the large number of species included in
this order, Section 3.1.1.1 will cover fish from the Scom-
bridae family to adequately discuss assays developed for
them.

This manuscript covers 42 assays (not including those
for Scombridae) relevant to percoid authentication and
detection (Table 4). The most discussed species in the lit-
erature are snappers, perches, and groupers. Although it
is important to recognize that fish fraud affects multi-
ple species within the order Perciformes, this article will
only focus on snappers, Nile perch (Lates niloticus), wreck-
fish (Polyprion americanus), and groupers (Epinephelus
marginatus) for the sake of conciseness and relevance.

Snappers are one of the most expensive and highly
sought-after species of fish (Sivaraman et al., 2019). Red
snapper (Lutjanus campechanus), a fish with a high price
and value, is often substituted with cheaper, lower-value
species (Rasmussen & Morrissey, 2009). Previous studies
have reported mislabeling rates of 73%-100% for red snap-
per, which is often substituted with lower-valued snappers,
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TABLE 4 Number of assays developed in the last 23 years, classified by fish order.

References?®
[3, 4, 6,10,11, 12, 13, 26, 29, 33, 34, 37, 44, 50, 61, 62, 63, 80, 92, 94, 100, 101,

120, 136, 137, 147, 148, 149, 161, 162, 164, 186, 189, 191]

[5, 6,7, 20, 21, 25, 38, 39, 40, 45, 54, 60, 65, 74, 77, 84, 85, 95, 96, 99, 100, 103,

106, 107, 108, 109, 110, 111, 113, 114, 115, 125, 127, 129, 132, 141, 143, 150, 155, 157,
158, 164, 171, 175, 179, 181, 182]

[2,4,8,17, 28, 35, 42, 57, 58, 71, 75, 76, 77, 83, 90, 94, 102, 112, 120, 121, 123, 126,

130, 142, 145, 153, 154, 156, 160, 166, 176]

[43, 48, 51, 52, 55, 56, 66, 67, 69, 72, 94, 104, 105, 116, 119, 128, 135, 138, 150, 173,

174, 180, 183, 185, 188, 190]

Order Number of assays®
Perciformes 42

Perciformes (Scombroids) 97

Gadiformes 54

Salmoniformes 50

Clupeiformes 14
Tetraodontiformes 10
Pleuronectiformes 8

Others 49

[9, 18, 47, 64, 88, 89, 132, 134, 140, 178]

[1, 30, 81, 82, 122, 139, 184]

(27, 47, 49, 70, 76, 94, 124]

[4,9,14,15,16,19, 22, 24, 31, 32, 36, 46, 50, 53, 59, 61, 65, 66, 78, 79, 86, 93, 97,

98, 117, 118, 120, 128, 131, 133, 144, 146, 151, 152, 159, 163, 167, 168, 170, 187]

2Number of assays and number of references may differ as some articles have developed more than one assay reported in the same publication. List of references

listed in the supplementary reference list.

seabream, rockfish, or mahi-mahi (Isaacs & Hellberg,
2020).

Grouper, an expensive, highly appreciated, and highly
demanded meat, is often substituted with lower-value fish
species like Nile perch or wreck fish (Asensio et al., 2008).
Asensio et al. (2008) designed and tested an assay on 70
samples of commercial fish fillets and found that 58 of
them were mislabeled. In their study, 34/70 samples of
Nile perch and 13/70 wreck fish samples were mislabeled
(Asensio et al., 2008). Ali, Di Taranto et al. (2022) and
Chen et al. (2018) also did small-scale market validations of
their assays on commercial samples labeled “grouper” and
found that 4/4 and 3/18 samples, respectively, were misla-
beled. Grouper is often substituted with Nile perch, which
has been signaled by the Food and Agriculture Organiza-
tion (FAO) as one of the leading causes of the increased
demand, high prices, and shortage in the supply of Nile
perch in European countries (FAO, 2012).

Scombroids
As mentioned earlier, scombroids belong to the order Per-
ciformes and the suborder Scombroidei. Families within
scombroids are Scombridae, which include tunas, mack-
erels, and bonito; Trichiuridae, which include hairtails,
cutlassfish, and ribbonfish; Istiophoridae, which include
billfish; and Xiphiidae, which include swordfish (Ras-
mussen & Morrissey, 2009). As outlined in this review, the
Scombridae family has been the most researched group
of scombroids for genetic identification, with 97 assays
developed (Table 4).

One of the most commercially relevant fish in the Scom-
bridae family is tuna. Tuna consumption and production
are primarily driven by the canned tuna (>75% of all

tuna catch) and sashimi/sushi industry (FAO, 2017). Skip-
jack (Katsuwonus pelamis) and yellowfin tuna (Thunnus
albacares) are the species most commonly used in canned
tuna, whereas yellowfin tuna dominates the fresh/frozen
market (FAO, 2017). The highly-priced yellowfin tuna
is often substituted with the lower-value skipjack (FAO,
2017). Bluefin tuna (Thunnus thynnus) and bigeye tuna
(Thunnus obesus) are usually preferred for sushi/sashimi
(FAO, 2017).

A study of sushi mislabeling in Los Angeles, CA (USA),
showed a high rate of mislabeling in tuna samples. Yel-
lowfin tuna was most commonly substituted with bigeye
tuna (58.3% substitution) (Willette et al., 2017). In addition,
yellowfin tuna was found in products under the generic
label “tuna” (Willette et al., 2017). This is concerning as yel-
lowfin and bigeye tuna were classified as threatened and
vulnerable species, respectively, at the time of the study
(Willette et al., 2017). Similarly, Roungchun et al. (2022)
reported that 20% of yellowfin tuna products were par-
tially or completely substituted with bigeye tuna. Among
the product categories tested, the highest mislabeling rate
(42%) was found in dried (jerky and flakes) yellowfin tuna
products. Servusova and Piskata (2021) found that 24%
of products labeled as yellowfin tuna were mislabeled.
Most products (84% of samples tested) were labeled “white
tuna” when they were, in fact, escolar, which contains a
toxin known to cause gastrointestinal illness (Warner et al.,
2013).

Several assays reviewed in this article were applied to
small-scale market surveys for tuna mislabeling. Liu et al.
(2016) found that the mislabeled samples tested often con-
tained a mixture of species or non-tuna species. Similarly,
Klapper et al. (2023) observed that commercial samples

9SULOIT SUOWIO)) dANLAI)) d[qesridde oy Aq patIoA0S a1k SO[ANIE V() (ash JO SANI 10§ AIeIqIT duI[uQ) A3[IA\ UO (SUOTIPUOd-PUL-SULIS)/Ww0d" Ad[im  ATelqrjautuo//:sdiy) suonipuoy) pue swio [ 9y 23S “[$707/L0/1€] U0 Areiqr aurjuQ A[IM “T0FE 1 LECH-THST/T 111 01/10p/wod Aaim  ATeIqriaur[uoiy1//:sdyy woy papeoumod ‘v ‘b70T ‘LECHTHST



PCR-BASED SEAFOOD AUTHENTICATION: KEY INSIGHTS

Comprehensive

REVIEWS _| of3

labeled “light tuna” were, in fact, mixed species. Mislabel-
ing rate of tuna ranged from 5% to 24% depending on the
assay and study (Mitchell & Hellberg, 2016; Servusova &
Piskata, 2021).

It is important to note that mishandling Scombroids
can cause scombroid poisoning, also known as scombro-
toxin poisoning (Food and Drug Administration [FDA],
2017). It is among the top four reported seafood-related ill-
nesses, causing symptoms like nausea, diarrhea, hives, and
respiratory distress (FDA, 2017). Therefore, mislabeling of
scombroids, like tuna, can severely impact public health.
Furthermore, food safety issues due to mercury content in
tuna should be considered. Some species of tuna, like skip-
jack, are considered “Best Choices” for at-risk consumers,
such as pregnant women, whereas yellowfin and albacore
are in the “Good Choices” category (FDA, 2017). Bigeye
and bluefin tuna should be avoided by at-risk consumers
due to their high mercury (FDA, 2017). As such, substi-
tutions with these high-mercury fish can pose food safety
risks.

3.1.2 | Gadiformes

Codfish, hakes, and pollock species belonging to the order
Gadiformes are often referred to as Gadoids. Gadiformes
include the families Gadidae, Merlucciidae, Phycidae, and
Lotidae (Rasmussen & Morrissey, 2009). The order Gad-
iformes comprises over 18% of the total global fish catch
(Fernandes et al., 2017). The Gadidae family represents
some of the most commercially relevant species (Fernan-
des et al., 2017). Of this family, cod is one of the most
consumed fish in the European Union, ranking only sec-
ond to tuna (Helgoe et al., 2020). Of the Merlucciidae
family, hake, with a reported mislabeling rate of 30%, is
one of the most consumed and commercially relevant fish
species in Spain (Garcia-Vazquez et al., 2011; Helgoe et al.,
2020). Some commercially relevant Gadiformes species,
like Atlantic cod, have been listed in the Red List of Threat-
ened Species due to high consumption, exploitation, and
shrinking global stock levels (Herrero et al., 2010).

This review covers 54 assays for the detection and
authentication of Gadiformes (Table 4). Herrero et al.
(2010) designed an assay able to detect mislabeling of
40 Gadoid species processed by different methods (e.g.,
fresh, frozen, and canned) and found that 20% of fish
products sampled were mislabeled. In addition, 10 of the
samples did not include the scientific name on the label
and appeared under the ambiguous name “cod” (Her-
rero et al., 2010). Taboada, Sianchez, Sotelo et al. (2017)
tested their assay on 31 commercially relevant ling (Molva
molva) samples, of which 19.4% were mislabeled. In fact,
three of the samples were substituted with other species,

in Food Sciexce and Food Safety

with two identified as lower-value species (Brosme brosme
and Molva dypterigia) and one identified as a higher-value
species (Gadus morhua) (Tabaoda, Sinchez, Sotelo et al.,
2017). Substituting higher-value species may be a result of
trying to meet fishing quotas. However, this can under-
mine the sustainability and management of cod stocks.
Substituting with a lower-value species is economic fraud.
Another study by Taboada, Sdnchez, Perez-Martin et al.
(2017) found that 22.6% of Pacific cod, Alaska pollock, and
ling tested were mislabeled.

3.1.3 | Salmoniformes

Salmon, trout, and char species belonging to the family
Salmonidae are often referred to as salmonids, under the
order Salmoniformes (Rasmussen & Morrissey, 2009). The
most common species are Atlantic salmon (Salmo salar),
rainbow trout (Oncorhynchus mykiss), and coho salmon
(Oncorhynchus kisutch), with estimated 2.7, 0.9, and 0.2
million tons sold globally in 2020, respectively (Espifieira,
Vieites et al., 2009; FAO, 2023). The commercial value of
salmonids is driven by the species. For example, Atlantic
salmon, sockeye salmon (Oncorhynchus nerka), and Chi-
nook salmon (Oncorhynchus tshawytscha) are more expen-
sive than other salmonid species (Espifieira, Vieites et al.,
2009), which drives fraudulent activities.

This review covers 50 assays designed for the detection
of Salmoniformes (Table 4). In a small-scale application
to commercial products, Herrero et al. (2011) tested their
assay in 20 processed fish samples. No species’ scientific
name was present on any of the product labels, and 5%
of the samples tested showed mislabeling (Herrero et al.,
2011). Feng et al. (2017) also tested their designed assay on
11 samples of salmon and found that one of the samples
could not be detected, indicating that it was not part of the
Salmonidae family. Similar to the findings of Herrero et al.
(2011), Feng et al. (2017) observed that the term salmon
was used on labels ambiguously. Muifioz-Colmenero et al.
(2019) indicated that in three different studies, the mis-
labeling and substitution rate were 4.7%, 8.3%, and 11.1%,
respectively. The products were found to be substituted
with another Oncorhynchus species associated with strong
allergic reactions due to differences in amino acid com-
position (Mufioz-Colmenero et al., 2019). Hence, these
substitutions can also pose health risks to consumers.

3.1.4 | Clupeiformes

Clupeiformes are small pelagic fishes, including anchovies,
herring, sardines, and shads, which belong to the fami-
lies Engraulidae and Clupeidae (Rasmussen & Morrissey,
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2009). This review covers 14 assays developed for the detec-
tion of Clupeiformes (Table 4). Some of the species most
frequently targeted are the European anchovy (Engrauli-
dae encrasicolus), European pilchard (Sardina pilchardus),
and round sardinella (Sardinella aurita). Although small
pelagic fishes are usually used for bait in North America,
they are often utilized in specialty products in European
markets and make up a significant portion of the global
seafood supply (Rasmussen & Morrissey, 2009).

In an investigation of small pelagic fishes, Giusti et al.
(2019) reported a mislabeling rate of <1%. However, the
type of processing affected the sample integrity and the
ability for downstream authentication methods to validate
species. Giusti et al. (2019) found that it was difficult to
identify species in samples containing oil. As most small
pelagic fishes are consumed as highly processed prod-
ucts, such as smoked, canned, salted, or cured, detection
methods may be hindered.

3.1.5 | Tetraodontiformes

Tetraodontiformes accounted for 10 species-specific assays
developed to authenticate the family Tetraodontidae
(pufferfish), which is known for its toxicity. Tetrodotoxin
poisoning has been primarily linked to species within the
genus Lagocephalus and can cause vomiting, diarrhea,
tachycardia, muscle weakness, and many other symptoms
(Acar et al., 2017; Sangthong et al., 2014). Numerous cases
of illness have been caused by the ingestion of pufferfish
illegally mixed with other fish meat (Acar et al., 2017).

3.1.6 | Pleuronectiformes

Pleuronectiformes, commonly called flatfishes, include hal-
ibuts, soles, plaices, flounders, and turbots (Rasmussen
& Morrissey, 2009). This review includes eight assays
designed for the authentication and detection of Pleuronec-
tiformes species (Table 4). Halibut (Hippoglossus hippoglos-
sus) has been ranked as one of the most valued fish in
this group, with high consumer demand (Rasmussen &
Morrissey, 2009). Prior studies have found that Greenland
halibut (Reinhardtius hippoglossoides) and common sole
(Solea solea) are often substituted for halibut (Céspedes
et al., 2000; Rasmussen & Morrissey, 2009).

Sole has a high market value and is in high demand,
which can subsequently increase exploitation levels and
cause stock levels to decrease (Herrero et al., 2012). In fact,
when Herrero et al. (2012) tested their assay on 40 commer-
cial samples of common sole, 30% were mislabeled. The
study found that other sole species were used as substitutes
(Herrero et al., 2012). Other mislabeling rates reported for

this order were 24%, 15%, and 8% for common sole, yel-
lowfin sole (Limanda aspera), and halibut, respectively
(Paracchini et al., 2017). Halibut has also been reported to
be substituted at a rate of 33% with olive flounder (Panae-
olus olivaceus), which can cause gastroenteritis due to the
presence of a species-specific parasite (Willette et al., 2017).
Wong and Hanner (2008) also reported a high substitution
rate of halibut with flounder, whereas Liou et al. (2020)
reported mislabeling of 40% of halibut samples, which
were substituted with California flounder.

3.1.7 | Others

Other fish types reviewed were Cypriniformes (common
carp and golden carp), Siluriformes (catfish), Acipenser-
iformes, which include fish like sturgeon, Beloniformes
(flying fish), Beryciforms (red sea marine fish), Gobiiformes
(transparent goby), Lophiiformes (monkfish and angler-
fish), Moroniformes (seabass), and Osmeriformes (icefish).
Table 4 summarizes the assays for these categories.

3.2 | Assay type

Various DNA authentication technologies have been
developed for species identification. While not encompass-
ing every method or technique available on the market,
Sections 3.2.1-3.2.9 include the most common detection
methods used in the literature over the last 23 years
for commercial fish species. These genetic identification
methods are helpful in preventing illegal fishing, economic
fraud, and maintaining fish stocks (Rasmussen & Morris-
sey, 2009). Table 5 summarizes the number of assays for
each method discussed. Tables S1-S9 provide a detailed
overview of all assays reviewed.

3.21 | Real-time polymerase chain reaction
(real-time PCR or qPCR)

Of the 313 assays for fish identification reviewed in this
study, 102 used real-time PCR. Real-time PCR, also known
as quantitative PCR (qPCR) or real-time qPCR, is often
used because it combines amplification and detection into
a single step (Wong & Medrano, 2005), thereby eliminat-
ing the need for post-PCR handling and minimizing the
risk of cross-contamination. Real-time PCR amplification
is based on the cycle threshold, or the C, value, which indi-
cates the cycle number at which the fluorescence intensity
exceeds the background fluorescence (Wong & Medrano,
2005). Real-time PCR is considered highly reliable and
sensitive, as it can detect a single copy of a target gene.
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TABLE 5 Assays developed using the most prominent DNA-based methods for fish authentication published from 2000 to 2023.

Technique (DNA-based Sub type (detection
method) method)
Real-time PCR (qPCR) 102
TagMan 58
SYBR Green 16
DNA sequencing 61
Mini-sequencing 1
Pyrosequencing 2
FINS 13
SNP/RAD sequencing 3
PCR-RFLP 36
Conventional PCR 54
DNA barcoding 38
Mini-barcoding 10
High resolution melt 7
(HRM)
Multiplex PCR 25
PCR-SSCP 5
PCR-RAPD 3
Others 36
LAMP 1
Lateral flow dipstick 5
(LFD) PCR
PCR-AFLP 2
Microarray assay 2

Number of assays®

References”

[3,9,17, 20, 22, 23, 24, 26, 29, 30, 33, 34, 35, 40, 41,
56, 57, 58, 63, 67, 69, 70, 71, 72, 73, 75, 76, 92, 99, 104,
109, 111, 118, 122, 129, 138, 143, 145, 156, 157, 160, 161,
163, 164, 173, 176, 178, 180, 186

[3, 20, 22, 33, 34, 40, 41, 56, 57, 67, 69, 70, 71, 72, 73,
75, 76, 99, 109, 111, 129, 154, 156, 161, 163, 164, 186]

[9,17, 24, 26, 40, 92, 118, 145, 173, 176, 178, 180]

(4,16, 21, 25, 35, 36, 39, 42, 43, 44, 45, 47, 54, 55, 64,
78, 82, 87, 89, 90, 91, 92, 96, 100, 107, 112, 119, 123,
126, 133, 134, 135, 137, 140, 148, 157, 158, 159, 172, 175,
191]

[42]

[47]

[25, 54, 55, 78, 82, 92, 100, 140, 148]
[90, 112]

[2,7,8,27,31, 32, 51, 55, 80, 81, 88, 106, 113, 120, 125,
126, 130, 132, 140, 147, 149, 157, 170, 179, 189]

[1,13,14, 24, 29, 35, 38, 46, 59, 69, 83, 92, 93, 101,
102, 103, 108, 110, 114, 121, 169, 173, 174, 175, 176, 178]

[14, 19, 29, 30, 50, 52, 53, 57, 58, 60, 61, 65, 68, 79, 86,
93,98, 115, 123, 124, 128, 144, 146, 152, 167, 171, 178,
184, 185, 187]

[19, 50, 60, 79, 115, 146, 152]

[29, 30, 57, 58, 185]

[6,9,10, 15,18, 21, 25, 44, 62, 63, 66, 74, 84, 85,107,
117,127, 136, 139, 164]

[11, 28, 148, 151, 168]
[12, 37, 131]

[5, 23,37, 48, 49, 51, 77, 94, 95, 97, 105, 116, 141, 142,
150, 153, 155, 162, 166, 173, 181, 182, 183, 188, 190]

[5, 49, 105, 142, 166, 173, 181, 182]
[153]

[188, 190]
[94, 97]

Abbreviations: AFLP, amplified fragment length polymorphism; FINS, forensically informative nucleotide sequencing; LAMP, loop-mediated isothermal ampli-
fication; PCR (polymerase chain reaction); RAPD, random amplified polymorphic DNA; RFLP, restriction fragment length polymorphism; qPCR, quantitative or

real-time PCR; SSCP, single-strand conformation polymorphism.

2Number of assays and number of references may differ as some articles have developed more than one assay reported in the same publication. List of references

listed in the Supporting Information Reference List.

However, it can be costly as expensive equipment and
reagents are often required. Table S1 presents all the real-
time PCR assays (using various master mixes such as
FastStart TagMan or SYBR Green) for commercial species
of fish compiled in this study. Real-time PCR is often
selected to authenticate species due to its high efficiency.
Several studies have validated the efficiency of real-time
PCR, with efficiencies ranging from 82.2% to 103.0% for

tuna (Liu et al., 2016), 84.0%-100.0% for mackerel (Prado
et al., 2013), 101% for cuttlefish (Velasco et al., 2020), and
100% for other species (Herrero et al., 2012; Liu et al., 2016).
These studies, and others,c demonstrate that real-time
PCR is an efficient and effective technique.

The ability of real-time PCR to amplify small fragment
sizes and low levels of starting DNA material is advanta-
geous for testing processed commercial fish products in
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which DNA integrity may be affected. Some processing
methods known to have an impact on DNA integrity are
exposure to high pressure, high temperature, and acidic
solutions (Velasco et al., 2013). For example, several articles
reviewed (Table S1) amplified small fragments of the DNA
target region. The smallest fragment size amplified was a
60-bp gene region in Atlantic mackerel by Velasco et al.
(2013). Other studies, for example, Hellberg et al. (2010),
Liu et al. (2016), Prado et al. (2013), Velasco et al. (2013),
Kang (2019), and Servusova & Piskata (2021), developed
assays to amplify fragment sizes <100 bp. Furthermore,
Cao et al. (2013) showed that real-time PCR effectively
detected sample mixtures of monkfish, with DNA as low
as 0.01% in the final mixture. Prado et al. (2013) and Kang
(2019) found that their real-time PCR assays showed high
sensitivity, detecting as low as 5 X 1073 ng of DNA for a
mackerel assay and 1 X 1073 ng/uL of DNA for a tilefish
assay, respectively.

Another key advantage of using real-time PCR is the
ability to multiplex. This allows identification and quan-
tification for multiple species in the same tube, thereby
saving time and money (due to fewer reagents and supplies
required). Section 3.2.6 discusses multiplex PCR in further
detail.

3.2.2 | DNA sequencing/analysis
DNA sequencing, DNA sequence analysis, or FINS (foren-
sically informative nucleotide sequencing) allows for the
visualization and determination of a precise sequence
of nucleotides in an organic sample. DNA sequencing
has enhanced the throughput, speed, and sensitivity of
species authentication and genetic profiling. Although
sequencing is time-consuming, requires high data han-
dling capacity, and is technically demanding compared
to other DNA-based methods, it provides the most infor-
mation (Teletchea, 2009). Sanger sequencing uses reverse
strand synthesis using deoxy-nucleotides and dideoxy-
nucleotides, creating extension products with different
lengths (Kircher & Kelso, 2010). As the chain-terminating
nucleotide is labeled with a unique fluorescent dye, exten-
sion products can be read using DNA sequencing software
after separation through capillary electrophoresis (Scho-
ales, 2015). FINS uses DNA sequencing and phylogenetic
analysis to identify a sample of interest based on informa-
tive nucleotide sequences (Li et al., 2011). This allows for
the discrimination of closely from distantly related species
by comparison against a sequence database (Li et al., 2011).
DNA sequencing has been effective in identifying
species of fish for authentication purposes. Of the 313
assays reviewed, 61, as outlined in Table 5, used sequenc-
ing as either the sole method for fish genetic profil-

ing/authentication or as a supplementary method to test
the validity of other methods (see Table S2 for full list
of assays). However, generating a complete genetic pro-
file or sequence may be hindered in samples with highly
degraded DNA (like canned fish). As such, assays that
target a shorter region of nucleotides are important for
detecting species in highly processed products.

Dalmasso et al. (2013) used mini-sequencing, a method
based on traditional sequencing that targets a shorter
oligonucleotide fragment, to authenticate 20 samples of
highly processed cod/Gadiformes species. The study found
that mini-sequencing was as accurate, precise, and reli-
able as traditional sequencing. Next-generation sequenc-
ing (NGS) or high-throughput sequencing (HTS) are terms
used to describe modern sequencing technologies. HTS
aims to reduce the cost of traditional DNA sequencing
while producing thousands of sequences simultaneously.
For example, Paracchini et al. (2019) used HTS to verify
and authenticate 30 Gadoid species in lightly processed
foods. This study found that HTS could also be applied to
authenticate and identify mixtures in products.

3.2.3 | PCR-restriction fragment length
polymorphism (PCR-RFLP)

PCR-restriction fragment length polymorphism (RFLP)
amplifies a gene target or fragment by traditional PCR
and then uses restriction enzymes to cut the amplicon
into smaller fragments (Teletchea, 2009). As these frag-
ments are of various sizes, they can be differentiated and
visualized on an agarose gel through electrophoresis (Ras-
mussen, 2012). PCR-RFLP can identify numerous species
with a single pair of primers depending on the type of
restriction enzymes chosen (Teletchea, 2009). Compared
to DNA sequencing, PCR-RFLP is cheaper and does not
require advanced instrumentation. In addition, analysis
can often be performed on publicly available software,
which is relatively easy to navigate (Rasmussen, 2012).
However, PCR-RFLP has several disadvantages; (1) incom-
plete digestion with restriction enzymes could lead to false
results, (2) intraspecific variation may cause the addition
or deletion of a single nucleotide polymorphism, neces-
sary as a restriction enzyme binding/recognition site, (3)
it is more labor intensive, and (4) it is not suitable for
high-throughput (Rasmussen, 2012; Teletchea, 2009).

Of the 313 assays reviewed in this study, 36 were devel-
oped to use PCR-RFLP to authenticate or detect fish
species (Table 5). Aranishi et al. (2005) designed an assay
targeting the 558-bp fragment of a gene region (cytb) to
successfully detect 4 unmarked cod samples using 4 dif-
ferent restriction enzymes. Espifieira et al. (2009) used
PCR-RFLP to amplify a 142-bp region of the cytb target
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in salmon species. This method showed 100% specificity
for the species tested and was used to authenticate 25
commercial products. This assay successfully amplified a
fragment size <200 bp and could, therefore, be used for
highly processed and canned samples (Espifieira et al.,
2009). Quinteiro et al. (2001) developed a PCR-RFLP assay
for detecting hake species using the mtCR (mitochondrial
control region), amplifying a fragment of approximately
197 bp using 4 restriction enzymes. The hake control region
showed less variability than other teleosts, which may be
a reason for its success (Quinteiro et al., 2001). This assay
was also successful in identifying mixed species compared
to DNA sequencing (Quinteiro et al., 2001). Lastly, Mata
et al. (2020) designed a nested PCR-RFLP assay to detect
four species of tuna, that is, skipjack, albacore, yellowfin,
and bigeye tuna, using the COI (cytochrome c oxidase I)
gene. This method could be used to detect as low as 10%
skipjack in the sample (Mata et al., 2020), suggesting that
this technique may be helpful in detecting sample mixes
and canned fish. A full list of assays is provided in Table
S3.

However, as mentioned earlier, there are numerous lim-
itations to this method. A study on snappers found that
blacktail snapper (L. fulvus) and blackspot snapper (L. ful-
viflamma) could not be distinguished using RFLP as they
are closely related species (Sivaraman et al., 2018).

3.24 | Conventional PCR

Conventional PCR, or endpoint PCR, comprises (1) DNA
amplification, (2) separation of DNA segments, and (3)
detection. When applied to species identification, conven-
tional PCR uses species-specific primers that amplify a
genetic marker only in the target species. Unlike real-
time PCR, where visualization and quantification occur
in real-time, conventional PCR requires post-PCR han-
dling, where products are separated and detected on an
agarose gel by electrophoresis. As such, conventional PCR
is more labor intensive and has an increased risk of cross-
contamination than real-time PCR; however, it provides
information faster than sequencing or methods requir-
ing downstream testing. Therefore, conventional PCR is a
cheap, rapid, sensitive, and efficient method to detect the
presence of the target gene.

Of the 313 assays reviewed in this study, 54 used con-
ventional PCR for fish authentication (Table 5). Table S4
summarizes all conventional PCR fish assays collected in
this study. As mentioned previously, highly processed sam-
ples (thermal or high pressure treated) may exhibit low
DNA integrity; as such, it is important that DNA-based
assays can detect small fragment sizes (<200 bp). Many of

in Food Science and Food Safety

the conventional PCR assays reviewed amplified DNA tar-
get regions <200 bp (Acar et al., 2017; Hellberg et al., 2010;
Kang, 2019; Laknerova et al., 2014; Lin & Hwang, 2008a;
Xiong et al., 2020). Xiong et al. (2020) assessed the sensitiv-
ity of conventional PCR. In this study, the species-specific
band of cod samples was reported to be more sensitive
than SYBR Green real-time PCR but less sensitive than
TagMan probe real-time PCR. Kang (2019) also found that
tilefish samples could be visualized from serial dilutions of
1x 1072 ng/uL for some species of tilefish. As such, conven-
tional PCR is sensitive to amplify small fragment sizes and
low DNA quantities.

Primer dimers may also be detected in conventional
PCR, which may obscure the 5’ end of the sequence and/or
lead to false positives (Ivanova et al., 2007). Even though
conventional PCR has fewer downstream steps than
other DNA-based authenticating methods, it requires post-
PCR handling, which can introduce cross-contamination.
In addition, this detection technique is not automated
like real-time PCR. Instead, detection requires gel elec-
trophoresis and visualization of the gel under UV light. As
such, nonspecific amplification, including cross-reactivity
and faint bands, may produce false positive results, as
reported by Hellberg et al. (2010). Furthermore, ethidium
bromide, often used to visualize gels, requires special han-
dling due to its toxic and mutagenic effects. Therefore,
even though detection is rapid, conventional PCR has an
increased risk of false positives and contamination, often
requiring special handling.

3.25 | DNA barcoding and mini-barcoding

DNA barcoding is an authentication method where a
short, standardized sequence is used to identify a par-
ticular species. This standardized target sequence acts
as a “barcode,” similar to a UPC (Universal Product
Code) (Hellberg et al., 2016). The DNA barcode most
often used for animals is a ~650-bp region of the COI
gene, which usually shows sufficient divergence between
species but remains relatively conserved within species
(Hellberg et al., 2016; Rasmussen Hellberg & Morrissey,
2011). DNA barcoding uses DNA sequencing methodol-
ogy as outlined in Section 3.2.2 to authenticate products.
The resulting DNA sequence is then searched against a
sequence database to identify the species. As it relates to
fish, DNA barcoding provides an effective and reliable way
of authenticating products. Its use of universal primers
that amplify the COI gene in most fish species allows for
broad application of the method across a wide range of
fish categories. However, there have been some criticisms
of using this technique with certain fish species groups, as
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the COI or cytb regions may not exhibit adequate variation
to differentiate between closely related species (Hellberg
et al., 2016).

Another criticism stems from traditional DNA barcod-
ing primary focus on mitochondrial DNA (mtDNA), which
determines that it cannot be used to identify hybridized
species (Rehbein, 2013). As such, nuclear targets such as
ITS1 (internal transcribed spacer), rhodopsin, or 5S rRNA
are preferable in cases of species hybridization (Hellberg
et al., 2016). These gene targets are further discussed in
Section 3.3.

Waulansari et al. (2015) found that barcoding with the
cytb gene, in the range of 500-750 bp, for processed tuna
was inadequate for authenticity testing due to damaged
DNA. As such, shorter regions of the gene targets, or
“mini-barcodes,” are required for highly processed fish
samples. As outlined in Table 5 and Table S5, this arti-
cle reviewed 38 DNA barcoding (including mini-barcoding
assays). Mitchell and Hellberg (2016) used both the mtCR
and ITS1 to authenticate samples of tuna in a mini-
barcoding assay. The study found that amplifying shorter
regions of DNA was adequate for the authentication of
tuna in 43% of canned products tested. The remaining sam-
ples likely could not be identified due to factors such as the
presence of PCR inhibitors and/or multiple species, DNA
fragmentation, or lack of primer binding.

3.2.6 | Multiplex PCR
Multiplex PCR is a method in which more than one locus is
amplified simultaneously in the same reaction (Henegariu
et al., 1997). Hence, multiplex PCR can detect multiple
species at once. It is rapid, efficient, and versatile (Set-
tanni & Corsetti, 2007). Multiplex PCR amplifies more
than one target by mixing primer pairs at various speci-
ficities/concentrations and separating the species-specific
amplicons on an agarose gel by electrophoresis (Settanni
& Corsetti, 2007). However, there are some disadvantages
to multiplex PCR as (1) it requires post-PCR handling,
which can cause cross-contamination and exposure to
toxic chemicals (see Section 3.2.4), (2) the likelihood of
primer dimers is increased due to the use of multiple
primers in one reaction, and (3) it is very sensitive to the
magnesium (MgCl,) concentration, as it affects specificity
and efficiency of the reaction (Settanni & Corsetti, 2007).
Multiplex PCR is an effective approach to investi-
gate species-specific amplification in complex mixtures
(Settanni & Corsetti, 2007). Of the 313 assays reviewed
in this study, 25 were unique multiplex assays for fish
authentication (Table 5 and Table S6). Lin and Hwang
(2008a) designed a multiplex PCR assay to authenticate
five species of raw and cooked bonito (Euthynnus pelamis,

Euthynnus affinis, Auxis rochei, Auxis thazard, and Sarda
orientalis). These five bonito species could be accurately
and successfully identified in a one-step multiplex PCR
approach by examining the mitochondrial cytb (Lin &
Hwang, 2008a). However, only five out of the eight cooked
samples were identified in this study due to degraded
DNA; therefore, this assay was only effective for mildly
processed/heated fish (Lin & Hwang, 2008a). Damasceno
et al. (2016) designed an assay for the detection of nine
species of grouper using the COI gene. The assay was
specific and effective for differentiating species (Damas-
ceno et al., 2016). The technique is low-cost, rapid, and
practical (as it does not require complicated laboratory
equipment) (Damasceno et al., 2016). Georgiadis et al.
(2014) and Rocha-Olivares and Chavez-Gonzalez (2008)
designed assays using a multiplex-haplotype-specific-PCR
method that were specific enough to identify diagnostic
point mutations.

3.2.7 | PCR-single strand conformation
polymorphism (PCR-SSCP)

PCR-strand conformation polymorphism (SSCP) is a
method based on the electrophoretic mobility of sin-
gle stranded DNA, which corresponds to its nucleotide
sequence (Teletchea, 2009). The amplified ssDNA strand is
run on a non-denaturing polyacrylamide gel electrophore-
sis (PAGE), and the band pattern is visualized. PCR-SSCP
is easy to perform and provides quick results. Further-
more, it can detect point mutations or changes to a single
base in a sequence (Hayashi & Yandall, 1993). This allows
close species to be accurately and efficiently discriminated
as single base changes can lead to different folded con-
formations (Hayashi & Yandall, 1993; Teletchea, 2009).
Sivaraman et al. (2019) used PCR-SSCP to differentiate
between the closely related snapper species blacktail snap-
per (L. fulvus) and blackspot snapper (L. fulviflamma),
which was not possible using PCR-RFLP.

Of the 313 assays reviewed in this study, only 5 were
developed for fish authentication using PCR-SSCP (Table 5
and Table S7). Although this method can differenti-
ate between species, intraspecies variation can lead to
false identification (Teletchea, 2009). In addition, refer-
ences/controls are required as detection depends on the
native PAGE and multiple/false bands being differen-
tially visualized based on the conformation of the sSDNA
(Hayashi & Yandall, 1993; Teletchea, 2009). Chapela et al.
(2007) developed a PCR-SSCP assay using a 588-bp cytb
fragment to differentiate and authenticate various hake
species. Species-specific band patterns were observed for
6 out of 11 species belonging to the genus Merluccius.
When the Euro-African group of species was examined,
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European hake (M. merluccius), Senegalese hake (M. sene-
galensis), and South-African hake (M. capensis) showed
the same band patterns and were unable to be differen-
tiated (Chapela et al., 2007). Argentine hake (M. hubbsi)
and Benguela hake (M. polli) showed intraspecies vari-
ability (Chapela et al., 2007) that helped differentiation.
Detection accuracy may be affected by fragment size, as
100-300 bp fragments exhibited 99% accuracy, whereas
>400 bp fragments exhibited >80% accuracy (Girman,
1996).

3.2.8 | PCR-random amplified polymorphic
DNA (PCR-RAPD)

PCR-random amplified polymorphic DNA (RAPD) uses a
short, arbitrary primer sequence to amplify a short seg-
ment of the DNA (Teletchea, 2009). This method is easy
to set up, as prior genetic knowledge of the species under
study is not required (Asensio et al., 2002). In addition, it
allows for the simultaneous amplification of multiple loci
as it targets numerous sequences in a species’ DNA (Asen-
sio et al., 2002). Chiu et al. (2012) designed a PCR-RAPD
assay to detect the presence of giant grouper (Epinephelus
lanceolatus) in 14 fresh tissue samples. Among the 95
primers designed, 21 showed 13.3%-66.7% polymorphism,
generating DNA fragments from 100 to 3000 bp (Chiu
et al., 2012). One primer (RAPD115) showed high poly-
morphism, whereas another primer (RAPD73) was able
to discriminate between wild and farmed giant grouper
(Chiu et al., 2012). Asensio et al. (2002) designed a RAPD
assay to differentiate grouper (Epinephelus guaza), wreck
fish (P. americanus), and Nile perch (L. niloticus), which
was tested against 15 fillets of each species. The study
found that two primers (S1 and L1) could discriminate
among the 3 species and successfully generate a unique
fingerprint (Asensio et al., 2002). PCR-RAPD is use-
ful for samples with limited quantities of DNA, where
the DNA sequence is unknown, and/or to understand
species-specific differences (Asensio et al., 2002).
However, PCR-RAPD may not be able to identify species
in products containing multiple species or in severely
degraded samples (Asensio et al., 2002). This limits the
application of the technique because processed food prod-
ucts (e.g., canned) often contain a mixture of fish species.
Furthermore, thermal treatments, for example, cooking
or canning, can degrade DNA, which may negatively
impact RAPD detection and analysis. Of the 3 assays
reviewed (Table S8), DNA band fragments ranged from
100 to 3000 bp (Asensio et al., 2002; Chiu et al., 2012),
which may indicate the necessity for larger fragment sizes
non-retrievable from highly processed foods.

in Food Science and Food Safety

3.29 | Others

Other studies, as outlined in Table 5 and Table S9, used a
variety of less common fish authentication and identifica-
tion methods, such as loop-mediated isothermal amplifi-
cation, lateral flow dipstick, and amplified fragment length
polymorphism (PCR-AFLP).

3.3 | DNA target/assay region
A revision of DNA markers or gene regions targeted for fish
identification, outlined in Table 6, revealed that most stud-
ies focused on mitochondrial DNA (mtDNA). There are
several advantages to using mtDNA for fish species iden-
tification in commercial products. First, there are more
copies of mtDNA than nuclear DNA (nDNA) inside a
cell (Murugaiah et al., 2015). Therefore, it is more likely
that a fragment within this genome will be amplified,
especially in highly degraded DNA, as seen in processed
products (Teletchea, 2009). This may be why most studies
reviewed used mtDNA to identify and detect fish species
in cooked, canned, and smoked samples. Second, mtDNA
has a higher mutation rate than nDNA, which allows for
closely related species to be identified and differentiated
(Murugaiah et al., 2015). Lastly, as mtDNA is generally
conserved (i.e., does not undergo recombination) as it is
maternally inherited, the study and exploration of this tar-
get are more straightforward and more manageable than
nDNA (Lin & Hwang, 2008b; Murugaiah et al., 2015). How-
ever, due to the maternal inheritance pattern of mtDNA, it
cannot be used to differentiate hybridized species.
Intraspecific variability should be considered when
studying species based on single-base polymorphisms
(Pardo & Pérez-Villareal, 2004; Terol et al., 2002). Ide-
ally, the most suitable DNA markers for species identi-
fication should be variable between species and display
low to no-intraspecific variations (Teletchea, 2009). Some
mtDNA markers, cyth, COI, and 16S, have been exten-
sively researched for fish authentication, as described in
the sections below and outlined in Table 6.

3.31 | Cytochrome b (cytb)

Cytb satisfies most of the criteria for a good DNA marker.
Hence, it is widely studied for a large number of species
and is the most used gene for species phylogeny (Teletchea,
2009). This gene is the most studied DNA region, with 94
assays designed for fish authentication. Lin and Hwang
(2008b) found that the diversity between the 10 tested
scombroid species was 9.4%-17.9%, which indicates that
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TABLE 6 Common gene targets used in fish authentication assays from 2000 to 2023.
Target gene Subgroup Number of assays® References”
COI 85 [1, 4,14, 15,16, 19, 22, 30, 33, 34, 35, 41, 43, 44, 50, 52, 53,
57, 58, 59, 61, 63, 65, 68, 69, 71, 72, 73, 74, 78, 82, 86, 89, 92,
93,104, 113, 116, 122, 127, 128, 141, 143, 146, 152, 160, 163,
164, 167, 172, 173, 178, 179, 180, 186, 187]
Coll 1 [20]
cytb 94 [2,5,6,8,9,18, 21, 24, 28, 31, 32, 35, 40, 42, 47, 49, 51, 54,
55, 57, 63, 64, 80, 81, 82, 88, 89, 94, 98, 100, 102, 103, 106,
107, 108, 110, 114, 116, 121, 125, 132, 135, 136, 137, 139, 140,
141, 142, 143, 144, 150, 153, 154, 157, 158, 164, 166, 168, 169,
170, 171, 172, 173, 174, 175, 180, 184, 185, 187, 190]
16S 36 [6,17, 40, 47, 56, 62, 74, 79, 87, 89, 94, 97, 109, 111, 112, 120,
153, 161, 162, 164, 179, 186, 187]
16S rRNA 31 [6,17, 47, 56, 62, 74, 79, 87, 89, 94, 97, 109, 111, 112, 120,
161, 161, 164, 179, 186]
16S rDNA 2 [153, 179]
12S 22 [11, 20, 22, 27, 85, 91, 99, 138, 139, 143, 145, 149, 166, 176,
179, 189, 191]
12S rRNA 15 [11, 20, 22, 27, 85, 91, 99, 138, 139, 143, 145, 149, 176, 179,
189]
12S rDNA 6 [166, 179, 191]
Mitochondrial control 16 [25, 56, 59, 65, 96, 104, 115, 130, 179]
region (CR)
ATPase 10 [17, 40, 45,103, 121, 143, 156, 179]
ND 11 [1, 20, 35, 26, 35, 74, 85, 99, 103]
Others 47 [3,12, 26, 36, 37, 38, 39, 40, 46, 60, 66, 67, 70, 74, 75, 76,
83, 84, 90, 95, 101, 103, 112, 115, 117, 118, 119, 123, 124, 129,
133, 143, 144, 147, 148, 155, 188
Gene targets (growth 13 [3, 38, 67, 75, 76, 83, 101, 118, 119, 129, 144|
hormone, transferrin
gene, parvalbumin gene,
pantophysin gene)
55 8 [7,10, 60, 84, 126, 159]
D-loop 5 [40, 117, 143, 147, 148]
18S rRNA 4 [13, 77,138, 187]
ITS1 3 [39, 70, 115]
Nuclear target 3 [123, 124, 133]
SCAR marker 2 [37,188]

Abbreviations: COI, cytochrome c oxidase 1; cytb, cytochrome b; ITS1, internal transcribed spacer; ND, NADH dehydrogenase; SCAR, sequence-characterized

amplified region.

Number of assays and number of references may differ as some articles have developed more than one assay reported in the same publication. List of references

listed in the Supporting Information Reference List.

the distinguishable sequences of cytb were adequate for
phylogeny and for the development of species identifica-
tion methods (Lin & Hwang, 2008b).

Michelini et al. (2007) found that the genetic distances
between the species tested (T. albacares, T. obesus, and
K. pelamis) were 1 order of magnitude higher than the
intraspecific distances, whereas the coefficient of differ-
entiation was 0.9 + 0.2. When a phylogenetic tree was
created, the bootstrap values ranged from 90% to 100%,
suggesting that cytb could be used to differentiate these

three species (Michelini et al., 2007). Pardo and Pérez-
Villareal (2004) found a high degree of conservation for
the cytb target. T. albacares, Thunnus alalunga, and T.
thynnus did not show any intraspecific variability, whereas
the intraspecific variability was low for T. obesus and K.
pelamis (Pardo & Pérez-Villareal, 2004). Similar results
were reported by Terol et al. (2002), who observed low
intraspecific variability among the three tuna species ana-
lyzed. Lastly, mini-barcoding with cytb offered improved
results and performance than the COI gene for distinguish-
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ing four fish species in the Gadidae family (Fernandes
et al., 2017).

3.3.2 | Cytochrome c oxidase I (COI)

The COI region typically shows significant divergence
between species but slight variation within species, mak-
ing it ideal for species identification (Rasmussen & Mor-
rissey, 2009). COI fragments have been able to distinguish
and discriminate most animal and fish species effectively
and reliably (Ward et al., 2005). Furthermore, DNA barcod-
ing with COI has been adopted by the U.S. FDA for regula-
tory testing of fish species (Handy et al., 2011). Among the
studies reviewed, 85 assays were designed utilizing the COI
gene. An investigation into the COI barcoding sequences
(n = 874) for commercially important trout and salmon
species revealed that each species possesses a unique clus-
ter of haplotypes, which are related but do not overlap
(Rasmussen & Morrissey, 2009). Damasceno et al. (2016)
found high bootstrap values for Epinephelidae species
tested using the COI marker, indicating that the COI gene
is reliable for identifying these species. High bootstrap val-
ues were also reported by Xu et al. (2016), where several
tuna species were examined.

As the 650-bp region for the COI barcode may be
degraded in highly processed samples, methods such as
multiplex PCR and mini-barcoding, which target a shorter
fragment of this gene region, are effective in species
authentication. In particular, Fernandes et al. (2018) found
that targeting a 102-bp region within the COI sequence by
mini-barcoding could detect Merluccius spp. with confi-
dence levels >99%. In fact, several studies targeted regions
<200 bp within the COI gene (Acar et al., 2017; Cao et al.,
2013; Chen et al., 2018; Hellberg et al., 2010; Kang, 2019;
Servusova & Piskata, 2021).

3.3.3 | 16SrRNA

The 16S rRNA gene can be considered for fish authen-
tication due to its inter-specific species polymorphism
(Georgiadis et al., 2014). However, previous studies have
found that the inter- and intra-specific divergence is lower
for 16S rRNA than the cytb or COI gene targets (Nicolas
et al., 2012). According to Nicolas et al. (2012), the 16S gene
was 2.5 times less variable than both COI and cytb. Boot-
strap values have also been reported to be lower for 16S
rRNA than cytb and COI. Although Nicolas et al. (2012)
identified difficulties in alignment due to insertions and
deletions in the 16S gene region, of the 313 assays reviewed,
31 were based on the 16S rRNA region to authenticate fish.

i Foud Science and Food Safety

Liu et al. (2016) found that 16S rRNA showed the
most conservation, compared to COI and cytb, when tuna
species (Thunnus) were tested. Feng et al. (2017) also
reported that the 16S region was highly conserved among
species of Salmonidae. Due to its high conservation, Lopez
and Pardo (2005) used 16S rRNA for amplification of
a conserved region in Scombroidei species as a positive
control.

334 | 12SrRNA

The 12S rRNA mitochondrial gene has been reported as an
effective target for fish detection and authentication due
to its size (length), availability of sequence information
in accessible databases, and mutation rate (Granata et al.,
2012). Although 12S rRNA shows less degeneracy than
other protein-coding genes belonging to the mitochondrial
gene pool, its variation is sufficient for interspecies dif-
ferentiation (Céspedes et al., 2000; Granata et al., 2012).
As per Table 6, 15 assays were reviewed in this study.
Céspedes et al. (2000) found that the 12S rRNA gene,
when used with two restriction enzymes, Acil and Mwol,
showed no intraspecific polymorphism for sole (S. solea)
and halibut (R. hippoglossoides). In addition, high boot-
strap values (98%) and high intraspecific homogeneity
were reported for 1000 replicates of red snappers (Lutjanus
spp.) (Zhang et al., 2007). When combined with molecular
detection methods, this gene was effective in detecting and
authenticating species.

3.3.5 | Mitochondrial control region (mtCR)

The mtCR is a noncoding region in DNA that exhibits
high species variation and can be used to analyze vari-
ability within closely related species (Mitchell & Hellberg,
2016; Quinteiro et al., 2001). This review encompasses 16
assays using the mtCR region for fish authentication. Feng
et al. (2017) found that the control region had the highest
level of divergence than other regions like 16S rDNA, at
5.3%-14.3% for salmon species. The study also found that
this region was less conserved than 16S rDNA (Feng et al.,
2017). Liu et al. (2016) also reported that CR fragments
showed more diversity and less conservation when species
of tuna were examined. Similarly, Xu et al. (2016) found
that mtCR allowed for the discrimination of tuna species
and had a high bootstrap value. However, the phylogenetic
tree created did not support the differentiation among T.
albacares, Thunnus Atlanticus, or T. tongol but endorsed
the monophyletic origin of other tuna species (Xu et al.,
2016). Catanese et al. (2010) found that the mtCR was suit-
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able and successful in detecting fraud within the Scomber
genus.

3.3.6 | ATPase

ATPase (Adenosine triphosphatase) is another mtDNA tar-
get employed in identifying fish and fish products. As
outlined in Table 6, 10 assays this gene target for species
detection and authentication. This gene region is often
targeted at the ATPase 6 and ATPase 8 loci. Prior stud-
ies have found high divergence among haplotypes when
the ATPase genes were targeted. For example, Damman-
nagoda et al. (2011) reported a 1.5% mean divergence
among clades when samples of skipjack tuna (K. pelamis)
were examined. Xu et al. (2016) also identified higher diver-
gence when using the ATPase gene rather than cytb, COI,
12S rDNA, and 16S rDNA in samples of tuna. This study
found that after digestion with 2 restriction enzymes, the
ATPase region was suitable for unambiguous and simul-
taneous identification of tuna or tuna-related species.
Namikoshi et al. (2011) used the ATPase six region, in com-
bination with PCR-RFLP, to effectively detect mixtures of
cod species (Gadus spp. and Micromesistius spp.) as low as
0.5%.

3.3.7 | NADH dehydrogenase subunit

The NADH dehydrogenase subunits (ND) are mitochon-
drial genes often used for food authentication. In this
review, 11 assays were identified for detecting and differ-
entiating fish species, such as tuna or mackerel, using
multiple ND subunits, primarily ND1, ND2, and ND5 as
outlined in Table 6.

3.3.8 | Other

Other gene targets employed in fish assay development
and authentication include the 5S, D-loop, 18S rRNA, ITS1,
growth hormone, transferrin, parvalbumin, and panto-
physin genes as outlined in Table 6.

3.4 | Case study
In silico results for mismatch and primer specificity of
singleplex and multiplex assays are provided in Table 7,
respectively. For ease of reporting, each assay was assigned
a number from 1 to 19.

Primer and probe mismatches can be disruptive and
cause variations in elongation efficiencies (Wright et al.,

2014). For this review, assays were considered specific if
the primer and probes: (1) were able to align with the tar-
get sequence(s) in the reference library, (2) showed <2 and
<3 mismatches to the target sequence for a primer/probe
pair or <4 mismatches to the target sequence for a single
primer/probe, (3) did not exhibit a full match to nontarget
record sequences, and (4) showed >3 and >2 mismatches
to the primer/probe pair or >4 nucleotide mismatches to
a single primer for nontarget references (through in silico
analysis). Of the 19 assays reviewed in the study, 3 assays
designed for the detection of A. rochei, A. thazard, and S.
orientalis (Lin & Hwang, 2008b) showed in silico specificity
based on the criteria set out herein, that is, by examin-
ing the match/mismatch count (Table 7). All other assays
reviewed did not comply with one or more of the criteria.
This indicates that there is a likelihood that these primers
and/or probes may amplify nontarget species or may not
amplify target species at all, generating false-positives or
negatives. This is of particular concern in food products
containing a mixture of species. There is also a risk that
these nonspecific assays may amplify escolar (L. flavobrun-
neum), generating a false-positive for the target species
and introducing a food safety risk to consumers. In fact,
some primers and probes had <4 mismatches to escolar
records and further investigation is required to understand
whether they may be able to amplify in silico. Additional
information such as the MSA and code can be found in the
Supporting Information Files.

3.41 | Assay scoring

Due to the large number and variation in the validation
techniques used in published assays, it can be challeng-
ing to test the reliability of an assay (Bruce et al., 2020).
In silico analysis should be the first step in determining
the efficiency of an assay. An assay scoring framework
by Bruce et al. (2020) was modified to present the level
of validation achieved for published assays. This frame-
work was published for detecting eDNA, but it may be
applied to numerous biological and forensic fields, includ-
ing food authentication. As such, this modified framework
was adapted for assays specific to food, as outlined in
Table 8.

Interestingly, although all assays conducted in vitro test-
ing against some off-target species, consistent with the
potential for Level 2 validation, the in silico analysis con-
ducted in the tuna case study showed the potential lack of
assay specificity. Three assays for the detection of A. rochei,
A. thazard, and S. orientalis from the Lin and Hwang
(2008b) study showed no cross-reactivity with nontarget
species (primers and/or probes were not able to align (or
exhibit MSA) with any of the tested nontarget sequences
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TABLE 8 Assay validation scale for commercial fish authentication.

Level 1 | Insilico analysis PCR protocol applied
but not optimized
Level 2 | Insilico analysis PCR protocol applied | Some in vitro testing
and optimized of species (target and
off-target) for assay
specificity
Level 3 | Insilico analysis PCR protocol applied | Testing in vitro Some commercial/
and optimized species (target and market validation
off-target) for some testing of samples and
closely related species | comparison with
to test for assay traditional DNA
specificity sequencing
Level 4 | In silico analysis PCR protocol applied | Testing in vitro Commercial/ market Limits of detection
and optimized species (target and validation testing of and limits of
off-target) for all samples and quantification
closely related species | comparison with established
to test for assay traditional DNA
specificity sequencing
Level 5 | In silico analysis PCR protocol applied | Testing in vitro Commercial/ market Limits of detection Statistical modelling
and optimized species (target and validation testing of and limits of and understanding
off-target) for all samples and quantification factors affecting
closely related species | comparison with established detectability, for
to test for assay traditional DNA example various
specificity sequencing processing methods.

Abbreviation: PCR, polymerase chain reaction.
Source: Adapted from Bruce et al. (2020).

in silico, that is, mismatch averages >3 and >2 in each
primer pair) and showed specificity for the target reference
sequence(s) (with mismatch averages <3). These 3 assays
achieved a score of Level 3 as they were tested against
commercial samples, and samples were sequenced and
compared to the sequence database. However, the LODs
and quantification, which are needed to achieve Level 4
validation, were not established for these assays. Overall,
this indicates a lack of standardization of validation tech-
niques for fish species identification wherein the published
assays do not perform as expected, leading to the poten-
tial for false negatives and false positives, which may also
impact specificity and reproducibility.

3.4.2 | Limitations of the case study

The average primer mismatches presented in this case
study may not account for all unique haplotypes as (1)
not all sequences included in the DNA reference library
spanned the entire cytb region and (2) there may be a lack
of sampling/data available for a wide range of haplotypes.
Furthermore, misidentified sequences in GenBank may
have led to the inclusion of erroneous sequence data in the
case study. Therefore, standardization of testing parame-
ters, as well as collecting more sequence reference data,
will be important for future studies.

Finally, this study treated all assays the same, regard-
less of whether they were intended to be species-specific
at the initial PCR step or whether there were downstream
differentiation methods. In vitro factors that may affect
primer annealing and extension, such as primer concen-

tration, location and type of primer mismatches, melting
temperatures, and type of master mix (Wu et al., 2009),
were not examined. This may make these results flawed,
as a one-step approach was applied to all published tuna
assays. However, this case study enforces the argument
that (1) a standardized testing method for food authentica-
tion should be developed and (2) regardless of downstream
methods, a lack of specificity in the primer/probe binding
could have inhibitory effects, delay the elongation period,
and/or amplify off-target species.

4 | CHALLENGES AND
OPPORTUNITIES

Several assays have been designed to target specific, at-risk
commercial fishes in recent years. Each DNA detection
method and target loci present pros and cons that must
be weighed prior to designing an assay. Cost is a primary
factor in developing and using food authentication tools.
However, as research progresses, the industry can improve
protocols and techniques to allow for rapid, efficient, and
cost-effective methods. Table 9 presents some character-
istics of the most popular detection methods used in fish
authentication and outlines the pros and cons (limitations)
of each method. From the 313 original assays developed
for commercial species of fish over the last 23 years, the
most explored DNA-based method is real-time PCR, fol-
lowed by DNA sequencing. The high efficiency, sensitivity,
reproducibility, low intraspecies variation errors, ability to
multiplex, high throughput, and ability to quantify short
DNA fragments make real-time PCR an essential tool in
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food/seafood authentication. For these reasons, it is listed
as the most recommended DNA-based detection method
in this review. However, as mentioned prior, designing
multiplex assays can pose challenges.

The second most used detection method has been DNA
sequencing; however, having the whole DNA sequence for
the gene target may be difficult due to the quality and
quantity of DNA present in food. As such, methods that
amplify smaller fragment sizes, such as mini-barcoding,
mini-sequencing, and NGS, may be preferable for testing
highly processed products. Additionally, DNA sequencing
is costly and requires more labor and time compared to
real-time PCR. DNA detection methods should be cho-
sen depending on the food product being tested and the
capabilities of the lab (equipment, cost, etc.). For exam-
ple, highly processed fish, including smoked, canned, or
dried, products, are common in the supply chain. There-
fore, detection methods should consider the type of sample
and the amount of DNA present.

mtDNA has been the most common region targeted
for identification, as it exists in circular form and is less
susceptible to DNA degradation than nDNA. In addi-
tion, there are a lot more copies of mtDNA than nDNA
inside a cell. However, intraspecific variability of the tar-
get fish species, as well as interspecific variation, should
be considered when choosing the gene target.

Given the advantages and limitations of various detec-
tion methods described in this review, it may be beneficial
to target multiple gene loci as well as to use multiple DNA
analytical technologies to identify species. This will ensure
that results are reported with more accuracy and confi-
dence. There have also been criticisms in regards to using a
single genetic marker for differentiating species (Xu et al.,
2016). However, this can be a costly and time-consuming
process. Researchers should thoroughly understand the
limitations of their methods as they relate to technology
and the fish species of interest. This is because the degree of
species intra and inter-specificity will differ on various fac-
tors. Furthermore, itisimportant to note that in some cases
a negative test result for a particular species may be due to
a limitation of the assay (e.g., inability to amplify degraded
DNA) rather than the absence of the target species.

In addition, the most studied gene regions were cytb,
followed by COI; however, species may differ in their inter-
species variability at various gene regions. The advantages
and disadvantages of each DNA detection method and
gene region, as they relate to efficiency, cost, sensitivity,
reproducibility, inter-species variability, and intra-species
variability, should be explored before designing and devel-
oping assays. Furthermore, primer and probe specificity
have a significant impact on the sensitivity and quality of
an assay. A case study of 19 commercial tuna assays tar-
geting the cytb region showed a lack of standardization

for specificity and assay validation (Table 8). For exam-
ple, many of the assays did not show in silico specificity or
did not receive higher than Level 3 on the assay validation
scale. This ultimately affects the reliability, efficiency, and
reproducibility of some of the published assays reviewed in
this study. These results indicate the need to improve the
standardization of food assay design and validation tech-
niques, as the goal is to protect consumers’ health. It is
recommended that in silico tools be used to test primers
for specificity prior to conducting laboratory tests. This
will help save time, reduce the need for troubleshooting,
decrease overall costs, and ensure assay specificity.

One of the limitations of this review is that assays
surveyed herein tested anywhere between 1 and 20+
individual species using multiple targets and methods.
Furthermore, many articles were missing specificity data,
were unable to align with the reference library, and/or the
types of specificity testing and reporting varied depending
on the detection method used or researcher preference.
Therefore, a valid statistical comparison among species,
gene targets, and detection methods was difficult. This
emphasizes the need for more focused and streamlined
research to explore the reproducibility and reliability of
DNA-based identification methods (Rasmussen & Morris-
sey, 2009). It is also important to note that this review does
not cover the actual quality of an assay using either DNA
technology or gene target loci. Although there are benefits
and disadvantages of using various methods, the quality of
an assay primarily depends on its primers’ specificity.

5 | CONCLUSION

As the supply chain grows, there is a need for authentica-
tion of commercial species of fish due to environmental,
economic, and food safety concerns. Fish fraud causes
a breakdown in product traceability, which makes it a
risk to consumers should there be a food safety event.
Over the last 23 years, 313 original assays were reviewed
for the authentication of commercial species of fish. The
most studied gene region was cytb, followed by COI; how-
ever, species may differ on their inter-species variability,
which may make other gene regions more suitable. The
most explored DNA-based method was real-time PCR, fol-
lowed by DNA sequencing. However, various factors, such
as efficiency, sensitivity, reproducibility, sample type, and
cost, must be considered when developing assays for fish
authenticity.

Primer and probe specificity may impact the sensitiv-
ity and quality of an assay. A case study of 19 commercial
tuna assays targeting the cytb region showed a lack of stan-
dardization for specificity and assay validation, as per the
parameters outlined in this article. This questions the reli-
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ability, efficiency, and reproducibility of published assays
for fish authentication. Therefore, food assay design and
validation techniques need to be standardized, and in sil-
ico tools should be used to test primers for specificity prior
to laboratory implementation.
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